Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Formos Med Assoc ; 123(1): 71-77, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37709573

RESUMO

BACKGROUND/PURPOSE: 3D-printing technology is an important tool for the bone tissue engineering (BTE). The aim of this study was to investigate the interaction of polycaprolactone (PCL) scaffolds and modified mesh PCL coated with beta TCP (PCL/ß-TCP) scaffolds with MG-63. METHODS: This study used the fused deposition modeling (FDM) technique with the 3D printing technique to fabricate the thermoplastic polymer and composite scaffolds. Scaffold structure and coating quality were observed under a scanning electron microscope (SEM). MG-63 cells were injected and attached to the mesh-manufactured PCL scaffolds. The biocompatibility of mesh structured PCL and PCL/ß-TCP scaffolds could be examined by measuring the viability of MG-63 cells of MTT assay. Bone cell differentiation was evaluated ALP activity by mineralization assay. RESULTS: The results showed that both mesh PCL scaffolds and PCL/ß-TCP scaffolds were non-toxic to the cells. The ALP activities of cells in PCL/ß-TCP scaffolds groups were significant differences and better than PCL groups in all groups at all experimental dates. The mineralization process was time-dependent, and significantly higher mineralization of osteosarcoma cells was observed on PCL/ß-TCP scaffolds at experimental dates. CONCLUSION: We concluded that both meshes structured PCL and PCL/ß-TCP scaffolds could promote the MG-63 cell growth, and PCL/ß-TCP was better than the PCL scaffolds for the outcome of MG63 cell differentiation and mineralization.


Assuntos
Regeneração Óssea , Poliésteres , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Fosfatos de Cálcio/química , Impressão Tridimensional
2.
J Formos Med Assoc ; 122(8): 723-730, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36623972

RESUMO

BACKGROUND/PURPOSE: Acute oral mucositis (OM) is a painful complication of concurrent chemoradiotherapy (CCRT). This severe adverse symptom may impact on patient's quality of life, lead to malnutrition. Thus, finding more effective methods in OM management is very important. The purpose of this study is to evaluate the efficacy of polyacrylate silver salt/Polyvinylpyrrolidone-based liquid oral gel (named as polyacrylate silver salt oral gel) in improving the symptomatic relief of CCRT-induced oral mucositis and oral dysfunction in neck and head cancer patients. METHODS: In this study, 24 oral cancer patients underwent CCRT and having OM grade 2 or higher were randomly assigned into the test group and the control group. Both groups followed Multinational Association of Supportive Care in Cancer and International Society of Oral Oncology (MASCC/ISOO) clinical practice guidelines for the management of mucositis, but adding rinsing with 15 g oral gel right after oral hygiene treaded the test group. Clinical OM and oral function were assessed weekly for 4 consecutive weeks till 5-10 days after the completion of radiotherapy. For evaluation, Common Terminology Criteria for Adverse Events (CTCAE) v3.0 was used for collecting the data of OM grade. RESULTS: The results showed that polyacrylate silver salt oral gel had better effect for relieving the oral mucositis. There were statistically significant differences in OM grades (1.59 vs. 2.8, p < 0.0001) between the test group and the control group. CONCLUSION: Our clinical studies demonstrated that polyacrylate silver salt oral gel is an effective interventional option in terms of rapid mucositis healing.


Assuntos
Neoplasias de Cabeça e Pescoço , Mucosite , Estomatite , Humanos , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Povidona/efeitos adversos , Prata/efeitos adversos , Qualidade de Vida , Neoplasias de Cabeça e Pescoço/radioterapia , Estomatite/tratamento farmacológico , Estomatite/etiologia , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos
3.
J Formos Med Assoc ; 122(3): 230-238, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36372624

RESUMO

BACKGROUND/PURPOSE: To investigate the surface characteristics of titanium (Ti) implant materials, which were coated with different thicknesses of nanoscale tin oxide (SnO2) using the atomic layer deposition technique, and evaluated its biological performance on human embryonic palatal mesenchyme (HEPM) cells. METHODS: The thickness of the coating layer on Ti was 0 (Ti0), 20 nm (Ti20), 50 nm (Ti50), and 100 nm (Ti100), respectively. The surface morphology was observed with an SEM and AFM. The root mean square roughness of micron-scale (mRq) and nanoroughness (nRq) of Ti discs' surface were measured. The Alamar blue (AB) assay and F-actin fluorescence staining were used to evaluate the biocompatibility, and the osteocalcin (OCN) was measured to clarify the differentiation of HEPM cells on materials. RESULTS: In the coating groups, the mRq was decreased, but the nRq was increased. The spreading and polygonal morphology of HEPMs was apparent in coating groups. On Day 4, the survival rate of HEPM cells on Ti0 was higher than on Ti20 and Ti50. There was no significant difference on Day 7, Day 10, and Day 14. The OCN was significantly higher on Day 14 in all the coating groups than Ti0. CONCLUSION: The results showed that the cell growth was intensified with rough surfaces. However, the OCN and morphology change was prominent when the nanoroughness was increased, which meant the increased nanoroughness might enhance OCN production and improve the tendency of osseointegration. The nanoscale SnO2 coating could increase the ability of bone formation but not cell growth.


Assuntos
Materiais Revestidos Biocompatíveis , Titânio , Humanos , Osseointegração , Diferenciação Celular , Osteogênese , Propriedades de Superfície
4.
J Formos Med Assoc ; 120(6): 1332-1339, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33341348

RESUMO

BACKGROUND/PURPOSE: 2-hydroxyethyl methacrylate (HEMA) is one of the most major components in dentin bonding systems. Uncured HEMA is eluted through the dentin and harmful to pulp cells. The study aimed to investigate the death pattern, morphological change and factors of human dental pulp cells (HDPCs) cultured with low-dose HEMA. METHODS: HDPCs were cultured with low-dose concentration of HEMA at 0 mM (control), 0.125 mM, 0.25 mM, 1 mM, 2 mM and 4 mM on Day 3 and 5. The cell morphology was observed with F-actin immunocytochemical staining. The flow cytometry was used to analyze the death pattern. NF-κB and Trx-1 were measured using ELISA kits. RESULTS: The major death pattern was early apoptosis and late apoptosis. The morphological characteristics of apoptosis were observed clearly at 4 mM on Day 3 and Day 5. The phosphorylated NF-κB normalized to total NF-κB protein was significantly higher at 2 mM and 4 mM on Day 5. There was no difference of Trx-1 on Day 3, but significantly higher at 0.25 mM and 1 mM on Day 5. The trend line of phosphorylated NF-κB and Trx-1 showed highly positive correlations with HEMA concentration. CONCLUSION: The significant cellular morphology characteristics of apoptosis can be observed at higher dose and longer period after exposed to uncured HEMA. The expression of NF-κB was following the ratio of late apoptosis at longer exposure period. Clinically, the remaining dentin thickness should be enough to decrease HEMA concentration and thus to protect pulp cells free from harm.


Assuntos
Polpa Dentária , Metacrilatos , Apoptose , Humanos , NF-kappa B
5.
J Formos Med Assoc ; 119(1 Pt 2): 268-275, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31155229

RESUMO

BACKGROUND/PURPOSE: In recent years, 3D printing technology has flourished and applied to tissue engineering regeneration. The purpose of this study is to investigate the effects of gap width between struts (GWbS) of three-dimensional-printed polylactic acid scaffolds (3DP-PLASs) on neural differentiation of human dental pulp stem cells (hDPSCs). METHODS: Both the 3DP-PLASs with the GWbS of 150 µm and 200 µm were experimental groups and the 3DP-PLAS without microfilament struts was the control group. Properties of 3DP-PLASs were observed by water contact angles (WCA), atomic force microscope (AFM), and differential scanning calorimeter (DSC). The cell culture of hDPSCs on 3DP-PLASs was performed, and cytotoxicities were measured with Alamar Blue assay. The neural differentiation of hDPSCs on different 3DP-PLASs was compared after neural induction. Expressions of neural markers Nestin, MAP2, beta III tubulin, and GFAP were evaluated with immunocytochemical staining. RESULTS: Our results demonstrated no cytotoxicities among scaffolds, whereas they may differ in crystal sizes and directions resulting from different orders of cooling time, contact surface, and temperature distribution during the building process. In addition, hDPSCs could successfully adhere to 3DP-PLAS modified by alcohol or poly-l-Lysine and demonstrate morphological change and related protein performance. CONCLUSION: We conclude that 3DP-PLASs with 150 µm gaps can induce cellular orientations more easily than those with 200 µm gaps. In addition, 3DP-PLASs seem to improve cell adhesion after being coated with poly-l-lysine or soaked with alcohol.


Assuntos
Polpa Dentária/citologia , Poliésteres/química , Impressão Tridimensional , Células-Tronco/citologia , Alicerces Teciduais/química , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Humanos , Neurônios/citologia , Engenharia Tecidual
6.
J Formos Med Assoc ; 118(6): 1005-1013, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30472043

RESUMO

PURPOSE: The purposes of this study are to explore the roles of microRNA-218 (miR-218) delivered by a newly designed magnetic nanocarrier: GCC-Fe3O4 (GCC-Fe) in dentinogenesis potentials of human dental pulp stem cells (DPSCs). METHODS: Human DPSCs were obtained from impacted wisdom teeth of healthy donors under the permission of National Taiwan University Hospital institutional review board (NTUH IRB). Meanwhile, the transfection efficiency of GCC-Fe was evaluated. After transfecting miR-218 (GFm) and miR-218 inhibitor (GFmi) into DPSCs for 24 h, the dentinogenesis potentials of DPSCs were then evaluated with Alizarin Red S (ARS) staining with or without induction for 1, 4, and 9 days. Possible signaling pathway was further investigated by Western Blotting. RESULTS: We found that the magnetic GCC-Fe3O4 nanocarrier was serum endurable with about 90% transfection efficiency in DPSCs under normal culture condition. Results of ARS staining indicated that miR-218 was negatively regulating dentinogenesis potentials of DPSCs after induction. When the miR-218 inhibitor was delivered, calcium deposits in DPSCs were increased significantly. We also discovered that the effects of miR-218 were further regulated through the MAPK/ERK pathway. CONCLUSION: We identified that miR-218 had a negative regulation role in the dentinogenesis of DPSCs. By inhibiting miR-218, the mineralization potentials of DPSCs were promoted after induction. In addition, we also confirmed that the highly efficient magnetic GCC-Fe3O4 nanocarrier not only was suitable for gene manipulation in biomedical studies, but also ideal for future clinical applications due to its serum endurable property.


Assuntos
Polpa Dentária/citologia , Dentinogênese , Campos Magnéticos , MicroRNAs/antagonistas & inibidores , Células-Tronco , Adulto , Western Blotting , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Voluntários Saudáveis , Humanos , Transdução de Sinais
9.
J Formos Med Assoc ; 114(1): 17-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25618584

RESUMO

BACKGROUND/PURPOSE: Chlorhexidine (CHX) is a type of chemical antiseptic that is widely used in dental practice. Stem cells from human exfoliated deciduous teeth (SHED) are multipotent cells. However, there is little knowledge about the effects of chlorhexidine on SHED cells. The purpose of this study is to investigate the effects of CHX on SHED. METHODS: SHED cells were treated with 0.1%, 0.01%, 0.001%, and 0.0001% CHX for 10 seconds to test the effects of different concentrations of CHX on SHED cells. The cells were also treated with 0.01% CHX for 10 seconds, 1 minute, and 5 minutes to test the time effects of CHX on SHED cells. Cell proliferation was investigated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and an autonomously replicating sequence (ARS) assay was used for the evaluation of the mineralization potential. RESULTS: This study demonstrated that different concentrations of CHX had cytotoxic effects on SHED cells in a dose- and time-dependent manner. The proliferation of SHED cells was inhibited by approximately 50% by the use of 0.01% CHX. It was also found that the cell proliferation and mineralization potential of SHED cells were inhibited to some degree by different concentrations of CHX. CONCLUSION: Different concentrations of CHX can inhibit SHED cell proliferation in a dose- and time-dependent manner. In addition, the mineralization potential of SHED cells is inhibited to some degree by different concentrations of CHX.


Assuntos
Anti-Infecciosos Locais/farmacologia , Proliferação de Células/efeitos dos fármacos , Clorexidina/farmacologia , Células-Tronco/efeitos dos fármacos , Dente Decíduo/citologia , Células Cultivadas , Criança , Polpa Dentária/citologia , Humanos , Taiwan
10.
J Formos Med Assoc ; 114(1): 46-51, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24594060

RESUMO

BACKGROUND/PURPOSE: Novel liquid crystalline epoxy nanocomposites, which exhibit reduced polymerization shrinkage and effectively bond to tooth structures, can be applied in esthetic dentistry, including core and post systems, direct and indirect restorations, and dental brackets. The purposes of this study were to investigate the properties of liquid crystalline epoxy nanocomposites including biocompatibility, microhardness, and frictional forces of bracket-like blocks with different filler contents for further clinical applications. METHODS: In this study, we evaluated liquid crystalline epoxy nanocomposite materials that exhibited various filler contents, by assessing their cell activity performance using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and their microhardness with or without thermocycling. We also evaluated the frictional force between bracket-like duplicates and commercially available esthetic bracket systems using Instron 5566. RESULTS: The liquid crystalline epoxy nanocomposite materials showed good biocompatibility. The materials having high filler content demonstrated greater microhardness compared with commercially available bracket materials, before and after the thermocycling treatment. Thus, manufacturing processes are important to reduce frictional force experienced by orthodontic brackets. CONCLUSION: The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment.


Assuntos
Resinas Epóxi/química , Nanocompostos/química , Braquetes Ortodônticos , Estresse Mecânico , Análise do Estresse Dentário , Fricção , Teste de Materiais
11.
J Formos Med Assoc ; 113(1): 42-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24445010

RESUMO

BACKGROUND/PURPOSE: Traditionally, tooth germ is observed by histological investigation with hematoxylin and eosin stain and information may loss during the process. The purpose of this study is to use multiphoton laser fluorescence microscopy to observe the developing tooth germs of mice for building up the database of the images of tooth germs and compare with those from conventional histological analysis. METHODS: Tooth germs were isolated from embryonic and newborn mice with age of Embryonic Day 14.5 and Postnatal Days 1, 3, 5, and 7. RESULTS: Comparison of the images of tooth germ sections in multiphoton microscopy with the images of histology was performed for investigating the molar tooth germs. It was found that various signals arose from different structures of tooth germs. Pre-dentin and dentin have strong second-harmonic generation signals, while ameloblasts and enamel tissues were shown with strong autofluorescence signals. CONCLUSION: In this study, a novel multiphoton microscopy database of images from developing tooth germs in mice was set up. We confirmed that multiphoton laser microscopy is a powerful tool for investigating the development of tooth germ and is worthy for further application in the study of tooth regeneration.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica , Germe de Dente/citologia , Animais , Animais Recém-Nascidos , Camundongos , Germe de Dente/embriologia
12.
Dent Mater ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38937202

RESUMO

OBJECTIVES: Evaluate a new light-cured material with better properties for vital pulp therapy. METHODS: Light-cured resin materials consisted of polyethylene glycol (600) diacrylate mixed with different ratios of TCP to HA. In addition to the temperature change (n = 5 for each subgroup) were tested, cell viability and Alizarin Red Staining (ARS) assay were also tested in vitro on human dental pulp cells (n = 6 for each subgroup). Lastly, the material was then compared with Biodentine and control groups in the molars of Wistar rats in vivo for histology assessment. RESULTS: The temperature change for the new materials were under 5 degrees Celsius. For the in vitro assessments, there was no significant difference on day 3 and day 7 for cell viability test. ARS assay showed significantly higher mineralized nodule formation when treated without induction medium for Group D and Biodentine on day 10 compared to Group C and control. On the contrary, Biodentine and control groups treated with induction medium showed significant higher mineralization than the new materials. Histology assessments demonstrated higher mineralized content in Group D and Biodentine on week 3 and week 6. The inflammatory cells in the dental pulp complex of the Biodentine group resolved on week 6 while the inflammation resolved in Group D on week 3. SIGNIFICANCE: The new material exhibits low heat production, low cytotoxicity, and good calcium ion release capability. Compared to traditional materials, it has shorter setting time and better aesthetic outcomes, making it highly suitable for use in vital pulp therapy.

13.
J Dent Sci ; 19(2): 1096-1104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618126

RESUMO

Background/purpose: Peripheral neural regeneration is an interesting and challenging field. The aim of this study was to investigate the interactions of neural-like PC12 cells and Poly-D-Lysine (PDL)-coated 3D-printed polycaprolactone (PCL) scaffolds with different inner diameters of half tubular array (HTA) (0, 200, 300, and 400 µm), respectively. Materials and methods: This study used the fused deposition modeling (FDM) technique with 3D-printing to fabricate the thermoplastic polymer. Scaffold properties were measured by mechanical testing, and coating quality was observed under a scanning electron microscope (SEM). PC12 cell biocompatibility was examined by an MTT assay. Cell differentiation was evaluated by immunofluorescence staining. Results: The cell viability of PC12 cells on PDL-coated PCL scaffolds with a 200-µm inner diameter of HTA was shown with significant differences (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001) than other PCL groups at all experimental dates. The SEM observation showed that PDL-coated PCL scaffolds with 200-µm inner diameters of HTA promoted cell adhesion. An immunofluorescence staining of PC12 cells on the PDL-coated PCL scaffold with a 200-µm inner diameter of the HTA group showed that it stimulated PC12 cells for neurite formation much better than the other groups.A PDL-coated PCL scaffold with a 200-µm inner diameter of HTA can promote the growth and differentiation of PC12 cells better than other groups. It indicated that PDL-coated PCL scaffolds with a 200-µm inner diameter HTA can be used for further neural regeneration application.

14.
J Dent Sci ; 19(2): 1075-1082, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618089

RESUMO

Background/purpose: Dental pulp stem cells (DPSCs) exhibit versatile differentiation capabilities, including neural differentiation, prompting the hypothesis that they may be implicated in the neurodevelopment of teeth. This study aimed to explore the temporospatial dynamics between DPSCs and tooth innervation, employing immunofluorescence staining and fluorescent dye injections to investigate the distribution of DPSCs, neural stem cells (NSCs), nerve growth cones, and sensory nerves in developing mouse tooth germs at various stages. Materials and methods: Immunofluorescence staining targeting CD146, Nestin, and GAP-43, along with the injection of AM1-43 fluorescent dye, were utilized to observe the distribution of DPSCs, NSCs, nerve growth cones, and sensory nerves in mouse tooth germs at different developmental stages. Results: Positive CD146 immunostaining was observed in microvascular endothelial cells and pericytes within and around the tooth germ. The percentage of CD146-positive cells remained consistent between 4-day-old and 8-day-old second molar tooth germs. Conversely, Nestin expression in odontoblasts and their processes decreased in 8-day-old tooth germs compared to 4-day-old ones. Positive immunostaining for GAP-43 and AM1-43 fluorescence revealed the entry of nerve growth cones and sensory nerves into the pulp in 8-day-old tooth germs, while these elements were confined to the dental follicle in 4-day-old germs. No co-localization of CD146-positive DPSCs with nerve growth cones and sensory nerves was observed. Conclusion: DPSCs and NSCs were present in dental pulp tissue before nerves penetrated the pulp. The decline in NSCs after nerve entry suggests a potential role for DPSCs and NSCs in attracting neural growth and/or differentiation within the pulp.

15.
Cell Commun Signal ; 10(1): 34, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23176204

RESUMO

BACKGROUND: Epithelial invagination is important for initiation of ectodermal organogenesis. Although many factors regulate ectodermal organogenesis, there is not any report about their functions in real-time study. Electric cell-substrate impedance sensing (ECIS), a non-invasive, real-time surveillance system, had been used to detect changes in organ cell layer thickness through quantitative monitoring of the impedance of a cell-to-microelectrode interface over time. It was shown to be a good method for identifying significant real-time changes of cells. The purpose of this study is to establish a combined bioengineered organ-ECIS model for investigating the real time effects of fibroblast growth factor-9 (FGF-9) on epithelial invagination in bioengineered ectodermal organs. We dissected epithelial and mesenchymal cells from stage E14.5 murine molar tooth germs and identified the real-time effects of FGF-9 on epithelial-mesenchymal interactions using this combined bioengineered organ-ECIS model. RESULTS: Measurement of bioengineered ectodermal organ thickness showed that Fibroblast growth factor-9 (FGF-9) accelerates epithelial invagination in reaggregated mesenchymal cell layer within 3 days. Gene expression analysis revealed that FGF-9 stimulates and sustains early Ameloblastin and Amelogenin expression during odontogenesis. CONCLUSIONS: This is the first real-time study to show that, FGF-9 plays an important role in epithelial invagination and initiates ectodermal organogenesis. Based on these findings, we suggest FGF-9 can be applied for further study in ectodermal organ regeneration, and we also proposed that the 'FGF-BMP balancing system' is important for manipulating the morphogenesis of ectodermal organs. The combined bioengineered organ-ECIS model is a promising method for ectodermal organ engineering and regeneration research.

16.
Cells ; 10(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34943785

RESUMO

Tooth regeneration is an important issue. The purpose of this study was to explore the feasibility of using adult dental pulp stem cells on polylactic acid scaffolds for tooth regeneration. Three teeth were extracted from each side of the lower jaws of two adult dogs. In the experimental group, dental pulp stem cells were isolated and seeded in the 3D-printed hydroxyapatite/polylactic acid (HA/PLA) scaffolds for transplantation into left lower jaw of each dog. The right-side jaw of each dog was transplanted with cell-free scaffolds as the control group. Polychrome sequentially labeling was performed for observation of mineralization. Dental cone beam computed tomography (CBCT) irradiation was used for assessment. Nine months after surgery, dogs were euthanized, and the lower jaws of dogs were sectioned and fixed for histological observation with hematoxylin and eosin staining. The results showed that the degree of mineralization in the experimental group with cells seeded in the scaffolds was significantly higher than that of the control group transplanted with cell-free scaffolds. However, the HA/PLA scaffolds were not completely absorbed in both groups. It is concluded that dental pulp stem cells are important for the mineralization of tooth regeneration. A more rapid absorbable material was required for scaffold design for tooth regeneration.


Assuntos
Polpa Dentária/crescimento & desenvolvimento , Durapatita/química , Regeneração/efeitos dos fármacos , Dente/crescimento & desenvolvimento , Animais , Cães , Durapatita/farmacologia , Poliésteres/química , Impressão Tridimensional , Regeneração/genética , Células-Tronco/citologia , Alicerces Teciduais
17.
J Biomed Mater Res A ; 83(1): 241-8, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17618501

RESUMO

This is the first study to explore the effect of biomaterial on tooth germ cell adhesion and proliferation in vitro. The purpose of this study is to evaluate the effects of cell-surface interactions of tooth germ cells on biomaterials with various surface hydrophilicities. The biomaterials used in this study included polyvinyl alcohol (PVA), poly(lactic-co-glycolic acid) (PLGA), poly(ethylene-co-vinyl alcohol; EVAL), and polyvinylidene fluoride (PVDF). Cell morphology was observed by photomicroscopy. Cell growth was assayed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction activity and the characteristic expression of amelogenin and collagen type I in tooth germ cells was investigated using immunocytochemistry. The results indicated that adhesion and proliferation of tooth germ cells to biomaterials with moderate hydrophilicity/hydrophobicity was superior compared to most hydrophobic material PVDF or mosthydrophilic material PVA in this study. Cellular adhesion and proliferation was evident on all tested biomaterials except PVA. The cell spheroids on PVA appeared not to be proliferated and remained as well as reattachable to tissue culture plates. In conclusion, biomaterials with moderate hydrophilicity are suitable for adhesion and proliferation of tooth germ cells. The material PVA may be a good biomaterial for maintaining tooth germ cells in three-dimensional biological restoration.


Assuntos
Materiais Biocompatíveis/metabolismo , Germe de Dente/citologia , Germe de Dente/metabolismo , Animais , Adesão Celular , Membrana Celular , Separação Celular , Células Cultivadas , Formazans , Interações Hidrofóbicas e Hidrofílicas , Imuno-Histoquímica , Oxirredução , Ratos , Ratos Wistar , Propriedades de Superfície , Sais de Tetrazólio
18.
Tissue Eng ; 11(3-4): 526-34, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15869431

RESUMO

The purpose of this study is to develop an initial step in salivary gland tissue engineering through proliferation and phenotypic preservation of rat parotid acinar cells in vitro. By using the explant outgrowth technique and M199 medium with the addition of sialic acid, acinar cells not only survived for more than 30 days in the absence of basement membrane substrates but also proliferated to yield cells with acinar phenotypic expression. Furthermore, we tested whether chitosan can be used as a synthetic extracellular matrix to culture salivary acinar cells. Chitosan is a deacetylated product of chitin, which is a plentiful polysaccharide found in nature and is safe for the human body, but little is known about the utility of chitosan in culturing salivary acinar cells. It was found that coating fibronectin on chitosan membrane improved the attachment of acinar cells in the initial stage. However, the poor attachment of acinar cells on pure chitosan membrane did not affect cell growth after longer culture times, indicating that chitosan is potentially useful as a tissue-engineering scaffold of the salivary gland. These in vitro results are encouraging because such a culture system may serve as an artificial salivary gland for future use in the treatment of patients with salivary hypofunction.


Assuntos
Técnicas de Cultura de Células/métodos , Quitosana/química , Ácido N-Acetilneuramínico/administração & dosagem , Glândula Parótida/citologia , Glândula Parótida/fisiologia , Engenharia Tecidual/métodos , Preservação de Tecido/métodos , Animais , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/metabolismo , Relação Dose-Resposta a Droga , Glândula Parótida/efeitos dos fármacos , Fenótipo , Ratos , Ratos Wistar , Glândulas Salivares/citologia , Glândulas Salivares/efeitos dos fármacos , Glândulas Salivares/crescimento & desenvolvimento
19.
Acta Biomater ; 8(11): 4151-61, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22842038

RESUMO

Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility, comparable to commercialized composites. The results indicate that this novel LC nanocomposite is worthy of development and has potential for further applications in clinical dentistry.


Assuntos
Compostos de Bifenilo/química , Materiais Dentários/química , Resinas Epóxi/química , Cristais Líquidos/química , Nanocompostos/química , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Géis , Dureza , Humanos , Luz , Nanocompostos/ultraestrutura , Temperatura
20.
Biomaterials ; 30(4): 541-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19000637

RESUMO

Poly(vinyl alcohol) (PVA) has been widely used in the field of biomedical applications because of its hydrophilic properties for desired functions. Nonetheless, the role of PVA in tooth germ (TG) cell differentiation and mineralization has seldom been explored. To test the capacity of PVA in regulating TG cell differentiation and mineralization, TG cells obtained from 4-day-old Wistar rats were cultured on the PVA substrate. It was found that PVA was able to promote TG cell exhibiting high levels of alkaline phosphatase (ALP) activity, mineralization, and mRNA expression of osteocalcin (OCN), osteopontin (OPN), dentin matrix protein 1 (DMP1) and enamelin. Even when the additives routinely administrated in the differentiation medium such as dexamethasone, beta-glycerophosphate and ascorbic acid were removed from the culture system, PVA itself still stimulated TG cells with the differentiation and mineralization ability. By showing the direct suppression of extracellular signaling-regulated kinase1/2 (ERK1/2) of TG cells treated with U0126, known to suppress the activation of ERK1/2, and significant synergistic effects between PVA and U0126, we demonstrated the suppression of ERK1/2 pathway is one of the effects of PVA-promoted TG cell differentiation and mineralization. Taken together, this study demonstrated a novel role of PVA in promoting the differentiation and mineralization of TG cells through ERK1/2 acting as a negative regulator.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Álcool de Polivinil/farmacologia , Germe de Dente/citologia , Germe de Dente/enzimologia , Fosfatase Alcalina/metabolismo , Animais , Butadienos/farmacologia , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Poliestirenos/farmacologia , Ratos , Ratos Wistar , Germe de Dente/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA