Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 621(7980): 840-848, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674084

RESUMO

In both cancer and infections, diseased cells are presented to human Vγ9Vδ2 T cells through an 'inside out' signalling process whereby structurally diverse phosphoantigen (pAg) molecules are sensed by the intracellular domain of butyrophilin BTN3A11-4. Here we show how-in both humans and alpaca-multiple pAgs function as 'molecular glues' to promote heteromeric association between the intracellular domains of BTN3A1 and the structurally similar butyrophilin BTN2A1. X-ray crystallography studies visualized that engagement of BTN3A1 with pAgs forms a composite interface for direct binding to BTN2A1, with various pAg molecules each positioned at the centre of the interface and gluing the butyrophilins with distinct affinities. Our structural insights guided mutagenesis experiments that led to disruption of the intracellular BTN3A1-BTN2A1 association, abolishing pAg-mediated Vγ9Vδ2 T cell activation. Analyses using structure-based molecular-dynamics simulations, 19F-NMR investigations, chimeric receptor engineering and direct measurement of intercellular binding force revealed how pAg-mediated BTN2A1 association drives BTN3A1 intracellular fluctuations outwards in a thermodynamically favourable manner, thereby enabling BTN3A1 to push off from the BTN2A1 ectodomain to initiate T cell receptor-mediated γδ T cell activation. Practically, we harnessed the molecular-glue model for immunotherapeutics design, demonstrating chemical principles for developing both small-molecule activators and inhibitors of human γδ T cell function.


Assuntos
Butirofilinas , Ativação Linfocitária , Fosfoproteínas , Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T , Animais , Humanos , Antígenos CD/imunologia , Antígenos CD/metabolismo , Butirofilinas/imunologia , Butirofilinas/metabolismo , Camelídeos Americanos/imunologia , Simulação de Dinâmica Molecular , Fosfoproteínas/imunologia , Fosfoproteínas/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Cristalografia por Raios X , Ressonância Magnética Nuclear Biomolecular , Termodinâmica
2.
Immunity ; 50(4): 1043-1053.e5, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30902636

RESUMO

Human Vγ9Vδ2 T cells respond to microbial infections and malignancy by sensing diphosphate-containing metabolites called phosphoantigens, which bind to the intracellular domain of butyrophilin 3A1, triggering extracellular interactions with the Vγ9Vδ2 T cell receptor (TCR). Here, we examined the molecular basis of this "inside-out" triggering mechanism. Crystal structures of intracellular butyrophilin 3A proteins alone or in complex with the potent microbial phosphoantigen HMBPP or a synthetic analog revealed key features of phosphoantigens and butyrophilins required for γδ T cell activation. Analyses with chemical probes and molecular dynamic simulations demonstrated that dimerized intracellular proteins cooperate in sensing HMBPP to enhance the efficiency of γδ T cell activation. HMBPP binding to butyrophilin doubled the binding force between a γδ T cell and a target cell during "outside" signaling, as measured by single-cell force microscopy. Our findings provide insight into the "inside-out" triggering of Vγ9Vδ2 T cell activation by phosphoantigen-bound butyrophilin, facilitating immunotherapeutic drug design.


Assuntos
Antígenos CD/química , Butirofilinas/química , Ativação Linfocitária , Organofosfatos/metabolismo , Subpopulações de Linfócitos T/imunologia , Antígenos CD/metabolismo , Sítios de Ligação , Butirofilinas/metabolismo , Cristalografia por Raios X , Dimerização , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Imunoterapia , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Domínios Proteicos , Isoformas de Proteínas/química , Processamento de Proteína Pós-Traducional , Receptores de Antígenos de Linfócitos T gama-delta , Análise de Célula Única , Relação Estrutura-Atividade , Subpopulações de Linfócitos T/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38754724

RESUMO

OBJECTIVE: Patients with symptomatic lower extremity arterial disease (LEAD) are recommended to receive antiplatelet therapy, while direct oral anticoagulants (DOACs) are standard for stroke prevention in patients with atrial fibrillation (AF). For patients with concomitant LEAD and AF, data comparing dual antithrombotic therapy (an antiplatelet agent used in conjunction with a DOAC) vs. DOAC monotherapy are scarce. This retrospective cohort study, based on data from the Taiwan National Health Insurance Research Database, aimed to compare the efficacy and safety of these antithrombotic strategies. METHODS: Patients with AF who underwent revascularisation for LEAD between 2012 - 2020 and received any DOAC within 30 days of discharge were included. Patients were grouped by antiplatelet agent exposure into the dual antithrombotic therapy and DOAC monotherapy groups. Inverse probability of treatment weighting was used to mitigate selection bias. Major adverse limb events (MALEs), ischaemic stroke or systemic embolism, and bleeding outcomes were compared. Patients were followed until the occurrence of any study outcome, death, or up to two years. RESULTS: A total of 1 470 patients were identified, with 736 in the dual antithrombotic therapy group and 734 in the DOAC monotherapy group. Among them, 1 346 patients received endovascular therapy as the index revascularisation procedure and 124 underwent bypass surgery. At two years, dual antithrombotic therapy was associated with a higher risk of MALEs than DOAC monotherapy (subdistribution hazard ratio [SHR] 1.34, 95% confidence interval [CI] 1.15 - 1.56), primarily driven by increased repeat revascularisation. Dual antithrombotic therapy was also associated with a higher risk of major bleeding (SHR 1.43, 95% CI 1.05 - 1.94) and gastrointestinal bleeding (SHR 2.17, 95% CI 1.42 - 3.33) than DOAC monotherapy. CONCLUSION: In patients with concomitant LEAD and AF who underwent peripheral revascularisation, DOAC monotherapy was associated with a lower risk of MALEs and bleeding events than dual antithrombotic therapy.

4.
Acta Cardiol Sin ; 40(1): 1-44, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38264067

RESUMO

The Taiwan Society of Cardiology (TSOC) and Taiwan Society of Plastic Surgery (TSPS) have collaborated to develop a joint consensus for the management of patients with advanced vascular wounds. The taskforce comprises experts including preventive cardiologists, interventionists, and cardiovascular and plastic surgeons. The consensus focuses on addressing the challenges in diagnosing, treating, and managing complex wounds; incorporates the perfusion evaluation and the advanced vascular wound care team; and highlights the importance of cross-disciplinary teamwork. The aim of this joint consensus is to manage patients with advanced vascular wounds and encourage the adoption of these guidelines by healthcare professionals to improve patient care and outcomes. The guidelines encompass a range of topics, including the definition of advanced vascular wounds, increased awareness, team structure, epidemiology, clinical presentation, medical treatment, endovascular intervention, vascular surgery, infection control, advanced wound management, and evaluation of treatment results. It also outlines a detailed protocol for assessing patients with lower leg wounds, provides guidance on consultation and referral processes, and offers recommendations for various wound care devices, dressings, and products. The 2024 TSOC/TSPS consensus for the management of patients with advanced vascular wounds serves as a catalyst for international collaboration, promoting knowledge exchange and facilitating advancements in the field of advanced vascular wound management. By providing a comprehensive and evidence-based approach, this consensus aims to contribute to improved patient care and outcomes globally.

5.
BMC Bioinformatics ; 24(1): 122, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977986

RESUMO

BACKGROUND: As the RNA secondary structure is highly related to its stability and functions, the structure prediction is of great value to biological research. The traditional computational prediction for RNA secondary prediction is mainly based on the thermodynamic model with dynamic programming to find the optimal structure. However, the prediction performance based on the traditional approach is unsatisfactory for further research. Besides, the computational complexity of the structure prediction using dynamic programming is [Formula: see text]; it becomes [Formula: see text] for RNA structure with pseudoknots, which is computationally impractical for large-scale analysis. RESULTS: In this paper, we propose REDfold, a novel deep learning-based method for RNA secondary prediction. REDfold utilizes an encoder-decoder network based on CNN to learn the short and long range dependencies among the RNA sequence, and the network is further integrated with symmetric skip connections to efficiently propagate activation information across layers. Moreover, the network output is post-processed with constrained optimization to yield favorable predictions even for RNAs with pseudoknots. Experimental results based on the ncRNA database demonstrate that REDfold achieves better performance in terms of efficiency and accuracy, outperforming the contemporary state-of-the-art methods.


Assuntos
RNA não Traduzido , RNA , RNA/química , Sequência de Bases , Estrutura Secundária de Proteína , Bases de Dados Factuais
6.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958663

RESUMO

Piwi-interacting RNAs (piRNAs) are a new class of small, non-coding RNAs, crucial in the regulation of gene expression. Recent research has revealed links between piRNAs, viral defense mechanisms, and certain human cancers. Due to their clinical potential, there is a great interest in identifying piRNAs from large genome databases through efficient computational methods. However, piRNAs lack conserved structure and sequence homology across species, which makes piRNA detection challenging. Current detection algorithms heavily rely on manually crafted features, which may overlook or improperly use certain features. Furthermore, there is a lack of suitable computational tools for analyzing large-scale databases and accurately identifying piRNAs. To address these issues, we propose LSTM4piRNA, a highly efficient deep learning-based method for predicting piRNAs in large-scale genome databases. LSTM4piRNA utilizes a compact LSTM network that can effectively analyze RNA sequences from extensive datasets to detect piRNAs. It can automatically learn the dependencies among RNA sequences, and regularization is further integrated to reduce the generalization error. Comprehensive performance evaluations based on piRNAs from the piRBase database demonstrate that LSTM4piRNA outperforms current advanced methods and is well-suited for analysis with large-scale databases.


Assuntos
Aprendizado Profundo , Pequeno RNA não Traduzido , Humanos , RNA de Interação com Piwi , RNA Interferente Pequeno/metabolismo , Algoritmos , Análise de Sequência de RNA/métodos
7.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240154

RESUMO

Kidney renal clear cell carcinoma (KIRC) accounts for approximately 75% of all renal cancers. The prognosis for patients with metastatic KIRC is poor, with less than 10% surviving five years after diagnosis. Inner membrane mitochondrial protein (IMMT) plays a crucial role in shaping the inner mitochondrial membrane (IMM), regulation of metabolism and innate immunity. However, the clinical relevance of IMMT in KIRC is not yet fully understood, and its role in shaping the tumor immune microenvironment (TIME) remains unclear. This study aimed to investigate the clinical significance of IMMT in KIRC using a combination of supervised learning and multi-omics integration. The supervised learning principle was applied to analyze a TCGA dataset, which was downloaded and split into training and test datasets. The training dataset was used to train the prediction model, while the test and the entire TCGA dataset were used to evaluate its performance. Based on the risk score, the cutoff between the low and high IMMT group was set at median value. A Kaplan-Meier curve, receiver operating characteristic (ROC) curve, principal component analysis (PCA) and Spearman's correlation were conducted to evaluate the prediction ability of the model. Gene Set Enrichment Analysis (GSEA) was used to investigate the critical biological pathways. Immunogenicity, immunological landscape and single-cell analysis were performed to examine the TIME. Databases including Gene Expression Omnibus (GEO), Human Protein Atlas (HPA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) were employed for inter-database verification. Pharmacogenetic prediction was analyzed via single-guide RNA (sgRNA)-based drug sensitivity screening using Q-omics v.1.30. Low expressions of IMMT in tumor predicted dismal prognosis in KIRC patients and correlated with KIRC progression. GSEA revealed that low expressions of IMMT were implicated in mitochondrial inhibition and angiogenetic activation. In addition, low IMMT expressions had associations with reduced immunogenicity and an immunosuppressive TIME. Inter-database verification corroborated the correlation between low IMMT expressions, KIRC tumors and the immunosuppressive TIME. Pharmacogenetic prediction identified lestaurtinib as a potent drug for KIRC in the context of low IMMT expressions. This study highlights the potential of IMMT as a novel biomarker, prognostic predictor and pharmacogenetic predictor to inform the development of more personalized and effective cancer treatments. Additionally, it provides important insights into the role of IMMT in the mechanism underlying mitochondrial activity and angiogenesis development in KIRC, which suggests IMMT as a promising target for the development of new therapies.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Medicina de Precisão , Prognóstico , Relevância Clínica , Multiômica , Proteômica , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Proteínas Mitocondriais , Aprendizado de Máquina Supervisionado , Rim , Microambiente Tumoral/genética , Proteínas Musculares
8.
Acta Cardiol Sin ; 39(1): 97-108, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685160

RESUMO

Peripheral artery disease (PAD) imposes a heavy burden of major adverse cardiovascular events that are associated with considerable mortality and morbidity, and major adverse limb events (e.g., thrombectomy, revascularization, amputation) that can substantially impact patients' daily functioning and quality of life. Global registry data have indicated that PAD is an underdiagnosed disease in Taiwan, and its associated risk factors remain inadequately controlled. This review discusses the burden of PAD in Taiwan, major guidelines on PAD management, and the latest clinical trial outcomes. Practical experience, opinions, and the latest trial data were integrated to derive a series of clinical algorithms - patient referral, PAD diagnosis, and the antithrombotic management of PAD. These algorithms can be adapted not only by physicians in Taiwan involved in the clinical management of patients with PAD but also by general practitioners in local clinics and regional hospital settings, with the ultimate aim of improving the totality of PAD patient care in Taiwan.

9.
Appl Environ Microbiol ; 88(9): e0249721, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35435717

RESUMO

Nonheme iron- and α-ketoglutarate (αKG)-dependent halogenases (NHFeHals), which catalyze the regio- and stereoselective halogenation of the unactivated C(sp3)-H bonds, exhibit tremendous potential in the challenging asymmetric halogenation. AdeV from Actinomadura sp. ATCC 39365 is the first identified carrier protein-free NHFeHal that catalyzes the chlorination of nucleotide 2'-deoxyadenosine-5'-monophosphate (2'-dAMP) to afford 2'-chloro-2'-deoxyadenosine-5'-monophosphate. Here, we determined the complex crystal structures of AdeV/FeII/Cl and AdeV/FeII/Cl/αKG at resolutions of 1.76 and 1.74 Å, respectively. AdeV possesses a typical ß-sandwich topology with H194, H252, αKG, chloride, and one water molecule coordinating FeII in the active site. Molecular docking, mutagenesis, and biochemical analyses reveal that the hydrophobic interactions and hydrogen bond network between the substrate-binding pocket and the adenine, deoxyribose, and phosphate moieties of 2'-dAMP are essential for substrate recognition. Residues H111, R177, and H192 might play important roles in the second-sphere interactions that control reaction partitioning. This study provides valuable insights into the catalytic selectivity of AdeV and will facilitate the rational engineering of AdeV and other NHFeHals for synthesis of halogenated nucleotides. IMPORTANCE Halogenated nucleotides are a group of important antibiotics and are clinically used as antiviral and anticancer drugs. AdeV is the first carrier protein-independent nonheme iron- and α-ketoglutarate (αKG)-dependent halogenase (NHFeHal) that can selectively halogenate nucleotides and exhibits restricted substrate specificity toward several 2'-dAMP analogues. Here, we determined the complex crystal structures of AdeV/FeII/Cl and AdeV/FeII/Cl/αKG. Molecular docking, mutagenesis, and biochemical analyses provide important insights into the catalytic selectivity of AdeV. This study will facilitate the rational engineering of AdeV and other carrier protein-independent NHFeHals for synthesis of halogenated nucleotides.


Assuntos
Halogenação , Ácidos Cetoglutáricos , Proteínas de Transporte , Compostos Ferrosos , Halogênios , Ferro/química , Simulação de Acoplamento Molecular , Nucleotídeos
10.
Opt Express ; 30(12): 21184-21194, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224843

RESUMO

High pattern fidelity is paramount to the performance of metalenses and metasurfaces, but is difficult to achieve using economic photolithography technologies due to low resolutions and limited process windows of diverse subwavelength structures. These hurdles can be overcome by photomask sizing or reshaping, also known as optical proximity correction (OPC). However, the lithographic simulators critical to model-based OPC require precise calibration and have not yet been specifically developed for metasurface patterning. Here, we demonstrate an accurate lithographic model based on Hopkin's image formulation and fully convolutional networks (FCN) to control the critical dimension (CD) patterning of a near-infrared (NIR) metalens through a distributed OPC flow using i-line photolithography. The lithographic model achieves an average ΔCD/CD = 1.69% due to process variations. The model-based OPC successfully produces the 260 nm CD in a metalens layout, which corresponds to a lithographic constant k1 of 0.46 and is primarily limited by the resolution of the photoresist. Consequently, our fabricated NIR metalens with a diameter of 1.5 mm and numerical aperture (NA) of 0.45 achieves a measured focusing efficiency of 64%, which is close to the calculated value of 69% and among the highest reported values using i-line photolithography.

11.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232460

RESUMO

Reasonable yields of two dendrimers with central tetraphenylmethane and peripheral 3,5-di-(tert-butanoylamino)benzoylpiperazine moieties are prepared. These dendrimers have a void space in the solid state so they adsorb guest molecules. Their BET values vary, depending on the H-bond interaction between the peripheral moiety and the gas molecules, and the dendritic framework that fabricates the void space is flexible. In the presence of polar gas molecules such as CO2, the BET increases significantly and is about 4-8 times the BET under N2. One dendrimer adsorbs cyanobenzene to a level of 436 mg/g, which, to the authors' best knowledge, is almost equivalent to the highest reported value in the literature.


Assuntos
Dendrímeros , Compostos Orgânicos Voláteis , Adsorção , Dióxido de Carbono , Dendrímeros/química , Metano/análogos & derivados , Compostos de Terfenil
12.
Biochem Biophys Res Commun ; 579: 54-61, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34587555

RESUMO

1,2-ß-Mannobiose phosphorylases (1,2-ß-MBPs) from glycoside hydrolase 130 (GH130) family are important bio-catalysts in glycochemistry applications owing to their ability in synthesizing oligomannans. Here, we report the crystal structure of a thermostable 1,2-ß-MBP from Thermoanaerobacter sp. X-514 termed Teth514_1789 to reveal the molecular basis of its higher thermostability and mechanism of action. We also solved the enzyme complexes of mannose, mannose-1-phosphate (M1P) and 1,4-ß-mannobiose to manifest the enzyme-substrate interaction networks of three main subsites. Notably, a Zn ion that should be derived from crystallization buffer was found in the active site and coordinates the phosphate moiety of M1P. Nonetheless, this Zn-coordination should reflect an inhibitory status as supplementing Zn severely impairs the enzyme activity. These results indicate that the effects of metal ions should be taken into consideration when applying Teth514_1789 and other related enzymes. Based on the structure, a reliable model of Teth514_1788 that shares 61.7% sequence identity to Teth514_1789 but displays a different substrate preference was built. Analyzing the structural features of these two closely related enzymes, we hypothesized that the length of a loop fragment that covers the entrance of the catalytic center might regulate the substrate selectivity. In conclusion, these information provide in-depth understanding of GH130 1,2-ß-MBPs and should serve as an important guidance for enzyme engineering for further applications.


Assuntos
Thermoanaerobacter/enzimologia , beta-Manosidase/química , Sítios de Ligação , Catálise , Domínio Catalítico , Glicosídeo Hidrolases/química , Íons , Ligantes , Mananas/química , Manose/química , Manosefosfatos/química , Fosforilases/química , Plasmídeos/metabolismo , Conformação Proteica , Reprodutibilidade dos Testes , Eletricidade Estática , Temperatura , Zinco/química
13.
Chembiochem ; 22(8): 1317-1328, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33232569

RESUMO

Cytochrome P450s are heme-thiolate enzymes that participate in carbon source assimilation, natural compound biosynthesis and xenobiotic metabolism in all kingdoms of life. P450s can catalyze various reactions by using a wide range of organic compounds, thus exhibiting great potential in biotechnological applications. The catalytic reactions of P450s are driven by electron equivalents that are sourced from pyridine nucleotides and delivered by cognate or matching redox partners (RPs). The electron transfer (ET) route from RPs to P450s involves one or more redox center-containing domains. As the rate of ET is one of the main determinants of P450 efficacy, an in-depth understanding of the P450 ET pathway should increase our knowledge of these important enzymes and benefit their further applications. Here, the various P450 RP systems along with current understanding of their ET routes will be reviewed. Notably, state-of-the-art structural studies of the two main types of self-sufficient P450 will also be summarized.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Biocatálise , Sistema Enzimático do Citocromo P-450/química , Transporte de Elétrons , Humanos , Modelos Moleculares
14.
Biomacromolecules ; 22(9): 3791-3799, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34339173

RESUMO

Incorporation of branched structures is a major pathway to build macromolecules with desired three-dimensional (3D) structures, which are of high importance in the rational design of functional polymeric scaffolds. Dendrimers and hyperbranched polymers have been extensively studied for this purpose, but proper gain-of-function for these structures usually requires large enough molecular weights and a highly branched interior so that a spherical 3D core-shell architecture can be obtained, yet it is generally challenging to achieve precise control over the structure, high molecular weight, and high degree of branching (DoB) simultaneously. In this article, we present a set of snowflake-shaped star polymers with functional cores and dendronized arms, which ensure a high DoB and an overall globular conformation, thus facilitating the introduction of functional moieties onto the easily achieved scaffold without the need for high-generation dendrons. Using a polyglycerol dendron (PGD) as a proof of concept, we propose that this dendronized arm snowflake polymer (DASP) structure can serve as a better performing alternative to high-generation PGDs. DASPs with molecular weights of 750, 1220, 2120, and 3740 kDa were prepared with >85% yields in all cases, and we show that these DASPs have high encapsulating efficiency of Nile Red due to their high DoB and high biocompatibility due to their hydroxyl-rich nature after ketal removal, as well as high cell permeability that is molecular-weight-dependent. Introduced fluorophores such as fluorescein and difluoroboron 1,3-diphenylaminophenyl ß-diketonate with suitable excitation wavelengths may turn the DASPs into stable, endosome-staining fluorophores with ultra-large Stokes shifts, narrowed emission bands, and suitability for long-term cellular tracing. Moreover, the scaffold can encapsulate antibiotic molecules and deliver them into phagolysosomes for efficient elimination of intracellular Staphylococcus aureus, which is insensitive toward many antibiotics but is a key target for the clinical success of methicillin-resistant Staphylococcus aureus infection treatment. Elimination of Staphylococcus aureus could be improved to >99.9% for chloramphenicol at 32 µg/mL with 450 µg/mL DASP.


Assuntos
Dendrímeros , Staphylococcus aureus Resistente à Meticilina , Peso Molecular , Polímeros
15.
Biochem Biophys Res Commun ; 521(1): 31-36, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31653344

RESUMO

The epimerase MoeE5 from Streptomyces viridosporus converts UDP-glucuronic acid (UDP-GlcA) to UDP-galacturonic acid (UDP-GalA) to provide the first sugar in synthesizing moenomycin, a potent inhibitor against bacterial peptidoglycan glycosyltransferases. The enzyme belongs to the UDP-hexose 4-epimerase family, and uses NAD+ as its cofactor. Here we present the complex crystal structures of MoeE5/NAD+/UDP-GlcA and MoeE5/NAD+/UDP-glucose, determined at 1.48 Šand 1.66 Šresolution. The cofactor NAD+ is bound to the N-terminal Rossmann-fold domain and the substrate is bound to the smaller C-terminal domain. In both crystals the C4 atom of the sugar moiety of the substrate is in close proximity to the C4 atom of the nicotinamide of NAD+, and the O4 atom of the sugar is also hydrogen bonded to the side chain of Tyr154, suggesting a productive binding mode. As the first complex structure of this protein family with a bound UDP-GlcA in the active site, it shows an extensive hydrogen-bond network between the enzyme and the substrate. We further built a model with the product UDP-GalA, and found that the unique Arg192 of MoeE5 might play an important role in the catalytic pathway. Consequently, MoeE5 is likely a specific epimerase for UDP-GlcA to UDP-GalA conversion, rather than a promiscuous enzyme as some other family members.


Assuntos
Antibacterianos/biossíntese , Oligossacarídeos/biossíntese , UDPglucose 4-Epimerase/metabolismo , Antibacterianos/química , Cristalografia por Raios X , Modelos Moleculares , Oligossacarídeos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptomyces/enzimologia , Especificidade por Substrato , UDPglucose 4-Epimerase/química , UDPglucose 4-Epimerase/genética
16.
Biochem Biophys Res Commun ; 529(2): 156-161, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703404

RESUMO

Thebaine synthase 2 (THS2) that can transform (7S)-salutaridinol 7-O-acetate to thebaine catalyzes the final step of thebaine biosynthesis in Papaver somniferum. Here, the crystal structures of THS2 and its complex with thebaine are reported, revealing the interaction network in the substrate-binding pocket. Subsequent docking and QM/MM studies was performed to further explore the catalytic mechanism of THS2. Our results suggest that T105 may abstract the proton of C4-OH from the substrate under the assistance of H89. The resulting C4-O- phenolate anion then attacks the nearby C5, and triggers intramolecular SN2' syn displacement with the elimination of O-acetyl group. Moreover, the latter SN2' reaction is the rate-determining step of the whole enzymatic reaction with an overall energy barrier of 18.8 kcal/mol. These findings are of pivotal importance to understand the mechanism of action of thebaine biosynthesis, and would guide enzyme engineering to enhance the production of opiate alkaloids via metabolic engineering.


Assuntos
Ligases/metabolismo , Papaver/enzimologia , Proteínas de Plantas/metabolismo , Tebaína/metabolismo , Cristalografia por Raios X , Ligases/química , Modelos Moleculares , Papaver/química , Papaver/metabolismo , Proteínas de Plantas/química , Conformação Proteica , Teoria Quântica
17.
Biochem Biophys Res Commun ; 532(1): 108-113, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32828542

RESUMO

African Swine Fever Virus (ASFV) is an enveloped double-stranded DNA icosahedral virus that causes the devastating hemorrhagic fever of pigs. ASFV infections severely impact swine production and cause an enormous economic loss, but no effective vaccine and therapeutic regimen is available. pA151R is a non-structural protein of ASFV, which is expressed at both early and late stages of viral infection. Significantly, pA151R may play a key role in ASFV replication and virus assembly as suppressing pA151R expression can reduce virus replication. However, little is known about the functional and structural mechanisms of pA151R because it shares a very low sequence identity to known structures. It was proposed that pA151R might participate in the redox pathway owing to the presence of a thioredoxin active site feature, the WCTKC motif. In this study, we determined the crystal structure of pA151R. Based on the crystal structure, we found that pA151R comprises of a central five-stranded ß-sheet packing against two helices on one side and an incompact C-terminal region containing the WCTKC motif on the other side. Notably, two cysteines in the WCTKC motif, an additional cysteine C116 from the ß7-ß8 loop together with ND1 of H109 coordinate a Zn2+ ion to form a Zn-binding motif. These findings suggest that the structure of pA151R is significantly different from that of typical thioredoxins. Our structure should provide molecular insights into the understanding of functional and structural mechanisms of pA151R from ASFV and shall benefit the development of prophylactic and therapeutic anti-ASFV agents.


Assuntos
Vírus da Febre Suína Africana/química , Proteínas não Estruturais Virais/química , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Animais , Sítios de Ligação/genética , Cristalografia por Raios X , Genes Virais , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Eletricidade Estática , Homologia Estrutural de Proteína , Sus scrofa , Suínos , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/fisiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/fisiologia
18.
Biochem Biophys Res Commun ; 527(3): 799-804, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32423809

RESUMO

When administrated orally, the vasodilating drug diltiazem can be metabolized into diacetyl diltiazem in the presence of Bacteroides thetaiotaomicron, a human gut microbe. The removal of acetyl group from the parent drug is carried out by the GDSL/SGNH-family hydrolase BT4096. Here the crystal structure of the enzyme was solved by mercury soaking and single-wavelength anomalous diffraction. The protein folds into two parts. The N-terminal part comprises the catalytic domain which is similar to other GDSL/SGNH hydrolases. The flanking C-terminal part is made up of a ß-barrel subdomain and an α-helical subdomain. Structural comparison shows that the catalytic domain is most akin to acetyl-xylooligosaccharide esterase and allows a plausible binding mode of diltiazem to be proposed. The ß-barrel subdomain is similar in topology to the immunoglobulin-like domains, including some carbohydrate-binding modules, of various bacterial glycoside hydrolases. Consequently, BT4096 might originally function as an oligosaccharide deacetylase with additional subdomains that could enhance substrate binding, and it acts on diltiazem just by accident.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides thetaiotaomicron/enzimologia , Diltiazem/metabolismo , Microbioma Gastrointestinal , Hidrolases/metabolismo , Vasodilatadores/metabolismo , Acetilação , Proteínas de Bactérias/química , Bacteroides thetaiotaomicron/química , Bacteroides thetaiotaomicron/metabolismo , Domínio Catalítico , Humanos , Hidrolases/química , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
19.
Bioinformatics ; 35(7): 1133-1141, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169792

RESUMO

MOTIVATION: Non-coding RNAs (ncRNAs) are known to play crucial roles in various biological processes, and there is a pressing need for accurate computational detection methods that could be used to efficiently scan genomes to detect novel ncRNAs. However, unlike coding genes, ncRNAs often lack distinctive sequence features that could be used for recognizing them. Although many ncRNAs are known to have a well conserved secondary structure, which provides useful cues for computational prediction, it has been also shown that a structure-based approach alone may not be sufficient for detecting ncRNAs in a single sequence. Currently, the most effective ncRNA detection methods combine structure-based techniques with a comparative genome analysis approach to improve the prediction performance. RESULTS: In this paper, we propose RNAdetect, a computational method incorporating novel features for accurate detection of ncRNAs in combination with comparative genome analysis. Given a sequence alignment, RNAdetect can accurately detect the presence of functional ncRNAs by incorporating novel predictive features based on the concept of generalized ensemble defect (GED), which assesses the degree of structure conservation across multiple related sequences and the conformation of the individual folding structures to a common consensus structure. Furthermore, n-gram models (NGMs) are used to extract features that can effectively capture sequence homology to known ncRNA families. Utilization of NGMs can enhance the detection of ncRNAs that have sparse folding structures with many unpaired bases. Extensive performance evaluation based on the Rfam database and bacterial genomes demonstrate that RNAdetect can accurately and reliably detect novel ncRNAs, outperforming the current state-of-the-art methods. AVAILABILITY AND IMPLEMENTATION: The source code for RNAdetect and the benchmark data used in this paper can be downloaded at https://github.com/bjyoontamu/RNAdetect.


Assuntos
Genoma Bacteriano , RNA não Traduzido/genética , Hibridização Genômica Comparativa , Biologia Computacional , Conformação de Ácido Nucleico , Alinhamento de Sequência , Software
20.
Bioinformatics ; 35(17): 2941-2948, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629122

RESUMO

MOTIVATION: For many RNA families, the secondary structure is known to be better conserved among the member RNAs compared to the primary sequence. For this reason, it is important to consider the underlying folding structures when aligning RNA sequences, especially for those with relatively low sequence identity. Given a set of RNAs with unknown structures, simultaneous RNA alignment and folding algorithms aim to accurately align the RNAs by jointly predicting their consensus secondary structure and the optimal sequence alignment. Despite the improved accuracy of the resulting alignment, the computational complexity of simultaneous alignment and folding for a pair of RNAs is O(N6), which is too costly to be used for large-scale analysis. RESULTS: In order to address this shortcoming, in this work, we propose a novel network-based scheme for pairwise structural alignment of RNAs. The proposed algorithm, TOPAS, builds on the concept of topological networks that provide structural maps of the RNAs to be aligned. For each RNA sequence, TOPAS first constructs a topological network based on the predicted folding structure, which consists of sequential edges and structural edges weighted by the base-pairing probabilities. The obtained networks can then be efficiently aligned by using probabilistic network alignment techniques, thereby yielding the structural alignment of the RNAs. The computational complexity of our proposed method is significantly lower than that of the Sankoff-style dynamic programming approach, while yielding favorable alignment results. Furthermore, another important advantage of the proposed algorithm is its capability of handling RNAs with pseudoknots while predicting the RNA structural alignment. We demonstrate that TOPAS generally outperforms previous RNA structural alignment methods on RNA benchmarks in terms of both speed and accuracy. AVAILABILITY AND IMPLEMENTATION: Source code of TOPAS and the benchmark data used in this paper are available at https://github.com/bjyoontamu/TOPAS.


Assuntos
Algoritmos , RNA , Alinhamento de Sequência , Pareamento de Bases , Conformação de Ácido Nucleico , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA