Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.844
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 182(5): 1328-1340.e13, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32814014

RESUMO

Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors. We further identified species-specific determinants associated with different host ranges, life cycles, and distributions. The findings of this study are an invaluable resource for research and control of ticks and tick-borne diseases.


Assuntos
Variação Genética/genética , Doenças Transmitidas por Carrapatos/microbiologia , Carrapatos/genética , Animais , Linhagem Celular , Vetores de Doenças , Especificidade de Hospedeiro/genética
2.
Proc Natl Acad Sci U S A ; 121(27): e2402143121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38923993

RESUMO

The non-neural cholinergic system plays a critical role in regulating immune equilibrium and tissue homeostasis. While the expression of choline acetyltransferase (ChAT), the enzyme catalyzing acetylcholine biosynthesis, has been well documented in lymphocytes, its role in the myeloid compartment is less understood. Here, we identify a significant population of macrophages (Mϕs) expressing ChAT and synthesizing acetylcholine in the resolution phase of acute peritonitis. Using Chat-GFP reporter mice, we observed marked upregulation of ChAT in monocyte-derived small peritoneal Mϕs (SmPMs) in response to Toll-like receptor agonists and bacterial infections. These SmPMs, phenotypically and transcriptionally distinct from tissue-resident large peritoneal macrophages, up-regulated ChAT expression through a MyD88-dependent pathway involving MAPK signaling. Notably, this process was attenuated by the TRIF-dependent TLR signaling pathway, and our tests with a range of neurotransmitters and cytokines failed to induce a similar response. Functionally, Chat deficiency in Mϕs led to significantly decreased peritoneal acetylcholine levels, reduced efferocytosis of apoptotic neutrophils, and a delayed resolution of peritonitis, which were reversible with exogenous ACh supplementation. Intriguingly, despite B lymphocytes being a notable ChAT-expressing population within the peritoneal cavity, Chat deletion in B cells did not significantly alter the resolution process. Collectively, these findings underscore the crucial role of Mϕ-derived acetylcholine in the resolution of inflammation and highlight the importance of the non-neuronal cholinergic system in immune regulation.


Assuntos
Acetilcolina , Colina O-Acetiltransferase , Macrófagos Peritoneais , Peritonite , Animais , Colina O-Acetiltransferase/metabolismo , Colina O-Acetiltransferase/genética , Peritonite/imunologia , Peritonite/metabolismo , Camundongos , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/imunologia , Acetilcolina/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Camundongos Endogâmicos C57BL , Transdução de Sinais , Inflamação/metabolismo , Inflamação/patologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Receptores Toll-Like/metabolismo , Fagocitose , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos Knockout
3.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38557677

RESUMO

Protein design is central to nearly all protein engineering problems, as it can enable the creation of proteins with new biological functions, such as improving the catalytic efficiency of enzymes. One key facet of protein design, fixed-backbone protein sequence design, seeks to design new sequences that will conform to a prescribed protein backbone structure. Nonetheless, existing sequence design methods present limitations, such as low sequence diversity and shortcomings in experimental validation of the designed functional proteins. These inadequacies obstruct the goal of functional protein design. To improve these limitations, we initially developed the Graphormer-based Protein Design (GPD) model. This model utilizes the Transformer on a graph-based representation of three-dimensional protein structures and incorporates Gaussian noise and a sequence random masks to node features, thereby enhancing sequence recovery and diversity. The performance of the GPD model was significantly better than that of the state-of-the-art ProteinMPNN model on multiple independent tests, especially for sequence diversity. We employed GPD to design CalB hydrolase and generated nine artificially designed CalB proteins. The results show a 1.7-fold increase in catalytic activity compared to that of the wild-type CalB and strong substrate selectivity on p-nitrophenyl acetate with different carbon chain lengths (C2-C16). Thus, the GPD method could be used for the de novo design of industrial enzymes and protein drugs. The code was released at https://github.com/decodermu/GPD.


Assuntos
Engenharia de Proteínas , Proteínas , Proteínas/química , Sequência de Aminoácidos , Engenharia de Proteínas/métodos
4.
Nucleic Acids Res ; 52(9): 4857-4871, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647050

RESUMO

CpG islands near promoters are normally unmethylated despite being surrounded by densely methylated regions. Aberrant hypermethylation of these CpG islands has been associated with the development of various human diseases. Although local genetic elements have been speculated to play a role in protecting promoters from methylation, only a limited number of methylation barriers have been identified. In this study, we conducted an integrated computational and experimental investigation of colorectal cancer methylomes. Our study revealed 610 genes with disrupted methylation barriers. Genomic sequences of these barriers shared a common 41-bp sequence motif (MB-41) that displayed homology to the chicken HS4 methylation barrier. Using the CDKN2A (P16) tumor suppressor gene promoter, we validated the protective function of MB-41 and showed that loss of such protection led to aberrant hypermethylation. Our findings highlight a novel sequence signature of cis-acting methylation barriers in the human genome that safeguard promoters from silencing.


Assuntos
Neoplasias Colorretais , Metilação de DNA , Regiões Promotoras Genéticas , Animais , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Ilhas de CpG , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Genoma Humano , Motivos de Nucleotídeos , Galinhas , Estudo de Associação Genômica Ampla
5.
Proc Natl Acad Sci U S A ; 120(13): e2215132120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36961927

RESUMO

Distant metastasis is a major contributor to cancer-related mortality. However, the role of circRNAs in this process remains unclear. Herein, we profiled the circRNA expression in a cohort of 68 colorectal carcinoma (CRC) primary tumors and their paired liver metastatic lesions. By overlapping with the TGFß-responsive circRNAs, circNEIL3 (hsa_circ_0001460) was identified as a TGFß-repressive and metastasis-related circRNA. Functionally, circNEIL3 effectively inhibited tumor metastasis in both and in vivo and in vivo models of various cancer types. Mechanistically, circNEIL3 exerts its metastasis-repressive function through its direct interaction with oncogenic protein, Y-box-binding protein 1 (YBX1), which consequently promotes the Nedd4L-mediated proteasomal degradation of YBX1. Importantly, circNEIL3 expression was negatively correlated to YBX1 protein level and metastatic tendency in CRC patient samples. Collectively, our findings indicate the YBX1-dependent antimetastatic function of circNEIL3 and highlight the potential of circNEIL3 as a biomarker and therapeutic option in cancer treatment.


Assuntos
Neoplasias Colorretais , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo
6.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38018910

RESUMO

The biological function of proteins is determined not only by their static structures but also by the dynamic properties of their conformational ensembles. Numerous high-accuracy static structure prediction tools have been recently developed based on deep learning; however, there remains a lack of efficient and accurate methods for exploring protein dynamic conformations. Traditionally, studies concerning protein dynamics have relied on molecular dynamics (MD) simulations, which incur significant computational costs for all-atom precision and struggle to adequately sample conformational spaces with high energy barriers. To overcome these limitations, various enhanced sampling techniques have been developed to accelerate sampling in MD. Traditional enhanced sampling approaches like replica exchange molecular dynamics (REMD) and frontier expansion sampling (FEXS) often follow the MD simulation approach and still cost a lot of computational resources and time. Variational autoencoders (VAEs), as a classic deep generative model, are not restricted by potential energy landscapes and can explore conformational spaces more efficiently than traditional methods. However, VAEs often face challenges in generating reasonable conformations for complex proteins, especially intrinsically disordered proteins (IDPs), which limits their application as an enhanced sampling method. In this study, we presented a novel deep learning model (named Phanto-IDP) that utilizes a graph-based encoder to extract protein features and a transformer-based decoder combined with variational sampling to generate highly accurate protein backbones. Ten IDPs and four structured proteins were used to evaluate the sampling ability of Phanto-IDP. The results demonstrate that Phanto-IDP has high fidelity and diversity in the generated conformation ensembles, making it a suitable tool for enhancing the efficiency of MD simulation, generating broader protein conformational space and a continuous protein transition path.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , Simulação de Dinâmica Molecular , Domínios Proteicos
7.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261649

RESUMO

MOTIVATION: Proteins found in nature represent only a fraction of the vast space of possible proteins. Protein design presents an opportunity to explore and expand this protein landscape. Within protein design, protein sequence design plays a crucial role, and numerous successful methods have been developed. Notably, deep learning-based protein sequence design methods have experienced significant advancements in recent years. However, a comprehensive and systematic comparison and evaluation of these methods have been lacking, with indicators provided by different methods often inconsistent or lacking effectiveness. RESULTS: To address this gap, we have designed a diverse set of indicators that cover several important aspects, including sequence recovery, diversity, root-mean-square deviation of protein structure, secondary structure, and the distribution of polar and nonpolar amino acids. In our evaluation, we have employed an improved weighted inferiority-superiority distance method to comprehensively assess the performance of eight widely used deep learning-based protein sequence design methods. Our evaluation not only provides rankings of these methods but also offers optimization suggestions by analyzing the strengths and weaknesses of each method. Furthermore, we have developed a method to select the best temperature parameter and proposed solutions for the common issue of designing sequences with consecutive repetitive amino acids, which is often encountered in protein design methods. These findings can greatly assist users in selecting suitable protein sequence design methods. Overall, our work contributes to the field of protein sequence design by providing a comprehensive evaluation system and optimization suggestions for different methods.


Assuntos
Aprendizado Profundo , Sequência de Aminoácidos , Proteínas/química , Aminoácidos/química , Estrutura Secundária de Proteína
8.
Mol Cell Proteomics ; 22(5): 100532, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934880

RESUMO

Adenomatous polyposis coli (APC) is an important tumor suppressor and is mostly linked to the regulation of the Wnt/ß-catenin signaling pathway. APC mutation has been identified as an early event in more than 80% of sporadic colorectal cancers (CRCs). Moreover, prognostic differences are observed in CRC patients with APC mutations. Although previous genomics studies have investigated the roles of concomitant gene mutations in determining the phenotypic heterogeneity of APC-mutant tumors, valuable prognostic determinants for APC-mutant CRC patients are still lacking. Based on the proteome and phosphoproteome data, we classified APC-mutant colon cancer patients and revealed genomic, proteomic, and phosphoproteomic heterogeneity in APC-mutant tumors. More importantly, we identified RAI14 as a key prognostic determinant for APC-mutant but not APC-wildtype colon cancer patients. The heterogeneity and the significance of prognostic biomarkers in APC-mutant tumors were further validated in the Clinical Proteomic Tumor Analysis Consortium (CPTAC) colon cancer cohort. In addition, we found that colon cancer patients with high expression of RAI14 were less responsive to chemotherapy. Knockdown of RAI14 in cell lines led to reduced cell migration and changes in epithelial-mesenchymal transition (EMT)-related markers. Mechanistically, knockdown of RAI14 remodeled the phosphoproteome associated with cell adhesion, which might affect EMT marker expression and promote F-actin degradation. Collectively, this work describes the phenotypic heterogeneity of APC-mutant tumors and identifies RAI14 as an important prognostic determinant for APC-mutant colon cancer patients. The prognostic utility of RAI14 in APC-mutant colon cancer will provide early warning and increase the chance of successful treatment.


Assuntos
Neoplasias do Colo , Proteínas do Citoesqueleto , Fatores de Transcrição , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias do Colo/genética , Proteínas do Citoesqueleto/genética , População do Leste Asiático , Prognóstico , Proteômica , Fatores de Transcrição/genética
9.
Mol Cell Proteomics ; 22(5): 100545, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031867

RESUMO

GSK3α and GSK3ß are two GSK3 isoforms with 84% overall identity and 98% identity in their catalytic domains. GSK3ß plays important roles in the pathogenesis of cancer, while GSK3α has long been considered a functionally redundant protein of GSK3ß. Few studies have specifically investigated the functions of GSK3α. In this study, unexpectedly, we found that the expression of GSK3α, but not GSK3ß, was significantly correlated with the overall survival of colon cancer patients in 4 independent cohorts. To decipher the roles of GSK3α in colon cancer, we profiled the phosphorylation substrates of GSK3α and uncovered 156 phosphosites from 130 proteins specifically regulated by GSK3α. A number of these GSK3α-mediated phosphosites have never been reported before or have been incorrectly identified as substrates of GSK3ß. Among them, the levels of HSF1S303p, CANXS583p, MCM2S41p, POGZS425p, SRRM2T983p, and PRPF4BS431p were significantly correlated with the overall survival of colon cancer patients. Further pull-down assays identified 23 proteins, such as THRAP3, BCLAF1, and STAU1, showing strong binding affinity to GSK3α. The interaction between THRAP3 and GSK3α was verified by biochemical experiments. Notably, among the 18 phosphosites of THRAP3, phosphorylation at S248, S253, and S682 is specifically mediated by GSK3α. Mutation of S248 to D (S248D), which mimics the effect of phosphorylation, obviously increased cancer cell migration and the binding affinity to proteins related to DNA damage repair. Collectively, this work not only discloses the specific function of GSK3α as a kinase but also suggests GSK3α as a promising therapeutic target for colon cancer.


Assuntos
Relevância Clínica , Neoplasias do Colo , Humanos , Proteínas do Citoesqueleto , Glicogênio Sintase Quinase 3 beta , Fosforilação , Isoformas de Proteínas , Proteínas Serina-Treonina Quinases , Proteômica , Proteínas de Ligação a RNA
10.
Drug Resist Updat ; 76: 101121, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018660

RESUMO

In a clinical isolate of Burkholderia pseudomallei from Hainan, the association between the emergence of ceftazidime resistance and a novel PenA P174L allele was identified for the first time, providing an understanding of one mechanism by which ceftazidime resistance arises in B. pseudomallei.

11.
Proc Natl Acad Sci U S A ; 119(15): e2120787119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385357

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy of T cell progenitors, known to be a heterogeneous disease in pediatric and adult patients. Here we attempted to better understand the disease at the molecular level based on the transcriptomic landscape of 707 T-ALL patients (510 pediatric, 190 adult patients, and 7 with unknown age; 599 from published cohorts and 108 newly investigated). Leveraging the information of gene expression enabled us to identify 10 subtypes (G1­G10), including the previously undescribed one characterized by GATA3 mutations, with GATA3R276Q capable of affecting lymphocyte development in zebrafish. Through associating with T cell differentiation stages, we found that high expression of LYL1/LMO2/SPI1/HOXA (G1­G6) might represent the early T cell progenitor, pro/precortical/cortical stage with a relatively high age of disease onset, and lymphoblasts with TLX3/TLX1 high expression (G7­G8) could be blocked at the cortical/postcortical stage, while those with high expression of NKX2-1/TAL1/LMO1 (G9­G10) might correspond to cortical/postcortical/mature stages of T cell development. Notably, adult patients harbored more cooperative mutations among epigenetic regulators, and genes involved in JAK-STAT and RAS signaling pathways, with 44% of patients aged 40 y or above in G1 bearing DNMT3A/IDH2 mutations usually seen in acute myeloid leukemia, suggesting the nature of mixed phenotype acute leukemia.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Transcriptoma , Criança , Humanos , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética
12.
Biophys J ; 123(10): 1253-1263, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38615193

RESUMO

Disordered proteins are conformationally flexible proteins that are biologically important and have been implicated in devastating diseases such as Alzheimer's disease and cancer. Unlike stably folded structured proteins, disordered proteins sample a range of different conformations that needs to be accounted for. Here, we treat disordered proteins as polymer chains, and compute a dimensionless quantity called instantaneous shape ratio (Rs), as Rs = Ree2/Rg2, where Ree is end-to-end distance and Rg is radius of gyration. Extended protein conformations tend to have high Ree compared with Rg, and thus have high Rs values, whereas compact conformations have smaller Rs values. We use a scatter plot of Rs (representing shape) against Rg (representing size) as a simple map of conformational landscapes. We first examine the conformational landscape of simple polymer models such as Random Walk, Self-Avoiding Walk, and Gaussian Walk (GW), and we notice that all protein/polymer maps lie within the boundaries of the GW map. We thus use the GW map as a reference and, to assess conformational diversity, we compute the fraction of the GW conformations (fC) covered by each protein/polymer. Disordered proteins all have high fC scores, consistent with their disordered nature. Each disordered protein accesses a different region of the reference map, revealing differences in their conformational ensembles. We additionally examine the conformational maps of the nonviral gene delivery vector polyethyleneimine at various protonation states, and find that they resemble disordered proteins, with coverage of the reference map decreasing with increasing protonation state, indicating decreasing conformational diversity. We propose that our method of combining Rs and Rg in a scatter plot generates a simple, meaningful map of the conformational landscape of a disordered protein, which in turn can be used to assess conformational diversity of disordered proteins.


Assuntos
Proteínas Intrinsicamente Desordenadas , Conformação Proteica , Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Polímeros/química
13.
J Cell Mol Med ; 28(2): e18048, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37986543

RESUMO

Intervertebral disc degeneration (IVDD) is a common chronic musculoskeletal disease that causes chronic low back pain and imposes an immense financial strain on patients. The pathological mechanisms underlying IVDD have not been fully elucidated. The development of IVDD is closely associated with abnormal epigenetic changes, suggesting that IVDD progression may be controlled by epigenetic mechanisms. Consequently, this study aimed to investigate the role of epigenetic regulation, including DNA methyltransferase 3a (DNMT3a)-mediated methylation and peroxisome proliferator-activated receptor γ (PPARγ) inhibition, in IVDD development. The expression of DNMT3a and PPARγ in early and late IVDD of nucleus pulposus (NP) tissues was detected using immunohistochemistry and western blotting analyses. Cellularly, DNMT3a inhibition significantly inhibited IL-1ß-induced apoptosis and extracellular matrix (ECM) degradation in rat NP cells. Pretreatment with T0070907, a specific inhibitor of PPARγ, significantly reversed the anti-apoptotic and ECM degradation effects of DNMT3a inhibition. Mechanistically, DNMT3a modified PPARγ promoter hypermethylation to activate the nuclear factor-κB (NF-κB) pathway. DNMT3a inhibition alleviated IVDD progression. Conclusively, the results of this study show that DNMT3a activates the NF-κB pathway by modifying PPARγ promoter hypermethylation to promote apoptosis and ECM degradation. Therefore, we believe that the ability of DNMT3a to mediate the PPARγ/NF-κB axis may provide new ideas for the potential pathogenesis of IVDD and may become an attractive target for the treatment of IVDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animais , Humanos , Ratos , DNA Metiltransferase 3A , Epigênese Genética , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Metilação , NF-kappa B/metabolismo , Núcleo Pulposo/patologia , PPAR gama/genética , PPAR gama/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais
14.
BMC Genomics ; 25(1): 666, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961329

RESUMO

BACKGROUND: Pruning is an important cultivation management option that has important effects on peach yield and quality. However, the effects of pruning on the overall genetic and metabolic changes in peach leaves and fruits are poorly understood. RESULTS: The transcriptomic and metabolomic profiles of leaves and fruits from trees subjected to pruning and unpruning treatments were measured. A total of 20,633 genes and 622 metabolites were detected. Compared with those in the control, 1,127 differentially expressed genes (DEGs) and 77 differentially expressed metabolites (DEMs) were identified in leaves from pruned and unpruned trees (pdLvsupdL), whereas 423 DEGs and 29 DEMs were identified in fruits from the pairwise comparison pdFvsupdF. The content of three auxin analogues was upregulated in the leaves of pruned trees, the content of all flavonoids detected in the leaves decreased, and the expression of almost all genes involved in the flavonoid biosynthesis pathway decreased. The phenolic acid and amino acid metabolites detected in fruits from pruned trees were downregulated, and all terpenoids were upregulated. The correlation analysis revealed that DEGs and DEMs in leaves were enriched in tryptophan metabolism, auxin signal transduction, and flavonoid biosynthesis. DEGs and DEMs in fruits were enriched in flavonoid and phenylpropanoid biosynthesis, as well as L-glutamic acid biosynthesis. CONCLUSIONS: Pruning has different effects on the leaves and fruits of peach trees, affecting mainly the secondary metabolism and hormone signalling pathways in leaves and amino acid biosynthesis in fruits.


Assuntos
Frutas , Perfilação da Expressão Gênica , Metabolômica , Folhas de Planta , Prunus persica , Folhas de Planta/metabolismo , Folhas de Planta/genética , Prunus persica/genética , Prunus persica/metabolismo , Prunus persica/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Metaboloma , Transcriptoma , Flavonoides/metabolismo , Ácidos Indolacéticos/metabolismo
15.
Cancer Metastasis Rev ; 42(2): 575-587, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37061644

RESUMO

Colorectal cancer (CRC) patients frequently develop liver metastases, which are the major cause of cancer-related mortality. The molecular basis and management of colorectal liver metastases (CRLMs) remain a challenging clinical issue. Recent genomic evidence has demonstrated the liver tropism of CRC and the presence of a stricter evolutionary bottleneck in the liver as a target organ compared to lymph nodes. This bottleneck challenging CRC cells in the liver is organ-specific and requires adaptation not only at the genetic level, but also at the phenotypic level to crosstalk with the hepatic microenvironment. Here, we highlight the emerging evidence on the clonal evolution of CRLM and review recent insights into the molecular mechanisms orchestrating the bidirectional interactions between metastatic CRC cells and the unique liver microenvironment.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/genética , Genômica , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Evolução Molecular , Microambiente Tumoral/genética
16.
J Neuroinflammation ; 21(1): 99, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632655

RESUMO

BACKGROUND: The pathogenesis of memory impairment, a common complication of chronic neuropathic pain (CNP), has not been fully elucidated. Schwann cell (SC)-derived extracellular vesicles (EVs) contribute to remote organ injury. Here, we showed that SC-EVs may mediate pathological communication between SCs and hippocampal neurons in the context of CNP. METHODS: We used an adeno-associated virus harboring the SC-specific promoter Mpz and expressing the CD63-GFP gene to track SC-EVs transport. microRNA (miRNA) expression profiles of EVs and gain-of-function and loss-of-function regulatory experiments revealed that miR-142-5p was the main cargo of SC-EVs. Next, luciferase reporter gene and phenotyping experiments confirmed the direct targets of miR-142-5p. RESULTS: The contents and granule sizes of plasma EVs were significantly greater in rats with chronic sciatic nerve constriction injury (CCI)than in sham rats. Administration of the EV biogenesis inhibitor GW4869 ameliorated memory impairment in CCI rats and reversed CCI-associated dendritic spine damage. Notably, during CCI stress, SC-EVs could be transferred into the brain through the circulation and accumulate in the hippocampal CA1-CA3 regions. miR-142-5p was the main cargo wrapped in SC-EVs and mediated the development of CCI-associated memory impairment. Furthermore, α-actinin-4 (ACTN4), ELAV-like protein 4 (ELAVL4) and ubiquitin-specific peptidase 9 X-linked (USP9X) were demonstrated to be important downstream target genes for miR-142-5p-mediated regulation of dendritic spine damage in hippocampal neurons from CCI rats. CONCLUSION: Together, these findings suggest that SCs-EVs and/or their cargo miR-142-5p may be potential therapeutic targets for memory impairment associated with CNP.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neuralgia , Ratos , Animais , MicroRNAs/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Células de Schwann/metabolismo , Vesículas Extracelulares/metabolismo
17.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36548389

RESUMO

MOTIVATION: Post-translational modification (PTM) is an important biochemical process. which includes six most well-studied types: phosphorylation, acetylation, methylation, sumoylation, ubiquitylation and glycosylation. PTM is involved in various cell signaling pathways and biological processes. Abnormal PTM status is closely associated with severe diseases (such as cancer and neurologic diseases) by regulating protein functions, such as protein-protein interactions (PPIs). A set of databases was constructed separately for PTM sites and PPI; however, the resource of regulation for PTM on PPI is still unsolved. RESULTS: Here, we firstly constructed a public accessible database of PTMint (PTMs that are associated with PPIs) (https://ptmint.sjtu.edu.cn/) that contains manually curated complete experimental evidence of the PTM regulation on PPIs in multiple organisms, including Homo sapiens, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Saccharomyces cerevisiae and Schizosaccharomyces pombe. Currently, the first version of PTMint encompassed 2477 non-redundant PTM sites in 1169 proteins affecting 2371 protein-protein pairs involving 357 diseases. Various annotations were systematically integrated, such as protein sequence, structure properties and protein complex analysis. PTMint database can help to insight into disease mechanism, disease diagnosis and drug discovery associated with PTM and PPI. AVAILABILITY AND IMPLEMENTATION: PTMint is freely available at: https://ptmint.sjtu.edu.cn/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Drosophila melanogaster , Processamento de Proteína Pós-Traducional , Animais , Drosophila melanogaster/metabolismo , Fosforilação , Proteínas/metabolismo , Glicosilação , Bases de Dados de Proteínas
18.
Ann Surg Oncol ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802711

RESUMO

PURPOSE: Robot-assisted radical cystectomy (RARC) has gained traction in the management of muscle invasive bladder cancer. Urinary diversion for RARC was achieved with orthotopic neobladder and ileal conduit. Evidence on the optimal method of urinary diversion was limited. Long-term outcomes were not reported before. This study was designed to compare the perioperative and oncological outcomes of ileal conduit versus orthotopic neobladder cases of nonmetastatic bladder cancer treated with RARC. PATIENTS AND METHODS: The Asian RARC consortium was a multicenter registry involving nine Asian centers. Consecutive patients receiving RARC were included. Cases were divided into the ileal conduit and neobladder groups. Background characteristics, operative details, perioperative outcomes, recurrence information, and survival outcomes were reviewed and compared. Primary outcomes include disease-free and overall survival. Secondary outcomes were perioperative results. Multivariate regression analyses were performed. RESULTS: From 2007 to 2020, 521 patients who underwent radical cystectomy were analyzed. Overall, 314 (60.3%) had ileal conduit and 207 (39.7%) had neobladder. The use of neobladder was found to be protective in terms of disease-free survival [Hazard ratio (HR) = 0.870, p = 0.037] and overall survival (HR = 0.670, p = 0.044) compared with ileal conduit. The difference became statistically nonsignificant after being adjusted in multivariate cox-regression analysis. Moreover, neobladder reconstruction was not associated with increased blood loss, nor additional risk of major complications. CONCLUSIONS: Orthotopic neobladder urinary diversion is not inferior to ileal conduit in terms of perioperative safety profile and long-term oncological outcomes. Further prospective studies are warranted for further investigation.

19.
Opt Express ; 32(2): 2452-2459, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297774

RESUMO

A multi-object distance determination method can be achieved by 932 nm structured light with one camera as the data receiver. The structured light generated by a liquid crystal on silicon spatial light modulator (LCoS-SLM) facilitates dynamic image projection on targets. A series of moving light strip images were captured and collected for data analysis. This method lifted the limitation of single-object distance determination and the limitation of the angle requirement between the camera and the light source in the triangulation method. The average error of this method was approximately 3% in the range of 700 mm to 1900 mm away from LCoS-SLM without further optimization. It provides a potential compact design for indoor multi-object distance determination in the future.

20.
Brain Behav Immun ; 120: 499-512, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944162

RESUMO

The gut microbiota and neurological development of neonatal mice are susceptible to environmental factors that may lead to altered behavior into adulthood. However, the role that changed gut microbiota and neurodevelopment early in life play in this needs to be clarified. In this study, by modeling early-life environmental changes by cross-fostering BALB/c mice, we revealed the effects of the environment during the critical period of postnatal development on adult social behavior and their relationship with the gut microbiota and the nervous system. The neural projections exist between the ascending colon and oxytocin neurons in the paraventricular nuclei (PVN), peripheral oxytocin levels and PVN neuron numbers decreased after cross-fostering, and sex-specific alteration in gut microbiota and its metabolites may be involved in social impairments and immune imbalances brought by cross-fostering via the gut-brain axis. Our findings also suggest that social cognitive impairment may result from a combination of PVN oxytocinergic neurons, gut microbiota, and metabolites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA