Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Small ; 20(2): e2305797, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658501

RESUMO

Lithium metal is considered as a promising anode material for next generation lithium-based batteries due to its highest specific capacity and lowest reduction potential. However, irreversible lithium stripping/depositing gives rise to severe dendritic growth and countless dead lithium, which lead to rapid electrochemical performance degradation and increased safety hazards, and thus limit its large-scale application. Herein, this work demonstrates a universal hydrogen-bond-induced strategy to in situ form a highly polarized ferroelectric polyvinylidene fluoride (PVDF) coating on the anode current collector. The localized electric field induced by the polarized ferroelectric PVDF can accelerate the migration of lithium ions and alleviate the shortage of lithium ions and uneven ion/electron distribution and transfer at the anode/electrolyte interface, thus promoting uniform deposition and stripping of Li+ at high-rate situations. As a result, the symmetrical Li || Li batteries with polarized PVDF coating exhibit a long cycling lifespan over 900 h under 2 mA cm-2 with marginal voltage polarization, and an ultra-high-rate performance up to 8.85 mA cm-2 . The full cells using LiFePO4 cathode also display enhanced electrochemical performance. The innovative strategy of ferroelectric polarization sheds light on interface engineering to circumvent Li dendrite growth in lithium metal batteries (LMBs).

2.
Small ; : e2311193, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739093

RESUMO

LiB alloy is promising lithium (Li) metal anode material because the continuous internal LiB fiber skeleton can effectively suppress Li dendrites and structural pulverization. However, the unvalued surface states limit the practical application of LiB alloy anodes. Herein, the study examined the influence of the different exposure manners of the internal LiB fiber skeleton owing to the various surface states of the LiB alloy anode on electrochemical performance and targetedly proposed a scalable friction coating strategy to construct a lithiated fumed silica (LFS) functional layer with abundant electrochemically active sites on the surface of the LiB alloy anode. The LFS significantly suppresses the inhomogeneous interfacial electrochemical behavior of the LiB alloy anode and enables the exposure of the internal LiB fiber skeleton in a homogeneously planar manner (LFS-LiB). Thus, a 0.5 Ah LFS-LiB||LiCoO2 (LCO) pouch cell exhibits a discharge capacity retention rate of 80% after 388 cycles. Moreover, a 6.15 Ah LFS-LiB||S pouch cell with 409.3 Wh kg-1 exhibits a discharge capacity retention rate of 80% after 30 cycles. In conclusion, the study findings provide a new research perspective for Li alloy anodes.

3.
Clin Chem ; 70(6): 841-854, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38527221

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by heterogeneous variants in the PKD1 and PKD2 genes. Genetic analysis of PKD1 has been challenging due to homology with 6 PKD1 pseudogenes and high GC content. METHODS: A single-tube multiplex long-range-PCR and long-read sequencing-based assay termed "comprehensive analysis of ADPKD" (CAPKD) was developed and evaluated in 170 unrelated patients by comparing to control methods including next-generation sequencing (NGS) and multiplex ligation-dependent probe amplification. RESULTS: CAPKD achieved highly specific analysis of PKD1 with a residual noise ratio of 0.05% for the 6 pseudogenes combined. CAPKD identified PKD1 and PKD2 variants (ranging from variants of uncertain significance to pathogenic) in 160 out of the 170 patients, including 151 single-nucleotide variants (SNVs) and insertion-deletion variants (indels), 6 large deletions, and one large duplication. Compared to NGS, CAPKD additionally identified 2 PKD1 variants (c.78_96dup and c.10729_10732dup). Overall, CAPKD increased the rate of variant detection from 92.9% (158/170) to 94.1% (160/170), and the rate of diagnosis with pathogenic or likely pathogenic variants from 82.4% (140/170) to 83.5% (142/170). CAPKD also directly determined the cis-/trans-configurations in 11 samples with 2 or 3 SNVs/indels, and the breakpoints of 6 large deletions and one large duplication, including 2 breakpoints in the intron 21 AG-repeat of PKD1, which could only be correctly characterized by aligning to T2T-CHM13. CONCLUSIONS: CAPKD represents a comprehensive and specific assay toward full characterization of PKD1 and PKD2 variants, and improves the genetic diagnosis for ADPKD.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Humanos , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/diagnóstico , Canais de Cátion TRPP/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Feminino
4.
Nano Lett ; 23(8): 3573-3581, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042480

RESUMO

The commercialization pace of aqueous zinc batteries (AZBs) is seriously limited due to the uncontrolled dendrite growth and severe corrosion reaction of the zinc anode. Herein, a universal and extendable saturated fatty acid-zinc interfacial layer strategy for modulating the interfacial redox process of zinc toward ultrastable Zn metal anodes is proposed. The in situ complexing of saturated fatty acid-zinc interphases could construct an extremely thin zinc compound layer with continuously constructed zincophilic sites which kinetically regulates Zn nucleation and deposition behaviors. Furthermore, the multifunctional interfacial layer with internal hydrophobic carbon chains as a protective layer is efficient to exclude active water molecules from the surface and efficiently inhibit the surface corrosion of zinc. Consequently, the modified anode shows a long cycle life of over 4000 h at 5 mA cm-2. In addition, the assembled Zn||V2O5 full cells based on modified zinc anodes have excellent rate performance and long cycle stability.

5.
Angew Chem Int Ed Engl ; 63(26): e202405426, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38641686

RESUMO

Inspired by dative boron-nitrogen (B←N) bonds proven to be the promising dynamic linkage for the construction of crystalline covalent organic polymers/frameworks (COPs/COFs), we employed 1,4-bis(benzodioxaborole) benzene (BACT) and N,N'-Di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxdiimide (DPNTCDI) as the corresponding building blocks to construct a functional COP (named as CityU-25), which had been employed as an anode in rechargeable lithium ion batteries. CityU-25 displayed an excellent reversible lithium storage capability of 455 mAh/g after 170 cycles at 0.1 A/g, and an impressive one of 673 mAh/g after 720 cycles at 0.5 A/g. These findings suggest that CityU-25 is a standout candidate for advanced battery technologies, highlighting the potential application of this type of materials.

6.
Angew Chem Int Ed Engl ; 63(9): e202317941, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38197798

RESUMO

Wadsley-Roth niobium oxide phases have attracted extensive research interest recently as promising battery anodes. We have synthesized the niobium-molybdenum oxide shear phase (Nb, Mo)13 O33 with superior electrochemical Li-ion storage performance, including an ultralong cycling lifespan of at least 15000 cycles. During electrochemical cycling, a reversible single-phase solid-solution reaction with lithiated intermediate solid solutions is demonstrated using in situ X-ray diffraction, with the valence and short-range structural changes of the electrode probed by in situ Nb and Mo K-edge X-ray absorption spectroscopy. This work reveals that the superior stability of niobium molybdenum oxides is underpinned by changes in octahedral distortion during electrochemical reactions, and we report an in-depth understanding of how this stabilizes the oxide structure during cycling with implications for future long-life battery material design.

7.
Small ; 19(21): e2300293, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36823410

RESUMO

The shuttling effect and sluggish reaction kinetics are the main bottlenecks for the commercial viability of lithium-sulfur (Li-S) batteries. Metal-nitrogen-carbon single atom catalysts have attracted much attention to overcoming these obstacles due to their novel electrocatalytic activity. Herein, a novel cooperative catalytic interface with dual active sites (oversaturated Fe-N5 and polar Fe2 O3 nanocrystals) are co-embedded in nitrogen-doped hollow carbon spheres (Fe2 O3 /Fe-SA@NC) is designed by fine atomic regulation mechanism. Both experimental verifications and theoretical calculations disclose that the dual active sites (Fe-N5 and Fe2 O3 ) in this catalyst (Fe2 O3 /Fe-SA@NC) tend to form "FeS" and "LiN/O" bond, synchronically enhancing chemical adsorption and interface conversion ability of polysulfides, respectively. Specially, the Fe-N5 coordination with 3D configuration and sulfiphilic superfine Fe2 O3 nanocrystals exhibit the strong adsorption ability to facilitate the subsequent conversion reaction at dual-sites. Meanwhile, the nitrogen-doped hollow carbon spheres can promote Li+ /electron transfer and physically suppress polysulfides shuttling. Consequently, Li-S battery with the Fe2 O3 /Fe-SA@NC-modified separator exhibits a high capacity retention of 78% after 800 cycles at 1 C (pure S cathode, S content: 70 wt.%). Furthermore, the pouch cell with this separator shows good performance at 0.1 C for practical application (S loading: 4 mg cm-2 ).

8.
Inorg Chem ; 62(2): 685-693, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36583612

RESUMO

Li-rich layered oxides (LLOs) are considered promising candidates for new high-energy-density cathode materials for next-generation power batteries. However, their large-scale applications are largely hindered by irreversible Li/O loss, structural degradation, and interfacial side reactions during cycling. Herein, we demonstrate an integration strategy that tunes the electronic structure by La/Al codoping and constructs a ferroelectric interface on the LLOs surface through Bi0.5Na0.5TiO3 (BNT) coating. Experimental characterization reveals that the synergistic effect of the ferroelectric interface and the well-tuned electronic structure can not only promote the diffusion of Li+ and hinder the migration of On- but also suppress the lattice volume changes and reduce interfacial side reactions at high voltages up to 4.9 V vs Li+/Li. As a result, the modified material shows enhanced initial capacities and retention rates of 224.4 mAh g-1 and 78.57% after 500 cycles at 2.0-4.65 V and 231.7 mAh g-1 and 85.76% after 200 cycles at 2.0-4.9 V at 1C, respectively.

9.
Angew Chem Int Ed Engl ; 62(26): e202305287, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37118881

RESUMO

Lithium (Li) metal anodes have the highest theoretical capacity and lowest electrochemical potential making them ideal for Li metal batteries (LMBs). However, Li dendrite formation on the anode impedes the proper discharge capacity and practical cycle life of LMBs, particularly in carbonate electrolytes. Herein, we developed a reactive alternative polymer named P(St-MaI) containing carboxylic acid and cyclic ether moieties which would in situ form artificial polymeric solid electrolyte interface (SEI) with Li. This SEI can accommodate volume changes and maintain good interfacial contact. The presence of carboxylic acid and cyclic ether pendant groups greatly contribute to the induction of uniform Li ion deposition. In addition, the presence of benzyl rings makes the polymer have a certain mechanical strength and plays a key role in inhibiting the growth of Li dendrites. As a result, the symmetric Li||Li cell with P(St-MaI)@Li layer can stably cycle for over 900 h under 1 mA cm-2 without polarization voltage increasing, while their Li||LiFePO4 full batteries maintain high capacity retention of 96 % after 930 cycles at 1C in carbonate electrolytes. The innovative strategy of artificial SEI is broadly applicable in designing new materials to inhibit Li dendrite growth on Li metal anodes.


Assuntos
Lítio , Metais , Eletrólitos , Ácidos Carboxílicos , Éteres Cíclicos , Polímeros
10.
Angew Chem Int Ed Engl ; 60(31): 17070-17079, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-33847038

RESUMO

The use of a sacrificial cathode additive as a pre-metallation method could ensure adequate metal sources for advanced energy storage devices. However, this pre-metallation technique suffers from the precise regulation of decomposition potential of additive. Herein, a molecularly compensated pre-metallation (Li/Na/K) strategy has been achieved through Kolbe electrolysis, in which the electrochemical oxidation potential of a metal carboxylate is manipulated by the bonding energy of the oxygen-metal (O-M) moiety. The electron-donating effect of the substituent and the low charge density of the cation can dramatically weaken the O-M bond strength, further bringing out the reduced potential. Thus, sodium acetate exhibits a superior pre-sodiation feature for sodium-ion battery accompanied with a large irreversible specific capacity of 301.8 mAh g-1 , remarkably delivering 70.6 % enhanced capacity retention in comparison to the additive-free system after 100 cycles. This methodology has been extended to construct a high-performance lithium-ion battery and a lithium/sodium/potassium-ion capacitor.

11.
Chemistry ; 24(41): 10280-10290, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29611247

RESUMO

In recent years, porous colloidal particles have found promising applications in catalytic fields, such as photocatalysis, electrocatalysis, industrial and automotive byproducts removal, as well as biomass upgrading. These applications are critical for alleviating the energy crisis and environmental pollution. Porous colloidal particles have remarkable specific areas and abundant reactive sites, which can significantly improve the mass/charge transport and reaction rate in catalysis. Precursor-based synthesis is among the most facile and widely-adopted methods to achieve monodisperse and homogeneous porous colloidal particles. In the current review, we briefly introduce the general catalytic applications of porous colloidal particles. The conventional precursor-based methods are reviewed to design state-of-the-art porous colloidal particles as highly efficient catalysts. The recent development of porous colloidal particles derived from metal-organic frameworks (MOFs), glycerates, carbonate precursors, and ion exchange methods are reviewed. In the end, the current concerns and future development of porous colloidal particles are outlined.

12.
Inorg Chem ; 57(6): 3223-3231, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29498269

RESUMO

Limited practical capacity and poor cyclability caused by sluggish kinetics and structural instability are essential aspects that constrain the potential application of Li2MnSiO4 cathode materials. Herein, Li2Mn1- xCa xSiO4/C nanoplates are synthesized using a diethylene-glycol-assisted solvothermal method, targeting to circumvent its drawbacks. Compared with the pristine material, the Ca-substituted material exhibits enhanced electrochemical kinetics and improved cycle life performance. In combination with experimental studies and first-principles calculations, we reveal that Ca incorporation enhances electronic conductivity and the Li-ion diffusion coefficient of the Ca-substituted material, and it improves the structural stability by reducing the lattice distortion. It also shrinks the crystal size and alleviates structure collapse to enhance cycling performance. It is demonstrated that Ca can alleviate the two detrimental factors and shed lights on the further searching for suitable dopants.

13.
Chemistry ; 23(64): 16242-16248, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28736951

RESUMO

Multicomponent porous colloidal spheres are of interest because they not only show a combination of the properties associated with all different components, but also usually present synergy effects. However, a combination of different components in a single porous sphere is still greatly challenged due to the different precipitation behaviors of each component. In this work, we have developed a general synthetic route to prepare several categories of porous monodisperse rare-earth (RE)-based colloidal spheres with customizable elemental compositions and a uniform element distribution. The two-step synthetic strategy is based on the integration of coordination chemistry precipitation of RE ions and a subsequent ion-exchange process, which steers clear of obstacles, such as differences in solubility product constant, that are to be found in traditional co-precipitation methods. Our approach provides a new mixing mechanism to realize homogeneous distribution of each element within the porous spheres. An array of binary, ternary, and even senary RE colloidal porous spheres with diameters of 500 nm to 700 nm has been successfully synthesized. Taking advantage of their good dispersibility, porosity, and customizable components, these porous RE oxide spheres show excellent catalytic activity for the reduction of 4-nitrophenol, and promising application in single-phase multifunctional bioprobes.


Assuntos
Coloides/química , Metais Terras Raras/química , Catálise , Troca Iônica , Imageamento por Ressonância Magnética , Microscopia Eletrônica de Transmissão , Nitrofenóis/química , Oxirredução , Tamanho da Partícula , Porosidade , Espectrofotometria , Difração de Raios X
14.
ChemSusChem ; 17(2): e202301228, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37718309

RESUMO

The practical implementation of the lithium metal anode (LMA) has long been pursued due to its extremely high specific capacity and low electrochemical equilibrium potential. However, the unstable interfaces resulting from lithium ultrahigh reactivity have significantly hindered the use of LMA. This instability directly leads to dendrite growth behavior, dead lithium, low Coulombic efficiency, and even safety concerns. Therefore, artificial solid electrolyte interfaces (ASEI) with enhanced physicochemical and electrochemistry properties have been explored to stabilize LMA. Polymer materials, with their flexible structures and multiple functional groups, offer a promising way for structurally designing ASEIs to address the challenges faced by LMA. This Concept demonstrates an overview of polymer ASEIs with different functionalities, such as providing uniform lithium ion and single-ion transportation, inhibiting side reactions, possessing self-healing ability, and improving air stability. Furthermore, challenges and prospects for the future application of polymeric ASEIs in commercial lithium metal batteries (LMBs) are also discussed.

15.
ACS Appl Mater Interfaces ; 16(26): 33647-33656, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38898674

RESUMO

Electrolyte engineering plays a crucial role in enhancing the performance of lithium metal batteries (LMBs) featuring high-voltage cathodes and limited lithium anodes, thereby unlocking their potential for high-energy electrochemical storage. Herein, an entropy-driven hybrid gel electrolyte with enhanced diversity in Li-ion solvation structures is designed by incorporating substantial amounts of insoluble LiPO2F2 and LiNO3 salts into LiPF6-based carbonate electrolytes, followed by in situ thermal polymerization. Specifically, the Li+ solvation structures are modulated via ionophilic NO3- and PO2F2- to generate an anion-rich solvation sheath and thus promote anion reduction at the electrode-electrolyte interface. The interfaces enriched in anion-derived inorganic components facilitate rapid ionic transport, thus enabling smooth and dense Li morphology and ultimately enhancing the electrochemical performance of LMBs. As a result, this high-hybrid gel electrolyte confers LMBs employing high-voltage NCM cathodes, as demonstrated by sustained performance in both coin-cell (500 cycles at 4.5 V) and Ah-level pouch cell configurations under practical conditions (60 cycles, N/P: 1.92, and E/C: 2.0 g Ah -1).

16.
Materials (Basel) ; 17(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612206

RESUMO

Constructing three-dimensional (3D) current collectors is an effective strategy to solve the hindrance of the development of lithium metal anodes (LMAs). However, the excessive mass of the metallic scaffold structure leads to a decrease in energy density. Herein, lithiophilic graphene aerogels comprising reduced graphene oxide aerogels and silver nanowires (rGO-AgNW) are synthesized through chemical reduction and freeze-drying techniques. The rGO aerogels with large specific surface areas effectively mitigate local current density and delay the formation of lithium dendrites, and the lithiophilic silver nanowires can provide sites for the uniform deposition of lithium. The rGO-AgNW/Li symmetric cell presents a stable cycle of about 2000 h at 1 mA cm-2. When coupled with the LiFePO4 cathode, the assembled full cells exhibit outstanding cycle stability and rate performance. Lightweight rGO-AgNW aerogels, as the host for lithium metal, can significantly improve the energy density of lithium metal anodes.

17.
Sci Bull (Beijing) ; 69(2): 209-217, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38007330

RESUMO

High-voltage lithium metal batteries (LMBs) have been considered promising next-generation high-energy-density batteries. However, commercial carbonate electrolytes can scarcely be employed in LMBs owing to their poor compatibility with metallic lithium. N,N-dimethylacrylamide (DMAA)-a crosslinkable solubilizer with a high Gutmann donor number-is employed to facilitate the dissolution of insoluble lithium nitrate (LiNO3) in carbonate-based electrolytes and to form gel polymer electrolytes (GPEs) through in situ polymerization. The Li+ solvation structure of the GPEs is regulated using LiNO3 and DMAA, which suppresses the decomposition of LiPF6 and facilitates the formation of an inorganic-rich solid electrolyte interface. Consequently, the Coulombic efficiency (CE) of the Li||Cu cell assembled with a GPE increases to 98.5% at room temperature, and the high-voltage Li||NCM622 cell achieves a capacity retention of 80.1% with a high CE of 99.5% after 400 cycles. The bifunctional polymer electrolytes are anticipated to pave the way for next-generation high-voltage LMBs.

18.
RSC Adv ; 14(19): 13277-13285, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38660525

RESUMO

With the continuous expansion of the lithium-ion battery market, addressing the critical issues of stable cycling and low-temperature operation of lithium-ion batteries (LIBs) has become an urgent necessity. The high anisotropy and poor kinetics of pristine graphite in LIBs contribute to the formation of precipitated lithium dendrites, especially during rapid charging or low-temperature operation. In this study, we design a graphite coated with amorphous carbon (GC) through the Chemical Vapor Deposition (CVD) method. The coated carbon layer at the graphite interface exhibits enhanced reaction kinetics and expanded lithium-ion diffusion pathways, thereby reduction in polarization effectively alleviates the risk of lithium precipitation during rapid charging and low-temperature operation. The pouch cell incorporating GC‖LiCoO2 exhibits exceptional durability, retaining 87% of its capacity even after 1200 cycles at a high charge/discharge rate of 5C/5C. Remarkably, at -20 °C, the GC-2 maintains a specific capacity of 163 mA h g-1 at 0.5C, higher than that of pristine graphite (65 mA h g-1). Even at -40 °C, the GC-2‖LiCoO2 pouch cell still shows excellent capacity retention. This design realizes the practical application of graphite anode in extreme environments, and have a promising prospect of application.

19.
ACS Appl Mater Interfaces ; 16(12): 14902-14911, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484086

RESUMO

Li-rich Mn-based layered oxides (LMLOs) are expected to be the most promising high-capacity cathodes for the next generation of lithium-ion batteries (LIBs). However, the poor cycling stability and kinetics performance of polycrystalline LMLOs restrict their practical applications due to the anisotropic lattice stress and crack propagation during cycling. Herein, B-doped micron-sized single-crystal Co-free LMLOs were obtained by molten-salt (LiNO3 and H3BO3)-assisted sintering. The results reveal that the low-melting-point molten salt can serve as liquid-phase media to improve the efficiency of atomic mass transfer and crystal nucleation and growth. The modified single-crystal LMLO cathodes can resist the accumulation of anisotropic stress and strain during the cycling and reduce interface side reactions, thus achieving excellent high-voltage stability and kinetics performance. The reversible specific capacity of the single crystals is 210.8 mAh g-1 at 1C with a voltage decay rate of 1.95 mV/cycle and up to 161.1 mAh g-1 at 10C with a capacity retention of 81.06% after 200 cycles.

20.
Clin Chim Acta ; 555: 117820, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307397

RESUMO

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders predominantly characterized by impaired corticosteroid synthesis. Clinical phenotypes include hypoadrenocorticism, electrolyte disturbances, abnormal gonadal development, and short stature, of which severe hyponadrenocorticism and salt wasting can be life-threatening. Genetic analysis can help in the clinical diagnosis of CAH. However, the 21-OHD-causing gene CYP21A2 is arranged in tandem with the highly homologous CYP21A1P pseudogene, making it difficult to determine the exact genotypes using the traditional method of multiplex ligation-dependent probe amplification (MLPA) plus Sanger sequencing or next-generation sequencing (NGS). We applied a long-read sequencing-based approach termed comprehensive analysis of CAH (CACAH) to 48 newborns with CAH that were diagnosed by clinical features and the traditional MLPA plus Sanger sequencing method for retrospective analysis, to evaluate its efficacy in the clinical diagnosis of neonatal CAH. Compared with the MLPA plus Sanger sequencing method, CACAH showed 100 % consistency in detecting SNV/indel variants located in exons and exon-intron boundary regions of CAH-related genes. It can directly determine the cis-trans relationship without the need to analyze parental genotypes, which reduces the time to diagnosis. Moreover, CACAH was able to distinguish different CYP21A1P/CYP21A2 and TNXA/TNXB chimeras, and detect additional variants (CYP21A2 variants c.-121C > T, c.*13G > A, c.*52C > T, c.*440C > T, c.*443 T > C, and TNXB variants c.12463 + 2 T > C, c.12204 + 5G > A). We also identified the TNXB variant c.11435_11524 + 30del alone instead of as a part of the TNXA/TNXB-CH-1 chimera in two newborns, which might be introduced by gene conversion. All of these characteristics enabled clinicians to better explain the phenotype of subjects and manage them more effectively. CACAH has a great advantage over the traditional MLPA and Sanger sequencing methods, showing substantial potential in the genetic diagnosis and screening of neonatal CAH.


Assuntos
Hiperplasia Suprarrenal Congênita , Nanismo , Recém-Nascido , Humanos , Hiperplasia , Estudos Retrospectivos , Hiperplasia Suprarrenal Congênita/diagnóstico , Hiperplasia Suprarrenal Congênita/genética , Sequenciamento de Nucleotídeos em Larga Escala , Tenascina , Esteroide 21-Hidroxilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA