Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 118(6): 1864-1871, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38470090

RESUMO

The production of compact vectors for gene stacking is hindered by a lack of effective linkers. Here, we report that a 26-nt nucleic acid linker, NAL1, from the fungus Glarea lozoyensis and its truncated derivatives could connect two genes as a bicistron, enabling independent translation in a maize protoplast transient expression system and human 293 T cells. The optimized 9-nt NAL10 linker was then used to connect four genes driven by a bidirectional promoter; this combination was successfully used to reconstruct the astaxanthin biosynthesis pathway in transgenic maize. The short and efficient nucleic acid linker NAL10 can be widely used in multi-gene expression and synthetic biology in animals and plants.


Assuntos
Plantas Geneticamente Modificadas , Biologia Sintética , Zea mays , Biologia Sintética/métodos , Zea mays/genética , Zea mays/metabolismo , Humanos , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Células HEK293 , Xantofilas/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Animais , Ácidos Nucleicos/genética , Expressão Gênica , Vetores Genéticos/genética , Protoplastos/metabolismo
2.
BMC Plant Biol ; 24(1): 3, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163880

RESUMO

BACKGROUND: Yellow Stripe-Like (YSL) proteins are involved in the uptake and transport of metal ions. They play important roles in maintaining the zinc and iron homeostasis in Arabidopsis, rice (Oryza sativa), and barley (Hordeum vulgare). However, proteins in this family have not been fully identified and comprehensively analyzed in maize (Zea mays L.). RESULTS: In this study, we identified 19 ZmYSLs in the maize genome and analyzed their structural features. The results of a phylogenetic analysis showed that ZmYSLs are homologous to YSLs of Arabidopsis and rice, and these proteins are divided into four independent branches. Although their exons and introns have structural differences, the motif structure is relatively conserved. Analysis of the cis-regulatory elements in the promoters indicated that ZmYSLs might play a role in response to hypoxia and light. The results of RNA sequencing and quantitative real-time PCR analysis revealed that ZmYSLs are expressed in various tissues and respond differently to zinc and iron deficiency. The subcellular localization of ZmYSLs in the protoplast of maize mesophyll cells showed that they may function in the membrane system. CONCLUSIONS: This study provided important information for the further functional analysis of ZmYSL, especially in the spatio-temporal expression and adaptation to nutrient deficiency stress. Our findings provided important genes resources for the maize biofortification.


Assuntos
Arabidopsis , Ferro , Ferro/metabolismo , Zinco/metabolismo , Zea mays/metabolismo , Arabidopsis/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant J ; 111(5): 1296-1307, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35793378

RESUMO

Because of their high efficiency during chromosome doubling, immature haploid maize (Zea mays L.) embryos are useful for doubled haploid production. The R1-nj marker is commonly used in doubled haploid breeding and has improved the efficiency of haploid identification. However, its effectiveness is limited by genetic background and environmental factors. We addressed this technical challenge by developing an efficient and accurate haploid embryo identification marker through co-expression of two transcription factor genes (ZmC1 and ZmR2) driven by the embryo-aleurone-specific bidirectional promoter PZmBD1 ; these factors can activate anthocyanin biosynthesis in the embryo and aleurone layer during early seed development. We developed a new haploid inducer, Maize Anthocyanin Gene InduCer 1 (MAGIC1), by introducing the transgenes into the haploid inducer line CAU6. MAGIC1 could identify haploids at 12 days after pollination, which is nine days earlier than CAU6. Importantly, MAGIC1 increased haploid identification accuracy to 99.1%, compared with 88.3% for CAU6. In addition, MAGIC1 could effectively overcome the inhibition of anthocyanin synthesis in some germplasms. Furthermore, an upgraded anthocyanin marker was developed from ZmC1 and ZmR2 to generate MAGIC2, which could identify haploids from diploids due to differential anthocyanin accumulation in immature embryos, coleoptiles, sheaths, roots, leaves, and dry seeds. This haploid identification system is more efficient and accurate than the conventional R1-nj-based method, and it simplifies the haploid identification process. Therefore, this system provides technical support for large-scale doubled haploid line production.


Assuntos
Antocianinas , Zea mays , Antocianinas/genética , Haploidia , Melhoramento Vegetal , Fatores de Transcrição/genética , Zea mays/genética
4.
Plant Physiol ; 188(4): 2131-2145, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35099564

RESUMO

The Yang cycle is involved in many essential metabolic pathways in plant growth and development. As extended products of the Yang cycle, the function and regulation network of ethylene and polyamines are well characterized. Nicotianamine (NA) is also a product of this cycle and works as a key metal chelator for iron (Fe) homeostasis in plants. However, interactions between the Yang cycle and NA biosynthesis remain unclear. Here, we cloned maize interveinal chlorosis 1 (mic1), encoding a 5'-methylthioadenosine nucleosidase (MTN), that is essential for 5'-methylthioadenosine (MTA) salvage and NA biosynthesis in maize (Zea mays). A single base G-A transition in the fourth exon of mic1 causes a Gly to Asp change, resulting in increased MTA, reduced Fe distribution, and growth retardation of seedlings. Knockout of ZmMIC1 but not its paralog ZmMTN2 by CRISPR/Cas9 causes interveinal chlorosis, indicating ZmMIC1 is mainly responsible for MTN activity in maize. Transcriptome analysis showed a typical response of Fe deficiency. However, metabolic analysis revealed dramatically reduced NA content in mic1, suggesting NA biosynthesis was impaired in the mutant. Exogenous application of NA transiently reversed the interveinal chlorosis phenotype of mic1 seedlings. Moreover, the mic1 mutant overexpressing a NA synthase gene not only recovered from interveinal chlorosis and growth retardation but was also fertile. These findings provide a link between the Yang cycle and NA biosynthesis, which highlights an aspect of Fe homeostasis regulation in maize.


Assuntos
Anemia Hipocrômica , Zea mays , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Zea mays/genética , Zea mays/metabolismo
5.
Plant Physiol ; 189(2): 611-627, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35218364

RESUMO

Mitochondrial function relies on the assembly of electron transport chain complexes, which requires coordination between proteins encoded by the mitochondrion and those of the nucleus. Here, we cloned a maize (Zea mays) cytochrome c maturation FN stabilizer1 (CNS1) and found it encodes a pentatricopeptide repeat (PPR) protein. Members of the PPR family are widely distributed in plants and are associated with RNA metabolism in organelles. P-type PPR proteins play essential roles in stabilizing the 3'-end of RNA in mitochondria; whether a similar process exists for stabilizing the 5'-terminus of mitochondrial RNA remains unclear. The kernels of cns1 exhibited arrested embryo and endosperm development, whereas neither conventional splicing deficiency nor RNA editing difference in mitochondrial genes was observed. Instead, most of the ccmFN transcripts isolated from cns1 mutant plants were 5'-truncated and therefore lacked the start codon. Biochemical and molecular data demonstrated that CNS1 is a P-type PPR protein encoded by nuclear DNA and that it localizes to the mitochondrion. Also, one binding site of CNS1 located upstream of the start codon in the ccmFN transcript. Moreover, abnormal mitochondrial morphology and dramatic upregulation of alternative oxidase genes were observed in the mutant. Together, these results indicate that CNS1 is essential for reaching a suitable level of intact ccmFN transcripts through binding to the 5'-UTR of the RNAs and maintaining 5'-integrity, which is crucial for sustaining mitochondrial complex III function to ensure mitochondrial biogenesis and seed development in maize.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Zea mays , Códon de Iniciação/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Regulação da Expressão Gênica de Plantas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Splicing de RNA , Sementes/metabolismo , Zea mays/metabolismo
6.
Plant Cell Physiol ; 63(4): 521-534, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35137187

RESUMO

Iron (Fe) is an essential micronutrient for plant growth. Iron-regulated transporters (IRTs) play important roles in Fe2+ uptake and transport in strategy I plants. Maize (Zea mays) belongs to a strategy II plant, in which mugineic acid (MA)-Fe3+ uptake is mainly carried out by Yellow Stripe 1 (YS1). However, ZmIRT1 was previously identified by our laboratory. In this study, we isolated a novel gene from maize (ZmIRT2), which is highly homologous to OsIRT2 and ZmIRT1. ZmIRT2 was expressed in roots and anther and was induced by Fe and zinc (Zn) deficiencies. ZmIRT2-GFP fusion protein localized to the plasma membrane and endoplasmic reticulum. ZmIRT2 reversed growth defects involving Zn and Fe uptake in mutant yeast. ZmIRT2 overexpression in maize led to elevated Zn and Fe levels in roots, shoots and seeds of transgenic plants. Transcript levels of ZmIRT1 were elevated in roots, while levels of YS1 were reduced in shoots of ZmIRT2 transgenic plants. Our results imply that ZmIRT2 may function solely with ZmIRT1 to mediate Fe uptake in roots. ZmIRT1, ZmIRT2 and ZmYS1 may function in a cooperative manner to maintain Zn and Fe homeostasis in ZmIRT2 overexpressing plants. Furthermore, ZmIRT2 could be used in fortification efforts to elevate Zn and Fe levels in crop plants.


Assuntos
Ferro , Zea mays , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Zinco/metabolismo
7.
BMC Plant Biol ; 22(1): 37, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039017

RESUMO

BACKGROUND: Nicotianamine (NA), 2'-deoxymugineic acid (DMA), and mugineic acid (MA) are chelators required for iron uptake and transport in plants. Nicotianamine aminotransferase (NAAT), 2'-deoxymugineic acid synthase (DMAS), transporter of MAs (TOM), and efflux transporter of NA (ENA) are involved in iron uptake and transport in rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare); however, these families have not been fully identified and comprehensively analyzed in maize (Zea mays L.). RESULTS: Here, we identified 5 ZmNAAT, 9 ZmDMAS, 11 ZmTOM, and 2 ZmENA genes by genome mining. RNA-sequencing and quantitative real-time PCR analysis revealed that these genes are expressed in various tissues and respond differently to high and low iron conditions. In particular, iron deficiency stimulated the expression of ZmDMAS1, ZmTOM1, ZmTOM3, and ZmENA1. Furthermore, we determined protein subcellular localization by transient expression of green fluorescent protein fusions in maize mesophyll protoplasts. ZmNAAT1, ZmNAAT-L4, ZmDMAS1, and ZmDMAS-L1 localized in the cytoplasm, whereas ZmTOMs and ZmENAs targeted to plasma and tonoplast membranes, endomembranes, and vesicles. CONCLUSIONS: Our results suggest that the different gene expression profiles and subcellular localizations of ZmNAAT, ZmDMAS, ZmTOM, and ZmENA family members may enable specific regulation of phytosiderophore metabolism in different tissues and under different external conditions, shedding light on iron homeostasis in maize and providing candidate genes for breeding iron-rich maize varieties.


Assuntos
Genoma de Planta/genética , Ferro/metabolismo , Família Multigênica/genética , Proteínas de Plantas/genética , Zea mays/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Homeostase , Deficiências de Ferro , Filogenia , Proteínas de Plantas/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão , Sideróforos/metabolismo , Transaminases/genética , Transaminases/metabolismo , Zea mays/enzimologia , Zea mays/fisiologia
8.
Plant Biotechnol J ; 19(9): 1812-1823, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33780119

RESUMO

Production of the high-value carotenoid astaxanthin, which is widely used in food and feed due to its strong antioxidant activity and colour, is less efficient in cereals than in model plants. Here, we report a new strategy for expressing ß-carotene ketolase and hydroxylase genes from algae, yeasts and flowering plants in the whole seed using a seed-specific bidirectional promoter. Engineered maize events were backcrossed to inbred maize lines with yellow endosperm to generate progenies that accumulate astaxanthin from 47.76 to 111.82 mg/kg DW in seeds, and the maximum level is approximately sixfold higher than those in previous reports (16.2-16.8 mg/kg DW) in cereals. A feeding trial with laying hens indicated that they could take up astaxanthin from the maize and accumulate it in egg yolks (12.10-14.15 mg/kg) without affecting egg production and quality, as observed using astaxanthin from Haematococcus pluvialis. Storage stability evaluation analysis showed that the optimal conditions for long-term storage of astaxanthin-rich maize are at 4 °C in the dark. This study shows that co-expressing of functional genes driven by seed-specific bidirectional promoter could dramatically boost astaxanthin biosynthesis in every parts of kernel including embryo, aleurone layer and starch endosperm other than previous reports in the starch endosperm only. And the staple crop maize could serve as a cost-effective plant factory for reliably producing astaxanthin.


Assuntos
Engenharia Metabólica , Zea mays , Animais , Galinhas , Plantas Geneticamente Modificadas/genética , Xantofilas , Zea mays/genética
9.
Plant Physiol ; 184(2): 960-972, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32737073

RESUMO

Maize (Zea mays) thick aleurone1 (thk1-R) mutants form multiple aleurone layers in the endosperm and have arrested embryogenesis. Prior studies suggest that thk1 functions downstream of defective kernel1 (dek1) in a regulatory pathway that controls aleurone cell fate and other endosperm traits. The original thk1-R mutant contained an ∼2-Mb multigene deletion, which precluded identification of the causal gene. Here, ethyl methanesulfonate mutagenesis produced additional alleles, and RNA sequencing from developing endosperm was used to identify a candidate gene based on differential expression compared with the wild-type progenitor. Gene editing confirmed the gene identity by producing mutant alleles that failed to complement existing thk1 mutants and that produced multiple-aleurone homozygous phenotypes. Thk1 encodes a homolog of NEGATIVE ON TATA-LESS1, a protein that acts as a scaffold for the CARBON CATABOLITE REPRESSION4-NEGATIVE ON TATA-LESS complex. This complex is highly conserved and essential in all eukaryotes for regulating a wide array of gene expression and cellular activities. Maize also harbors a duplicate locus, thick aleurone-like1, which likely accounts for the ability of thk1 mutants to form viable cells. Transcriptomic analysis indicated that THK1 regulates activities involving cell division, signaling, differentiation, and metabolism. Identification of thk1 provides an important new component of the DEK1 regulatory system that patterns cell fate in endosperm.


Assuntos
Diferenciação Celular/genética , Endosperma/citologia , Endosperma/crescimento & desenvolvimento , Endosperma/genética , Zea mays/citologia , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Produtos Agrícolas/citologia , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação , Fenótipo
10.
J Integr Plant Biol ; 63(12): 2031-2037, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34850567

RESUMO

Although the genetic basis for endosperm development in maize (Zea mays) has been well studied, the mechanism for coordinating grain filling with increasing kernel size remains elusive. Here, we report that increased kernel size was selected during modern breeding and identify a novel DELLA-like transcriptional regulator, ZmGRAS11, which positively regulates kernel size and kernel weight in maize. We find that Opaque2, a core transcription factor for zein protein and starch accumulation, transactivates the expression of ZmGRAS11. Our data suggest that the Opaque2-ZmGRAS11 module mediates synergistic endosperm enlargement with grain filling.


Assuntos
Zea mays , Zeína , Endosperma/genética , Endosperma/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Zeína/genética , Zeína/metabolismo
11.
Transgenic Res ; 29(1): 95-104, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31673914

RESUMO

The vitamin E family includes tocopherols and tocotrienols, which are essential lipid-soluble antioxidants necessary for human and livestock health. The seeds of many plant species, including maize, have high gamma (γ)-tocopherol but low alpha (α)-tocopherol contents; however, α-tocopherol is the most effective antioxidant. Therefore, it is necessary to optimize the tocopherol composition in plants. α-Tocopherol is synthesized from γ-tocopherol by γ-tocopherol methyltransferase (γ-TMT, VTE4) in the final step of the tocopherol biosynthetic pathway. In the present study, the full-length coding sequence (CDS) of γ-TMT was isolated from Zea mays, named ZmTMT. The ZmTMT CDS was 1059 bp in size, encoding 352 amino acids. Recombinant ZmTMT was expressed in Escherichia coli and the purified protein effectively converted γ-tocopherol into α-tocopherol in vitro. A comparison of enzyme activities showed that the activity of ZmTMT was higher than that of GmTMT2a (Glycine max) and AtTMT (Arabidopsis thaliana). Overexpression of ZmTMT increased the α-tocopherol content 4-5-fold in transgenic Arabidopsis and around 6.5-fold in transgenic maize kernels, and increased the α-/γ-tocopherol ratio to approximately 15 and 17, respectively. These results show that it is feasible to overexpress ZmTMT to optimize the tocopherol composition in maize; such a corn product might be useful in the feed industry in the near future.


Assuntos
Arabidopsis/metabolismo , Metiltransferases/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , Zea mays/enzimologia , alfa-Tocoferol/metabolismo , Arabidopsis/genética , Metiltransferases/genética , Plantas Geneticamente Modificadas/genética , Sementes/genética
12.
Plant Cell Physiol ; 60(9): 2077-2085, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31165152

RESUMO

Zinc (Zn) and iron (Fe) are essential micronutrients for plant growth. Thus, it is important to understand the mechanisms of uptake, transport and accumulation of these micronutrients in maize to improve crop nutritional quality. Members of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) family are responsible for the uptake and transport of divalent metal ions in plant. Previously, we showed that ZmZIP5 functionally complemented the Zn uptake double mutant zrt1zrt2, Fe-uptake double mutant fet3fet4 in yeast. In our ß-glucuronidase (GUS) assay, the germinated seeds, young sheaths, and stems of ZmZIP5-promoter-GUS transgenic plants were stained. We generated and compared two maize lines for this study: Ubi-ZmZIP5, in which ZmZIP5 was constitutively overexpressed, and ZmZIP5i, a RNAi line. At the seedling stage, high levels of Zn and Fe were found in the roots and shoots of Ubi-ZmZIP5 plants, whereas low levels were found in the ZmZIP5i plants. Zn and Fe contents decreased in the seeds of Ubi-ZmZIP5 plants and remained unchanged in the seeds of ZmZIP5i plants. The seeds of Leg-ZmZIP5 plants, in which ZmZIP5 overexpression is specific to the endosperm, had higher levels of Zn and Fe. Our results imply that ZmZIP5 may play a role in Zn and Fe uptake and root-to-shoot translocation. Endosperm-specific ZmZIP5 overexpression could be useful for Zn and Fe biofortification of cereal grains.


Assuntos
Ferro/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/genética , Zinco/metabolismo , Biofortificação , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Grão Comestível , Expressão Gênica , Genes Reporter , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/fisiologia , Zea mays/fisiologia
13.
BMC Plant Biol ; 19(1): 584, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31878892

RESUMO

BACKGROUND: Modification of root architecture and improvement of root resistance to stresses can increase crop productivity. Functional analyses of root-specific genes are necessary for root system improvement, and root-specific promoters enable research into the regulation of root development and genetic manipulation of root traits. Maize is an important crop species; however, little systematic mining of root-specific genes and promoters has been performed to date. RESULTS: Genomic-scale mining based on microarray data sets followed by transcript detection resulted in the identification of 222 root-specific genes. Gene Ontology enrichment analyses revealed that these 222 root-specific genes were mainly involved in responses to chemical, biotic, and abiotic stresses. Of the 222 genes, 33 were verified by quantitative reverse transcription polymerase chain reaction, and 31 showed root-preferential activity. About 2 kb upstream 5 of the 31 identified root-preferential genes were cloned from the maize genome as putative promoters and named p8463, p5023, p1534, p8531 and p6629. GUS staining of transgenic maize-derived promoter-GUS constructs revealed that the five promoters drove GUS expression in a root-preferential manner. CONCLUSIONS: We mined root-preferential genes and their promoters in maize and verified p8463, p5023, p1534, p8531 and p6629 as root-preferential promoters. Our research enables the identification of other tissue-specific genes and promoters in maize and other species. In addition, the five promoters may enable enhancement of target gene(s) of maize in a root-preferential manner to generate novel maize cultivars with resistance to water, fertilizer constraints, or biotic stresses.


Assuntos
Genes de Plantas , Genoma de Planta , Raízes de Plantas/crescimento & desenvolvimento , Zea mays/genética , Ontologia Genética , Raízes de Plantas/genética , Zea mays/crescimento & desenvolvimento
15.
Int J Mol Sci ; 20(24)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835445

RESUMO

Increased expression of trefoil factor 3 (TFF3) has been reported in colorectal carcinoma (CRC), being correlated with distant metastasis and poor clinical outcomes. Amongst the CRC subtypes, mesenchymal (CMS4) CRC is associated with the worst survival outcome. Herein, the functional roles of TFF3 and the pharmacological inhibition of TFF3 by a novel specific small molecule TFF3 inhibitor-2-amino-4-(4-(6-fluoro-5-methylpyridin-3-yl)phenyl)-5-oxo-4H,5H-pyrano[3,2-c]chromene-3-carbonitrile (AMPC) in CMS4 CRC was explored. Forced expression of TFF3 in CMS4 CRC cells promoted cell proliferation, cell survival, foci formation, invasion, migration, cancer stem cell like behaviour and growth in 3D Matrigel. In contrast, siRNA-mediated depletion of TFF3 or AMPC inhibition of TFF3 in CMS4 CRC cells decreased oncogenic behaviour as indicated by the above cell function assays. AMPC also inhibited tumour growth in vivo. The TFF3-stimulated oncogenic behaviour of CMS4 CRC cells was dependent on TFF3 activation of the p44/42 MAPK (ERK1/2) pathway. Furthermore, the forced expression of TFF3 decreased the sensitivity of CMS4 CRC cells to 5-fluorouracil (5-FU); while depleted TFF3 expression enhanced 5-FU sensitivity in CMS4 CRC cells. 5-FU treatment induced TFF3 expression in CMS4 CRC cells. AMPC, when used in combination with 5-FU in CMS4 CRC cells exhibited a synergistic inhibitory effect. In summary, this study provides functional evidence for TFF3 as a therapeutic target in CMS4 CRC.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas de Neoplasias , Nitrilas/farmacologia , Fator Trefoil-3/antagonistas & inibidores , Animais , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Fator Trefoil-3/metabolismo
16.
Plant Cell Physiol ; 59(10): 1942-1955, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29917151

RESUMO

Tissue-specific promoters play an important role in plant molecular farming. Here, we describe a strategy to modify the tissue specificity of a maize embryo-specific bidirectional promoter PZmBD1. Six types of cis-elements, i.e. RY repeats (R), GCN4 (G), the prolamin box (P), Skn-1 (S), and the ACGT and AACA (A) motifs, were collected and fused to PZmBD1 to generate eight chimeric putative bidirectional promoters. Qualitative and quantitative analysis of reporter genes driven by the promoters showed that two promoters exhibited high seed-specific bidirectional activity in maize transient and stable transformed systems. The stronger one was chosen and fused to the intergenic region of two gene clusters consisting of four anthocyanin biosynthesis-related genes (ZmBz1, ZmBz2, ZmC1 and ZmR2) and seven reporter genes, resulting in the first embryo and endosperm anthocyanin-rich purple maize. Anthocyanin analysis showed that the total anthocyanin content reaches 2,910 mg kg-1 DW in transgenic maize and cyanidin is the major anthocyanin in transgenic maize, as in natural varieties. The expression profile analysis of endogenous genes showed that the anthocyanin biosynthesis pathway was activated by two transgenic transcription factor genes ZmC1 and ZmR2. Our results indicate that both the modification strategy and these functionally characterized tissue-specific bidirectional promoters generated could be used for genetic research and development of plant biotechnology products. The anthocyanin-rich purple maize could provide economic natural colorants for the food and beverage industry, and valuable germplasm for developing anthocyanin-rich fresh corn.


Assuntos
Antocianinas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas/fisiologia , Sementes/metabolismo , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Engenharia Metabólica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Sementes/genética , Zea mays/genética
17.
BMC Genomics ; 17: 129, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26911482

RESUMO

BACKGROUND: D-myo-inositol phosphates (IPs) are a series of phosphate esters. Myo-inositol hexakisphosphate (phytic acid, IP6) is the most abundant IP and has negative effects on animal and human nutrition. IPs play important roles in plant development, stress responses, and signal transduction. However, the metabolic pathways and possible regulatory mechanisms of IPs in maize are unclear. In this study, the B73 (high in phytic acid) and Qi319 (low in phytic acid) lines were selected for RNA-Seq analysis from 427 inbred lines based on a screening of IP levels. By integrating the metabolite data with the RNA-Seq data at three different kernel developmental stages (12, 21 and 30 days after pollination), co-regulatory networks were constructed to explore IP metabolism and its interactions with other pathways. RESULTS: Differentially expressed gene analyses showed that the expression of MIPS and ITPK was related to differences in IP metabolism in Qi319 and B73. Moreover, WRKY and ethylene-responsive transcription factors (TFs) were common among the differentially expressed TFs, and are likely to be involved in the regulation of IP metabolism. Six co-regulatory networks were constructed, and three were chosen for further analysis. Based on network analyses, we proposed that the GA pathway interacts with the IP pathway through the ubiquitination pathway, and that Ca(2+) signaling functions as a bridge between IPs and other pathways. IP pools were found to be transported by specific ATP-binding cassette (ABC) transporters. Finally, three candidate genes (Mf3, DH2 and CB5) were identified and validated using Arabidopsis lines with mutations in orthologous genes or RNA interference (RNAi)-transgenic maize lines. Some mutant or RNAi lines exhibited seeds with a low-phytic-acid phenotype, indicating perturbation of IP metabolism. Mf3 likely encodes an enzyme involved in IP synthesis, DH2 encodes a transporter responsible for IP transport across organs and CB5 encodes a transporter involved in IP co-transport into vesicles. CONCLUSIONS: This study provides new insights into IP metabolism and regulation, and facilitates our development of a better understanding of the functions of IPs and how they interact with other pathways involved in plant development and stress responses. Three new genes were discovered and preliminarily validated, thereby increasing our knowledge of IP metabolism.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fosfatos de Inositol/metabolismo , Zea mays/genética , Processamento Alternativo , Arabidopsis/genética , Redes Reguladoras de Genes , MicroRNAs/genética , Fenótipo , Ácido Fítico/metabolismo , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Sementes/química , Sementes/genética , Análise de Sequência de RNA , Fatores de Transcrição/genética , Transcriptoma
18.
J Exp Bot ; 67(14): 4403-13, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27279278

RESUMO

Bidirectional promoters are identified in diverse organisms with widely varied genome sizes, including bacteria, yeast, mammals, and plants. However, little research has been done on any individual endogenous bidirectional promoter from plants. Here, we describe a promoter positioned in the intergenic region of two defensin-like protein genes, Def1 and Def2 in maize (Zea mays). We examined the expression profiles of Def1 and Def2 in 14 maize tissues by qRT-PCR, and the results showed that this gene pair was expressed abundantly and specifically in seeds. When fused to either green fluorescent protein (GFP) or ß-glucuronidase (GUS) reporter genes, P ZmBD1 , P ZmDef1 , and P ZmDef2 were active and reproduced the expression patterns of both Def1 and Def2 genes in transformed immature maize embryos, as well as in developing seeds of transgenic maize. Comparative analysis revealed that PZmBD1 shared most of the expression characteristics of the two polar promoters, but displayed more stringent embryo specificity, delayed expression initiation, and asymmetric promoter activity. Moreover, a truncated promoter study revealed that the core promoters only exhibit basic bidirectional activity, while interacting with necessary cis-elements, which leads to polarity and different strengths. The sophisticated interaction or counteraction between the core promoter and cis-elements may potentially regulate bidirectional promoters.


Assuntos
DNA Intergênico/fisiologia , Genes de Plantas/genética , Proteínas de Plantas/fisiologia , Regiões Promotoras Genéticas/fisiologia , Zea mays/genética , DNA Intergênico/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Sementes/metabolismo , Sementes/fisiologia , Transcriptoma , Zea mays/fisiologia
19.
BMC Plant Biol ; 15: 31, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25644226

RESUMO

BACKGROUND: Nitrogen (N), a critical macronutrient for plant growth and development, is a major limiting factor in most agricultural systems. Microarray analyses have been conducted to investigate genome-wide gene expression in response to changes in N concentrations. Although RNA-Seq analysis can provide a more precise determination of transcript levels, it has not previously been employed to investigate the expression of N-starvation-induced genes. RESULTS: We constructed cDNA libraries from leaf sheaths and roots of rice plants grown under N-deficient or -sufficient conditions for 12 h. Sequencing the libraries resulted in identification of 33,782 annotated genes. A comparison of abundances revealed 1,650 transcripts that were differentially expressed (fold-change ≥ 2) due to an N-deficiency. Among them, 1,158 were differentially expressed in the leaf sheaths (548 up-regulated and 610 down-regulated) and 492 in the roots (276 up, 216 down). Among the 36 deficiency-induced genes first identified via RNA-Seq analyses, 34 were subsequently confirmed by qRT-PCR. Our RNA-Seq data identified 8,509 multi-exonic genes with 19,628 alternative splicing events. However, we saw no significant difference in alternative splicing between N-sufficient and -deficient conditions. We found 2,986 novel transcripts, of which 192 were regulated under the N-deficiency. CONCLUSION: We identified 1,650 genes that were differentially expressed after 12 h of N-starvation. Responses by those genes to a limited supply of N were confirmed by RT-PCR and GUS assays. Our results provide valuable information about N-starvation-responsive genes and will be useful when investigating the signal transduction pathway of N-utilization.


Assuntos
Genes de Plantas , Nitrogênio/metabolismo , Oryza/genética , Transcriptoma , Processamento Alternativo , DNA Complementar , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
20.
Plant Cell Rep ; 34(8): 1443-57, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25941157

RESUMO

KEY MESSAGE: The 2-kb ZmCI - 1B promoter is active in the root and embryo and induced by wounding in maize and the 220-bp 5'-deleted segment maybe the minimal promoter. The subtilisin-chymotrypsin inhibitor gene, CI-1B of Zea mays (ZmCI-1B), has been suggested to induce the maize defense system to resist insect attack. Real-time RT-PCR showed that ZmCI-1B gene exhibited especially high expression in roots and embryos. The 2-kb full-length promoter of ZmCI-1B gene was isolated from the maize genome and used to drive expression of a beta-glucuronidase (GUS) reporter gene for transient expression and stable expression analysis in maize. The results of GUS histochemical staining in transgenic maize plants revealed that the ZmCI-1B promoter induced GUS expression preferentially in roots and embryos and in response to wounding. A series of 5'-deleted segments of the ZmCI-1B promoter were cloned individually to drive GUS expression for further analysis. Deletion analysis combined with the histochemical staining of transgenic tobacco plants revealed 220-bp segment could drive GUS in a tissue-specific and wounding-induced expression in tobacco; thus, it maybe the minimally active promoter of ZmCI-1B gene. Furthermore, it revealed that the ZmCI-1B promoter contained tissue-specific and wounding-induced elements.


Assuntos
Nicotiana/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Zea mays/genética , Quimotripsina/antagonistas & inibidores , Quimotripsina/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glucuronidase/biossíntese , Glucuronidase/fisiologia , Proteínas de Plantas/fisiologia , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Regiões Promotoras Genéticas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Subtilisina/antagonistas & inibidores , Subtilisina/genética , Nicotiana/fisiologia , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA