Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(4): 826-842, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38328937

RESUMO

BACKGROUND: Coronary microvascular dysfunction (CMD) has been shown to contribute to cardiac hypertrophy and heart failure (HF) with preserved ejection fraction. At this point, there are no proven treatments for CMD. METHODS: We have shown that histone acetylation may play a critical role in the regulation of CMD. By using a mouse model that replaces lysine with arginine at residues K98, K117, K161, and K162R of p53 (p534KR), preventing acetylation at these sites, we test the hypothesis that acetylation-deficient p534KR could improve CMD and prevent the progression of hypertensive cardiac hypertrophy and HF. Wild-type and p534KR mice were subjected to pressure overload by transverse aortic constriction to induce cardiac hypertrophy and HF. RESULTS: Echocardiography measurements revealed improved cardiac function together with a reduction of apoptosis and fibrosis in p534KR mice. Importantly, myocardial capillary density and coronary flow reserve were significantly improved in p534KR mice. Moreover, p534KR upregulated the expression of cardiac glycolytic enzymes and Gluts (glucose transporters), as well as the level of fructose-2,6-biphosphate; increased PFK-1 (phosphofructokinase 1) activity; and attenuated cardiac hypertrophy. These changes were accompanied by increased expression of HIF-1α (hypoxia-inducible factor-1α) and proangiogenic growth factors. Additionally, the levels of SERCA-2 were significantly upregulated in sham p534KR mice, as well as in p534KR mice after transverse aortic constriction. In vitro, p534KR significantly improved endothelial cell glycolytic function and mitochondrial respiration and enhanced endothelial cell proliferation and angiogenesis. Similarly, acetylation-deficient p534KR significantly improved coronary flow reserve and rescued cardiac dysfunction in SIRT3 (sirtuin 3) knockout mice. CONCLUSIONS: Our data reveal the importance of p53 acetylation in coronary microvascular function, cardiac function, and remodeling and may provide a promising approach to improve hypertension-induced CMD and to prevent the transition of cardiac hypertrophy to HF.


Assuntos
Insuficiência Cardíaca , Hipertensão , Isquemia Miocárdica , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Cardiomegalia/metabolismo , Miocárdio/metabolismo , Isquemia Miocárdica/metabolismo , Camundongos Knockout , Hipertensão/metabolismo
2.
J Mol Cell Cardiol ; 192: 36-47, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734062

RESUMO

AIMS: Ferroptosis is a form of iron-regulated cell death implicated in ischemic heart disease. Our previous study revealed that Sirtuin 3 (SIRT3) is associated with ferroptosis and cardiac fibrosis. In this study, we tested whether the knockout of SIRT3 in cardiomyocytes (SIRT3cKO) promotes mitochondrial ferroptosis and whether the blockade of ferroptosis would ameliorate mitochondrial dysfunction. METHODS AND RESULTS: Mitochondrial and cytosolic fractions were isolated from the ventricles of mice. Cytosolic and mitochondrial ferroptosis were analyzed by comparison to SIRT3loxp mice. An echocardiography study showed that SIRT3cKO mice developed heart failure as evidenced by a reduction of EF% and FS% compared to SIRT3loxp mice. Comparison of mitochondrial and cytosolic fractions of SIRT3cKO and SIRT3loxp mice revealed that, upon loss of SIRT3, mitochondrial, but not cytosolic, total lysine acetylation was significantly increased. Similarly, acetylated p53 was significantly upregulated only in the mitochondria. These data demonstrate that SIRT3 is the primary mitochondrial deacetylase. Most importantly, loss of SIRT3 resulted in significant reductions of frataxin, aconitase, and glutathione peroxidase 4 (GPX4) in the mitochondria. This was accompanied by a significant increase in levels of mitochondrial 4-hydroxynonenal. Treatment of SIRT3cKO mice with the ferroptosis inhibitor ferrostatin-1 (Fer-1) for 14 days significantly improved preexisting heart failure. Mechanistically, Fer-1 treatment significantly increased GPX4 and aconitase expression/activity, increased mitochondrial iron­sulfur clusters, and improved mitochondrial membrane potential and Complex IV activity. CONCLUSIONS: Inhibition of ferroptosis ameliorated cardiac dysfunction by specifically targeting mitochondrial aconitase and iron­sulfur clusters. Blockade of mitochondrial ferroptosis may be a novel therapeutic target for mitochondrial cardiomyopathies.


Assuntos
Aconitato Hidratase , Ferroptose , Camundongos Knockout , Miócitos Cardíacos , Fenilenodiaminas , Sirtuína 3 , Animais , Sirtuína 3/metabolismo , Sirtuína 3/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Aconitato Hidratase/metabolismo , Ferroptose/efeitos dos fármacos , Camundongos , Acetilação , Fenilenodiaminas/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Ferro/metabolismo , Frataxina , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Proteínas de Ligação ao Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Citosol/metabolismo , Cicloexilaminas
3.
J Am Chem Soc ; 146(3): 2227-2236, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38224553

RESUMO

Charged microdroplets offer novel electrochemical environments, distinct from traditional solid-liquid or solid-liquid-gas interfaces, due to the intense electric fields at liquid-gas interfaces. In this study, we propose that charged microdroplets serve as microelectrochemical cells (MECs), enabling unique electrochemical reactions at the gas-liquid interface. Using electrospray-generated microdroplets, we achieved multielectron CO2 reduction and C-C coupling to synthesize ethanol using molecular catalysts. These catalysts effectively harness and relay electrons, enhancing the longevity of solvated electrons and enabling multielectron reactions. Importantly, we revealed the intrinsic relationship between the size and charge density of a MEC and its reaction selectivity. Employing in situ mass spectrometry, we identified reaction intermediates (molecular catalyst adducts with HCOO) and oxidation products, elucidating the CO2 reduction mechanism and the comprehensive reaction procedure. Our research underscores the promising role of charged microdroplets in pioneering new electrochemical systems.

4.
EMBO Rep ; 23(9): e54128, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35876654

RESUMO

The long noncoding RNA LINC00839 has been shown to be involved in the progression of some cancer types, such as bladder cancer, prostate cancer, breast cancer, and neuroblastoma. However, if LINC00839 has roles in colorectal cancer (CRC), it has not been elucidated so far. Here, we focus on the biological role and involved mechanisms of LINC00839 in CRC. We show that LINC00839 is selectively upregulated in CRC and locates to the nucleus. High expression of LINC00839 is associated with poor outcomes in CRC patients. Functional experiments show that LINC00839 promotes CRC proliferation, invasion, and metastasis in vitro and in vivo. Mechanistically, LINC00839 recruits Ruvb1 to the Tip60 complex and increases its acetylase activity. LINC00839 guides the complex to the NRF1 promoter and promotes acetylation of lysines 5 and 8 of histones H4, thereby upregulating the expression of NRF1. Subsequently, NRF1 activates mitochondrial metabolism and biogenesis, thereby promoting CRC progression. In summary, our study reports on a mechanism by which LINC00839 positively regulates NRF1, thus promoting mitochondrial metabolism and biogenesis, as well as CRC progression.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Lisina Acetiltransferase 5/metabolismo , Masculino , Fator 1 Nuclear Respiratório/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
J Cardiovasc Pharmacol ; 83(1): 23-32, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37816193

RESUMO

ABSTRACT: Ferroptosis is a form of iron-regulated cell death implicated in a wide array of diseases, including heart failure, hypertension, and numerous cardiomyopathies. In addition, mitochondrial dysfunction has been associated with several of these same disease states. However, the role of the mitochondrion in ferroptotic cell death remains debated. As a major regulator of cellular iron levels, the mitochondria may very well play a crucial role in the mechanisms behind ferroptosis, but at this point, this has not been adequately defined. Emerging evidence from our laboratory and others indicates a critical role of mitochondrial Sirtuin 3, a deacetylase linked with longevity and protection against numerous conditions, in the prevention of cardiovascular diseases. Here, we provide a brief overview of the potential roles of Sirtuin 3 in mitochondrial iron homeostasis and its contribution to the mitochondrial cardiomyopathy of Friedreich's ataxia and diabetic cardiomyopathy. We also discuss the current knowledge of the involvement of ferroptosis and the mitochondria in these and other cardiovascular disease states, including doxorubicin-induced cardiomyopathy, and provide insight into areas requiring further investigation.


Assuntos
Cardiomiopatias , Ferroptose , Insuficiência Cardíaca , Sirtuína 3 , Humanos , Sirtuína 3/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/metabolismo , Ferro/efeitos adversos , Ferro/metabolismo
6.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397106

RESUMO

Hypertension is the key contributor to pathological cardiac hypertrophy. Growing evidence indicates that glucose metabolism plays an essential role in cardiac hypertrophy. TP53-induced glycolysis and apoptosis regulator (TIGAR) has been shown to regulate glucose metabolism in pressure overload-induced cardiac remodeling. In the present study, we investigated the role of TIGAR in cardiac remodeling during Angiotensin II (Ang-II)-induced hypertension. Wild-type (WT) and TIGAR knockout (KO) mice were infused with Angiotensin-II (Ang-II, 1 µg/kg/min) via mini-pump for four weeks. The blood pressure was similar between the WT and TIGAR KO mice. The Ang-II infusion resulted in a similar reduction of systolic function in both groups, as evidenced by the comparable decrease in LV ejection fraction and fractional shortening. The Ang-II infusion also increased the isovolumic relaxation time and myocardial performance index to the same extent in WT and TIGAR KO mice, suggesting the development of similar diastolic dysfunction. However, the knockout of TIGAR significantly attenuated hypertension-induced cardiac hypertrophy. This was associated with higher levels of fructose 2,6-bisphosphate, PFK-1, and Glut-4 in the TIGAR KO mice. Our present study suggests that TIGAR is involved in the control of glucose metabolism and glucose transporters by Ang-II and that knockout of TIGAR attenuates the development of maladaptive cardiac hypertrophy.


Assuntos
Angiotensina II , Proteínas Reguladoras de Apoptose , Cardiomegalia , Hipertensão , Animais , Camundongos , Angiotensina II/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomegalia/genética , Cardiomegalia/induzido quimicamente , Fibrose , Glucose/metabolismo , Glicólise , Hipertensão/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Remodelação Ventricular/fisiologia
7.
Cancer Sci ; 114(8): 3190-3202, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37227305

RESUMO

Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) has been reported as an oncogenic gene, affecting various malignant tumors, including endometrial carcinoma, osteosarcoma, and gastric cancer. These effects are mostly due to the enhanced deposition of collagen precursors. However, more studies need to be conducted on how its lysyl hydroxylase function affects cancers like colorectal carcinoma (CRC). Our present results showed that PLOD2 expression was elevated in CRC, and its higher expression was associated with poorer survival. Overexpression of PLOD2 also facilitated CRC proliferation, invasion, and metastasis in vitro and in vivo. In addition, PLOD2 interacted with USP15 by stabilizing it in the cytoplasm and then activated the phosphorylation of AKT/mTOR, thereby promoting CRC progression. Meanwhile, minoxidil was demonstrated to downregulate the expression of PLOD2 and suppress USP15, and the phosphorylation of AKT/mTOR. Our study reveals that PLOD2 plays an oncogenic role in colorectal carcinoma, upregulating USP15 and subsequently activating the AKT/mTOR pathway.


Assuntos
Neoplasias Ósseas , Neoplasias Colorretais , Neoplasias do Endométrio , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Colorretais/genética , Linhagem Celular Tumoral , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
8.
Anal Chem ; 95(35): 13266-13272, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37610922

RESUMO

Direct analysis of micro-biopsy samples by mass spectrometry at single-cell level still faces major challenges. In this work, we developed a polarity gradient focusing dip-and-go strategy (PGF-Dip&Go) during induced electrospray ionization mass spectrometry (iESI-MS) analysis for real-time enrichment and spatial separation of compounds such as lipids, alkaloids, fatty amines, and drugs. Compared with direct iESI-MS analysis, enrichment of analytes (enrichment factor of 5.0-100.0) and spatial separation between different analytes were achieved. Owing to the enrichment effect and salt cleanup effect, the sensitivity of PGF-Dip&Go has been improved by 25-10,000 times compared with direct iESI-MS. PGF-Dip&Go has been successfully applied for the analysis of lipids in a 200 pL micro-biopsy section from an individual fish egg. Lysophosphatidylcholine (LPC), phosphatidylcholine (PC), and triglyceride (TG) were significantly enriched and separated according to their polarity differences, proving the potential of PGF-Dip&Go to be a noninvasive and powerful analytical tool for in situ analysis of complex small volumes in the future.


Assuntos
Aminas , Espectrometria de Massas por Ionização por Electrospray , Animais , Biópsia , Lisofosfatidilcolinas , Fosfatidilcolinas
9.
Rev Cardiovasc Med ; 24(10): 282, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39077582

RESUMO

Background: To explore the value of a novel ventricular-vascular coupling index (VVI) system in relation to age, gender and body mass index (BMI). Methods: A total of 239 volunteers with single-center and cross-sectional health screening were enrolled in the study. Subjects were divided according to age (young [18-44 years], middle-age [45-59 years], old [60-80 years]), gender (male, female), and BMI (overweight/obese [BMI ≥ 24], control [BMI < 24]). The left ventricle end-diastolic volume (LVEDV) and left ventricle end-systolic volume (LVESV) provided the left ventricular structure index, while the TDI e ' provided the functional index. Also derived from routine echocardiography were the effective arterial elastance (Ea), left ventricular end-systolic elastance (Ees), and VVI. The novel VVI systems were arterial velocity pulse index (AVI), left ventricular global longitudinal strain (LVGLS), and the AVI to LVGLS ratio (AVI/LVGLS). Results: (1) Middle-age and elderly subjects had higher Ea and lower LVGLS compared to young subjects. AVI and AVI/LVGLS increased progressively from young to middle-age to old subjects. (2) Females had higher Ea, Ees and LVGLS than male subjects. No significant differences in AVI and AVI/LVGLS were observed between males and females. (3) No significant differences in Ea, Ees, VVI, AVI, LVGLS and AVI/LVGLS were observed between the overweight/obese and control groups. (4) AVI/LVGLS was negatively correlated with LVEDV and LVESV and with TDI e ' . LVEDV, LVESV and TDI e ' were independent predictors of AVI/LVGLS. (5) The diagnostic performance of AVI/LVGLS was higher than that of VVI in the young and middle-age groups. The diagnostic efficacy of AVI/LVGLS was higher than that of VVI in the young and old groups, and the diagnostic efficacy of AVI was higher than that of Ea. The difference in diagnostic efficacy between LVGLS and Ees was not statistically significant. The differences in diagnostic efficacy between AVI/LVGLS and VVI, AVI and Ea, and LVGLS and Ees were not statistically significant in the middle-age and old groups. Conclusions: The novel index system of ventricular-vascular coupling described here (AVI, LVGLS, and AVI/LVGLS) was more effective than traditional indexes in detecting differences in cardiovascular function between different ages groups. Clinical Trial Registration: The study protocol was registered on the official website of China Clinical Trial Registration Center (ChiCTR2000035937).

10.
Rev Cardiovasc Med ; 24(5): 144, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-39076754

RESUMO

Background: This study investigated the correlation in parameters of arterial stiffness and cardiovascular disease (CVD) risk on age and body mass index (BMI) in Chinese females. Methods: This cross-sectional study enrolled 2220 females. Arterial stiffness was assessed by the measurement of arterial velocity pulse index (AVI) and arterial pressure volume index (API). Individual 10-year cardiovascular risk was calculated for each patient using the Framingham cardiovascular risk score (FCVRS). Results: API and AVI had a significant J-shaped relationship with age. Beginning at the age of 30 years, the API started to increase, while after 49 years, the increase in API was even steeper. AVI increased from the age of 32 years, and increased more rapidly after 56 years. The linear association between API and BMI following adjustment for age was significant ( ß = 0.324, 95% CI 0.247-0.400, p < 0.001). In the total study cohort, FCVRS scores increased by 0.16 scores for every 1 kg/ m 2 increase in BMI and by 0.11 scores for each 1 value increase in API in the age adjusted model. Conclusions: API and BMI correlate with 10-year cardiovascular risk at various ages in females. Regardless of age, overweight females have a higher risk of increased API. Therefore API can be used for the early detection of CVD so that preventive therapy can be instituted in these high risk patients. Clinical Trial Registration: Registered on the official website of the China Clinical Trial Registration Center (20/08/2020, ChiCTR2000035937).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA