Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 42(6): 1143-58, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26070485

RESUMO

Tissue effector cells of the monocyte lineage can differentiate into different cell types with specific cell function depending on their environment. The phenotype, developmental requirements, and functional mechanisms of immune protective macrophages that mediate the induction of transplantation tolerance remain elusive. Here, we demonstrate that costimulatory blockade favored accumulation of DC-SIGN-expressing macrophages that inhibited CD8(+) T cell immunity and promoted CD4(+)Foxp3(+) Treg cell expansion in numbers. Mechanistically, that simultaneous DC-SIGN engagement by fucosylated ligands and TLR4 signaling was required for production of immunoregulatory IL-10 associated with prolonged allograft survival. Deletion of DC-SIGN-expressing macrophages in vivo, interfering with their CSF1-dependent development, or preventing the DC-SIGN signaling pathway abrogated tolerance. Together, the results provide new insights into the tolerogenic effects of costimulatory blockade and identify DC-SIGN(+) suppressive macrophages as crucial mediators of immunological tolerance with the concomitant therapeutic implications in the clinic.


Assuntos
Moléculas de Adesão Celular/metabolismo , Rejeição de Enxerto/prevenção & controle , Transplante de Coração , Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Receptores de Superfície Celular/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Moléculas de Adesão Celular/genética , Células Cultivadas , Fatores de Transcrição Forkhead/metabolismo , Rejeição de Enxerto/etiologia , Tolerância Imunológica , Interleucina-10/metabolismo , Lectinas Tipo C/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Receptores de Superfície Celular/genética , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Tolerância ao Transplante , Regulação para Cima
2.
PLoS Genet ; 17(12): e1009971, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34965247

RESUMO

Rothmund-Thomson syndrome (RTS) is an autosomal recessive genetic disorder characterized by poikiloderma, small stature, skeletal anomalies, sparse brows/lashes, cataracts, and predisposition to cancer. Type 2 RTS patients with biallelic RECQL4 pathogenic variants have multiple skeletal anomalies and a significantly increased incidence of osteosarcoma. Here, we generated RTS patient-derived induced pluripotent stem cells (iPSCs) to dissect the pathological signaling leading to RTS patient-associated osteosarcoma. RTS iPSC-derived osteoblasts showed defective osteogenic differentiation and gain of in vitro tumorigenic ability. Transcriptome analysis of RTS osteoblasts validated decreased bone morphogenesis while revealing aberrantly upregulated mitochondrial respiratory complex I gene expression. RTS osteoblast metabolic assays demonstrated elevated mitochondrial respiratory complex I function, increased oxidative phosphorylation (OXPHOS), and increased ATP production. Inhibition of mitochondrial respiratory complex I activity by IACS-010759 selectively suppressed cellular respiration and cell proliferation of RTS osteoblasts. Furthermore, systems analysis of IACS-010759-induced changes in RTS osteoblasts revealed that chemical inhibition of mitochondrial respiratory complex I impaired cell proliferation, induced senescence, and decreased MAPK signaling and cell cycle associated genes, but increased H19 and ribosomal protein genes. In summary, our study suggests that mitochondrial respiratory complex I is a potential therapeutic target for RTS-associated osteosarcoma and provides future insights for clinical treatment strategies.


Assuntos
Complexo I de Transporte de Elétrons/genética , Osteossarcoma/genética , RNA Longo não Codificante/genética , RecQ Helicases/genética , Síndrome de Rothmund-Thomson/genética , Trifosfato de Adenosina/biossíntese , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Senescência Celular/genética , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mutação/genética , Osteoblastos/efeitos dos fármacos , Osteogênese/genética , Osteossarcoma/complicações , Osteossarcoma/patologia , Oxidiazóis/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Piperidinas/farmacologia , Síndrome de Rothmund-Thomson/complicações , Síndrome de Rothmund-Thomson/patologia
3.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256242

RESUMO

Aberrant expression of the oncogenic retrotransposon LINE-1 is a hallmark of various cancer types, including non-small cell lung cancers (NSCLCs). Here, we present proof-of-principle evidence that LINE-1 analytes in extracellular vesicles (EVs) serve as tools for molecular diagnostics of NSCLC, with LINE-1 status in tumor cells and tissues mirroring the LINE-1 mRNA and ORF1p cargos of EVs from lung cancer cell culture conditioned media or human plasma. The levels of LINE-1 analytes in plasma EVs from ostensibly healthy individuals were higher in females than males. While the profiles of LINE-1 mRNA and ORF1p in African Americans compared to Hispanics were not significantly different, African Americans showed slightly higher ORF1p content, and 2-3 times greater ranges of LINE-1 values compared to Hispanics. Whole plasma ORF1p levels correlated with EV ORF1p levels, indicating that most of the circulating LINE-1 protein is contained within EVs. EV LINE-1 mRNA levels were elevated in patients with advanced cancer stages and in select patients with squamous cell carcinoma and metastatic tumors compared to adenocarcinomas. The observed EV LINE-1 mRNA profiles paralleled the patterns of ORF1p expression in NSCLC tissue sections suggesting that LINE-1 analytes in plasma EVs may serve to monitor the activity of LINE-1 retroelements in lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Feminino , Masculino , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Patologia Molecular , Retroelementos , Vesículas Extracelulares/genética , RNA Mensageiro/genética
4.
Clin Immunol ; 254: 109713, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37516396

RESUMO

Due to unique advantages that allow high-dimensional tissue profiling, we postulated imaging mass cytometry (IMC) may shed novel insights on the molecular makeup of proliferative lupus nephritis (LN). This study interrogates the spatial expression profiles of 50 target proteins in LN and control kidneys. Proliferative LN glomeruli are marked by podocyte loss with immune infiltration dominated by CD45RO+, HLA-DR+ memory CD4 and CD8 T-cells, and CD163+ macrophages, with similar changes in tubulointerstitial regions. Macrophages are the predominant HLA-DR expressing antigen presenting cells with little expression elsewhere, while macrophages and T-cells predominate cellular crescents. End-stage sclerotic glomeruli are encircled by an acellular fibro-epithelial Bowman's space surrounded by immune infiltrates, all enmeshed in fibronectin. Proliferative LN also shows signs indicative of epithelial to mesenchymal plasticity of tubular cells and parietal epithelial cells. IMC enabled proteomics is a powerful tool to delineate the spatial architecture of LN at the protein level.


Assuntos
Nefrite Lúpica , Humanos , Proteômica , Glomérulos Renais/metabolismo , Rim/metabolismo , Citometria por Imagem
5.
J Immunol ; 207(12): 3131-3140, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34772699

RESUMO

The sympathetic nervous system (SNS) is an important regulator of immune cell function during homeostasis and states of inflammation. Recently, the SNS has been found to bolster tumor growth and impair the development of antitumor immunity. However, it is unclear whether the SNS can modulate APC function. Here, we investigated the effects of SNS signaling in murine monocyte-derived macrophages (moMФ) and dendritic cells (DCs) and further combined the nonspecific ß-blocker propranolol with a peptide cancer vaccine for the treatment of melanoma in mice. We report that norepinephrine treatment dramatically altered moMФ cytokine production, whereas DCs were unresponsive to norepinephrine and critically lack ß2-adrenergic receptor expression. In addition, we show that propranolol plus cancer vaccine enhanced peripheral DC maturation, increased the intratumor proportion of effector CD8+ T cells, and decreased the presence of intratumor PD-L1+ myeloid-derived suppressor cells. Furthermore, this combination dramatically reduced tumor growth compared with vaccination alone. Taken together, these results offer insights into the cell-specific manner by which the SNS regulates the APC immune compartment and provide strong support for the use of propranolol in combination with cancer vaccines to improve patient response rates and survival.


Assuntos
Vacinas Anticâncer , Melanoma , Animais , Linfócitos T CD8-Positivos , Células Dendríticas , Camundongos , Monócitos , Norepinefrina/farmacologia , Propranolol/metabolismo , Propranolol/farmacologia , Sistema Nervoso Simpático
6.
Bioessays ; 43(7): e2000339, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33751590

RESUMO

Here we review and discuss the link between regeneration capacity and tumor suppression comparing mammals (embryos versus adults) with highly regenerative vertebrates. Similar to mammal embryo morphogenesis, in amphibians (essentially newts and salamanders) the reparative process relies on a precise molecular and cellular machinery capable of sensing abnormal signals and actively reprograming or eliminating them. As the embryo's evil twin, tumor also retains common functional attributes. The immune system plays a pivotal role in maintaining a physiological balance to provide surveillance against tumor initiation or to support its initiation and progression. We speculate that susceptibility to cancer development in adult mammals may be determined by the loss of an advanced regenerative capability during evolution and believe that gaining mechanistic insights into how regenerative capacity linked to tumor suppression is postnatally lost in mammals might illuminate an as yet unrecognized route to cancer treatment.


Assuntos
Anfíbios , Neoplasias , Animais , Biologia , Embrião de Mamíferos , Humanos , Mamíferos , Neoplasias/genética
7.
Future Oncol ; 18(25): 2771-2781, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35703113

RESUMO

The utilization of neoadjuvant immune checkpoint inhibitor therapy, specifically anti-PD-1/L1 agents, prior to radical cystectomy is an emerging paradigm in muscle-invasive bladder cancer (MIBC). In situ vaccination represents a strategy to manipulate the tumor in order to augment the immune response toward improved local and distant cancer control. The authors describe the study rationale, design and objectives for RAD VACCINE MIBC, a single-arm, single-institution, phase II trial evaluating the efficacy and safety of combination neoadjuvant sasanlimab (humanized IgG monoclonal antibody that targets PD-1) with stereotactic body radiotherapy as an in situ vaccine in cisplatin-ineligible patients with MIBC. The results from this trial will establish the safety profile of this combination strategy and evaluate pathologic complete response rates.


RAD VACCINE MIBC is a phase II clinical trial that aims to determine the safety and effectiveness of a study drug called sasanlimab (an immune checkpoint inhibitor), combined with radiation therapy (stereotactic body radiation therapy) prior to surgery to remove the bladder (known as radical cystectomy [RC]) in muscle-invasive bladder cancer patients. For this type of cancer, patients typically receive chemotherapy followed by RC as the standard of care. However, many patients who have pre-existing medical conditions such as poor kidney function are unable to receive chemotherapy. These patients undergo RC alone at the risk of less optimal cancer control. Bladder cancer is known to inhibit the immune cells (T cells) from attacking it, which is an important way in which the body controls cancer cells. Sasanlimab allows T cells that are specific to the cancer to potentially reactivate. Ongoing studies have shown that drugs similar to sasanlimab can be used to achieve improvement in cancer control in the bladder (as measured by shrinking the cancer or eradicating it) before surgery. The authors are studying the use of the study drug with the addition of stereotactic body radiotherapy (SBRT) as a combined therapy. The role of SBRT as a combined therapy to immune checkpoint inhibition has been well studied to help improve the process of how immune cells recognize cancer cells. By giving both the study drug and SBRT together before RC, the authors aim to demonstrate the safety of this technique and its effectiveness in eradicating all cancer in the bladder. Clinical Trial Registration: NCT05241340 (ClinicalTrials.gov).


Assuntos
Terapia Neoadjuvante , Radiocirurgia , Neoplasias da Bexiga Urinária , Vacinas , Anticorpos Monoclonais Humanizados/uso terapêutico , Cisplatino , Ensaios Clínicos Fase II como Assunto , Terapia Combinada/efeitos adversos , Cistectomia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias da Bexiga Urinária/terapia , Vacinas/uso terapêutico
8.
Cancer Immunol Immunother ; 70(12): 3435-3449, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33877384

RESUMO

Specific extracts of selected vegetables (SV) have been shown to benefit the survival of stage IIIb/IV non-small cell lung cancer patients in phase I/II studies and is currently in a phase III trial. However, the underlying mechanism of SV-mediated antitumor immune responses has not been elucidated. Our results indicate that SV modulated the NK and adoptive T cell immune responses in antitumor efficacy. Furthermore, antitumor effects of SV were also mediated by innate myeloid cell function, which requires both TLR and ß-glucan signaling in a MyD88/TRIF and Dectin-1-dependent manner, respectively. Additionally, SV treatment reduced granulocytic myeloid-derived suppressor cell (MDSC) infiltration into the tumor and limited monocytic MDSC toward the M2-like functional phenotype. Importantly, SV treatment enhanced antigen-specific immune responses by augmenting the activation of antigen-specific TH1/TH17 cells in secondary lymphoid organs and proliferative response, as well as by reducing the Treg population in the tumor microenvironment, which was driven by SV-primed activated M-MDSC. Our results support the idea that SV can subvert immune-tolerance state in the tumor microenvironment and inhibit tumor growth. The present study suggests that features, such as easy accessibility, favorable clinical efficacy, no detectable side effects and satisfactory safety make SV a feasible, appealing and convincing adjuvant therapy for the treatment of cancer patients and prevent tumor recurrence and/or metastases.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Nutrientes/imunologia , Extratos Vegetais/imunologia , Microambiente Tumoral/imunologia , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Tolerância Imunológica/imunologia , Imunidade/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Monócitos/imunologia , Células Mieloides/imunologia , Células Supressoras Mieloides/imunologia , Recidiva Local de Neoplasia/imunologia , Células Th1/imunologia , Células Th17/imunologia
9.
Cell Immunol ; 362: 104300, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33582607

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells, which have been characterized for their immunosuppressive capacity through multiple mechanisms. These cells have been extensively studied in the field of tumor immunity. Emerging evidence has highlighted its essential role in maintaining immune tolerance in transplantation and autoimmunity. Because of their robust immune inhibitory activities, there has been growing interest in MDSC-based cellular therapy. Various pre-clinical studies have demonstrated that the adoptive transfer of MDCS represented a promising therapeutic strategy for immune-related disorders. In this review, we summarize relevant studies of MDSC-based cell therapy in transplantation and autoimmune diseases and discuss the challenges and future directions for clinical application of MDSC-based cell therapy.


Assuntos
Imunoterapia/métodos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/transplante , Transferência Adotiva/métodos , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Humanos , Tolerância Imunológica/imunologia , Imunossupressores/farmacologia , Células Mieloides/imunologia , Células Mieloides/transplante , Transplantes/imunologia
10.
Angew Chem Int Ed Engl ; 60(18): 10273-10278, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33684258

RESUMO

The receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 spike (S) protein plays a central role in mediating the first step of virus infection to cause disease: virus binding to angiotensin-converting enzyme 2 (ACE2) receptors on human host cells. Therefore, S/RBD is an ideal target for blocking and neutralization therapies to prevent and treat coronavirus disease 2019 (COVID-19). Using a target-based selection approach, we developed oligonucleotide aptamers containing a conserved sequence motif that specifically targets S/RBD. Synthetic aptamers had high binding affinity for S/RBD-coated virus mimics (KD ≈7 nM) and also blocked interaction of S/RBD with ACE2 receptors (IC50 ≈5 nM). Importantly, aptamers were able to neutralize S protein-expressing viral particles and prevent host cell infection, suggesting a promising COVID-19 therapy strategy.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Antivirais/química , Aptâmeros de Nucleotídeos/química , Sequência de Bases , COVID-19/metabolismo , Células HEK293 , Humanos , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , SARS-CoV-2/química , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química
11.
Immunity ; 34(3): 385-95, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21376641

RESUMO

Myeloid-derived suppressor cells (MDSCs) bear characteristics of precursors for both M1 and M2 macrophages. The molecular mechanism underlying the differentiation into M1 and M2 macrophages and the relationship of this differentiation to antitumor responses remains largely undefined. Herein, we investigate the potential function of paired immunoglobulin-like receptor B (PIR-B), also known as leukocyte immunoglobulin-like receptor subfamily B member 3 (LILRB3) in MDSC differentiation, and its role in tumor-induced immunity. Our studies indicated that MDSCs genetically ablated for PIR-B (Lilrb3(-/-)) underwent a specific transition to M1-like cells when entering the periphery from bone marrow, resulting in decreased suppressive function, regulatory T cell activation activity, primary tumor growth, and lung metastases. Activation of Toll-like receptor (TLR), signal transducers, and activators of transcription 1 (STAT1), and nuclear factor-kappa B (NF-κB) signaling in Lilrb3(-/-) MDSC promoted the acquisition of M1 phenotype. Inhibition of the PIR-B signaling pathway promoted MDSC differentiation into M1 macrophages.


Assuntos
Células Mieloides/imunologia , Receptores Imunológicos/imunologia , Animais , Linfócitos B/imunologia , Western Blotting , Células Cultivadas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Imunológicos , Receptores Imunológicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T Reguladores/imunologia
12.
J Immunol ; 201(6): 1727-1734, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30068593

RESUMO

Glatiramer acetate (GA; Copaxone) is a copolymer therapeutic that is approved by the Food and Drug Administration for the relapsing-remitting form of multiple sclerosis. Despite an unclear mechanism of action, studies have shown that GA promotes protective Th2 immunity and stimulates release of cytokines that suppress autoimmunity. In this study, we demonstrate that GA interacts with murine paired Ig-like receptor B (PIR-B) on myeloid-derived suppressor cells and suppresses the STAT1/NF-κB pathways while promoting IL-10/TGF-ß cytokine release. In inflammatory bowel disease models, GA enhanced myeloid-derived suppressor cell-dependent CD4+ regulatory T cell generation while reducing proinflammatory cytokine secretion. Human monocyte-derived macrophages responded to GA by reducing TNF-α production and promoting CD163 expression typical of alternative maturation despite the presence of GM-CSF. Furthermore, GA competitively interacts with leukocyte Ig-like receptors B (LILRBs), the human orthologs of PIR-B. Because GA limited proinflammatory activation of myeloid cells, therapeutics that target LILRBs represent novel treatment modalities for autoimmune indications.


Assuntos
Antígenos CD/imunologia , Acetato de Glatiramer/farmacologia , Células Supressoras Mieloides/imunologia , Receptores Imunológicos/imunologia , Animais , Antígenos CD/genética , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Citocinas/genética , Citocinas/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células Supressoras Mieloides/patologia , NF-kappa B/genética , NF-kappa B/imunologia , Receptores Imunológicos/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Células Th2/imunologia , Células Th2/patologia
13.
Nature ; 485(7400): 656-60, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22660330

RESUMO

How environmental cues regulate adult stem cell and cancer cell activity through surface receptors is poorly understood. Angiopoietin-like proteins (ANGPTLs), a family of seven secreted glycoproteins, are known to support the activity of haematopoietic stem cells (HSCs) in vitro and in vivo. ANGPTLs also have important roles in lipid metabolism, angiogenesis and inflammation, but were considered 'orphan ligands' because no receptors were identified. Here we show that the immune-inhibitory receptor human leukocyte immunoglobulin-like receptor B2 (LILRB2) and its mouse orthologue paired immunoglobulin-like receptor (PIRB) are receptors for several ANGPTLs. LILRB2 and PIRB are expressed on human and mouse HSCs, respectively, and the binding of ANGPTLs to these receptors supported ex vivo expansion of HSCs. In mouse transplantation acute myeloid leukaemia models, a deficiency in intracellular signalling of PIRB resulted in increased differentiation of leukaemia cells, revealing that PIRB supports leukaemia development. Our study indicates an unexpected functional significance of classical immune-inhibitory receptors in maintenance of stemness of normal adult stem cells and in support of cancer development.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Leucemia/metabolismo , Leucemia/patologia , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Animais , Diferenciação Celular , Divisão Celular , Células Cultivadas , Modelos Animais de Doenças , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Proteína de Leucina Linfoide-Mieloide , Receptores Imunológicos/genética
14.
Cancer Immunol Immunother ; 66(8): 1079-1087, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28638976

RESUMO

The leukocyte immunoglobulin-like receptor (LILR) family comprises a set of paired immunomodulatory receptors expressed among human myeloid and lymphocyte cell populations. While six members of LILR subfamily A (LILRA) associate with membrane adaptors to signal via immunoreceptor tyrosine-based activating motifs (ITAM), LILR subfamily B (LILRB) members signal via multiple cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIM). Ligand specificity of some LILR family members has been studied in detail, but new perspective into the immunoregulatory aspects of this receptor family in human myeloid cells has been limited. LILRB receptors and the murine ortholog, paired immunoglobulin-like receptor B (PIRB), have been shown to negatively regulate maturation pathways in myeloid cells including mast cells, neutrophils, dendritic cells, as well as B cells. Our laboratory further demonstrated in mouse models that PIRB regulated functional development of myeloid-derived suppressor cell and the formation of a tumor-permissive microenvironment. Based on observations from the literature and our own studies, our laboratory is focusing on how LILRs modulate immune homeostasis of human myeloid cells and how these pathways may be targeted in disease states. Integrity of this pathway in tumor microenvironments, for example, permits a myeloid phenotype that suppresses antitumor adaptive immunity. This review presents the evidence supporting a role of LILRs as myeloid cell regulators and ongoing efforts to understand the functional immunology surrounding this family.


Assuntos
Antígenos CD/metabolismo , Leucócitos/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias/imunologia , Receptores Imunológicos/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Imunomodulação , Receptor B1 de Leucócitos Semelhante a Imunoglobulina , Camundongos , Receptores Imunológicos/genética , Transdução de Sinais/imunologia , Microambiente Tumoral
15.
Blood ; 119(7): 1693-701, 2012 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-22174156

RESUMO

R-Ras is a member of the RAS superfamily of small GTP-binding proteins. The physiologic function of R-Ras has not been fully elucidated. We found that R-Ras is expressed by lymphoid and nonlymphoid tissues and drastically up-regulated when bone marrow progenitors are induced to differentiate into dendritic cells (DCs). To address the role of R-Ras in DC functions, we generated a R-Ras-deficient mouse strain. We found that tumors induced in Rras(-/-) mice formed with shorter latency and attained greater tumor volumes. This finding has prompted the investigation of a role for R-Ras in the immune system. Indeed, Rras(-/-) mice were impaired in their ability to prime allogeneic and antigen-specific T-cell responses. Rras(-/-) DCs expressed lower levels of surface MHC class II and CD86 in response to lipopolysaccharide compared with wild-type DCs. This was correlated with a reduced phosphorylation of p38 and Akt. Consistently, R-Ras-GTP level was increased within 10 minutes of lipopolysaccharide stimulation. Furthermore, Rras(-/-) DCs have attenuated capacity to spread on fibronectin and form stable immunologic synapses with T cells. Altogether, these findings provide the first demonstration of a role for R-Ras in cell-mediated immunity and further expand on the complexity of small G-protein signaling in DCs.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/genética , Células Dendríticas/fisiologia , Ativação Linfocitária/genética , Proteínas ras/fisiologia , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/imunologia , Células Cultivadas , Células Dendríticas/metabolismo , Feminino , Imunidade Celular/genética , Imunidade Celular/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas ras/genética , Proteínas ras/metabolismo
16.
J Immunol ; 188(11): 5365-76, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22529296

RESUMO

Inducible NO synthase (iNOS) is a hallmark of chronic inflammation that is also overexpressed in melanoma and other cancers. Whereas iNOS is a known effector of myeloid-derived suppressor cell (MDSC)-mediated immunosuppression, its pivotal position at the interface of inflammation and cancer also makes it an attractive candidate regulator of MDSC recruitment. We hypothesized that tumor-expressed iNOS controls MDSC accumulation and acquisition of suppressive activity in melanoma. CD11b(+)GR1(+) MDSC derived from mouse bone marrow cells cultured in the presence of MT-RET-1 mouse melanoma cells or conditioned supernatants expressed STAT3 and reactive oxygen species (ROS) and efficiently suppressed T cell proliferation. Inhibition of tumor-expressed iNOS with the small molecule inhibitor L-NIL blocked accumulation of STAT3/ROS-expressing MDSC, and abolished their suppressive function. Experiments with vascular endothelial growth factor (VEGF)-depleting Ab and recombinant VEGF identified a key role for VEGF in the iNOS-dependent induction of MDSC. These findings were further validated in mice bearing transplantable MT-RET-1 melanoma, in which L-NIL normalized elevated serum VEGF levels; downregulated activated STAT3 and ROS production in MDSC; and reversed tumor-mediated immunosuppression. These beneficial effects were not observed in iNOS knockout mice, suggesting L-NIL acts primarily on tumor- rather than host-expressed iNOS to regulate MDSC function. A significant decrease in tumor growth and a trend toward increased tumor-infiltrating CD8(+) T cells were also observed in MT-RET transgenic mice bearing spontaneous tumors. These data suggest a critical role for tumor-expressed iNOS in the recruitment and induction of functional MDSC by modulation of tumor VEGF secretion and upregulation of STAT3 and ROS in MDSC.


Assuntos
Diferenciação Celular/imunologia , Células Mieloides/imunologia , Células Mieloides/patologia , Óxido Nítrico Sintase Tipo II/fisiologia , Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Transplante de Medula Óssea/imunologia , Transplante de Medula Óssea/patologia , Diferenciação Celular/genética , Movimento Celular/genética , Movimento Celular/imunologia , Células Cultivadas , Técnicas de Cocultura , Tolerância Imunológica/genética , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/enzimologia , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo II/genética
17.
Cells ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667328

RESUMO

Immune checkpoint inhibitors (ICIs) drastically improve therapeutic outcomes for lung cancer, but accurately predicting individual patient responses to ICIs remains a challenge. We performed the genome-wide profiling of 5-hydroxymethylcytosine (5hmC) in 85 plasma cell-free DNA (cfDNA) samples from lung cancer patients and developed a 5hmC signature that was significantly associated with progression-free survival (PFS). We built a 5hmC predictive model to quantify the 5hmC level and validated the model in the validation, test, and control sets. Low weighted predictive scores (wp-scores) were significantly associated with a longer PFS compared to high wp-scores in the validation [median 7.6 versus 1.8 months; p = 0.0012; hazard ratio (HR) 0.12; 95% confidence interval (CI), 0.03-0.54] and test (median 14.9 versus 3.3 months; p = 0.00074; HR 0.10; 95% CI, 0.02-0.50) sets. Objective response rates in patients with a low or high wp-score were 75.0% (95% CI, 42.8-94.5%) versus 0.0% (95% CI, 0.0-60.2%) in the validation set (p = 0.019) and 80.0% (95% CI, 44.4-97.5%) versus 0.0% (95% CI, 0.0-36.9%) in the test set (p = 0.0011). The wp-scores were also significantly associated with PFS in patients receiving single-agent ICI treatment (p < 0.05). In addition, the 5hmC predictive signature demonstrated superior predictive capability to tumor programmed death-ligand 1 and specificity to ICI treatment response prediction. Moreover, we identified novel 5hmC-associated genes and signaling pathways integral to ICI treatment response in lung cancer. This study provides proof-of-concept evidence that the cfDNA 5hmC signature is a robust biomarker for predicting ICI treatment response in lung cancer.


Assuntos
5-Metilcitosina , 5-Metilcitosina/análogos & derivados , Ácidos Nucleicos Livres , Imunoterapia , Neoplasias Pulmonares , Humanos , 5-Metilcitosina/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/sangue , Masculino , Feminino , Imunoterapia/métodos , Idoso , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Resultado do Tratamento
18.
Int J Radiat Oncol Biol Phys ; 118(5): 1531-1540, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625523

RESUMO

PURPOSE: A phase 2 study of stereotactic body radiation therapy (SBRT) and in situ oncolytic virus therapy in metastatic non-small cell lung cancer (mNSCLC) followed by pembrolizumab (STOMP) was designed to explore the dual approach in enhancing single pembrolizumab with ADV/HSV-tk plus valacyclovir gene therapy and SBRT in mNSCLC. METHODS AND MATERIALS: STOMP is a single-arm, open-label phase 2 study. Patients with mNSCLC received intratumoral injections of ADV/HSV-tk (5 × 1011 vp) and SBRT (30 Gy in 5 fractions) followed by pembrolizumab 200 mg IV every 3 weeks until disease progression or intolerable toxicity. The primary endpoint was overall response rate (ORR) (complete response [CR] and partial response [PR]). Secondary endpoints included clinical benefit rate (CBR) (CR, PR and stable disease [SD]), progression-free survival (PFS), overall survival (OS), and safety. RESULTS: 28 patients were enrolled, of whom 27 were evaluated for response. The ORR was 33.3%, including 2 CR (7.4%) and 7 PR (25.9%). CBR was 70.4%. Six of eight (75.0%) patients who were immune checkpoint inhibitor (ICI) refractory derived clinical benefits. Responders had durable responses with median PFS, and OS not reached. The entire cohort had a median PFS of 7.4 months (95% CI, 5.1-9.6 months), and median OS of 18.1 months (95% CI, 15.4-20.9 months). The combination was well tolerated, with grade 3 or higher toxicity in 6 (21.4%) patients. CONCLUSIONS: The dual approach of in situ ADV/HSV-tk plus valacyclovir gene therapy and SBRT as a chemotherapy-sparing strategy to enhance the antitumor effect of pembrolizumab is a well-tolerated encouraging treatment in patients with mNSCLC.


Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia Viral Oncolítica , Radiocirurgia , Humanos , Radiocirurgia/efeitos adversos , Terapia Viral Oncolítica/efeitos adversos , Valaciclovir/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
19.
bioRxiv ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38562769

RESUMO

Racial disparities in triple-negative breast cancer (TNBC) outcomes have been reported. However, the biological mechanisms underlying these disparities remain unclear. We integrated imaging mass cytometry and spatial transcriptomics, to characterize the tumor microenvironment (TME) of African American (AA) and European American (EA) patients with TNBC. The TME in AA patients was characterized by interactions between endothelial cells, macrophages, and mesenchymal-like cells, which were associated with poor patient survival. In contrast, the EA TNBC-associated niche is enriched in T-cells and neutrophils suggestive of an exhaustion and suppression of otherwise active T cell responses. Ligand-receptor and pathway analyses of race-associated niches found AA TNBC to be immune cold and hence immunotherapy resistant tumors, and EA TNBC as inflamed tumors that evolved a distinctive immunosuppressive mechanism. Our study revealed the presence of racially distinct tumor-promoting and immunosuppressive microenvironments in AA and EA patients with TNBC, which may explain the poor clinical outcomes.

20.
FEBS Open Bio ; 13(4): 617-637, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36637997

RESUMO

Despite advancements in treatment, high-grade serous ovarian cancer (HGSOC) is still characterized by poor patient outcomes. To understand the molecular heterogeneity of this disease, which underlies the challenge in selecting optimal treatments for HGSOC patients, we have integrated genomic, transcriptomic, and epigenetic information to identify seven new HGSOC subtypes using a multiscale clustering method. These subtypes not only have significantly distinct overall survival, but also exhibit unique patterns of gene expression, microRNA expression, DNA methylation, and copy number alterations. As determined by our analysis, patients with similar clinical outcomes have distinct profiles of activated or repressed cellular processes, including cell cycle, epithelial-to-mesenchymal transition, immune activation, interferon response, and cilium organization. Furthermore, we performed a multiscale gene co-expression network analysis to identify subtype-specific key regulators and predicted optimal targeted therapies based on subtype-specific gene expression. In summary, this study provides new insights into the cellular heterogeneity of the HGSOC genomic, epigenetic, and transcriptomic landscapes and provides a basis for future studies into precision medicine for HGSOC patients.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Multiômica , Perfilação da Expressão Gênica , Transcriptoma/genética , Metilação de DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA