Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
CNS Neurosci Ther ; 30(3): e14471, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37718708

RESUMO

AIMS: Understanding the neural mechanisms underlying stroke recovery is critical to determine effective interventions for stroke rehabilitation. This study aims to systematically explore how recovery mechanisms post-stroke differ between individuals with different levels of functional integrity of the ipsilesional corticomotor pathway and motor function. METHODS: Eighty-one stroke survivors and 15 age-matched healthy adults participated in this study. We used transcranial magnetic stimulation (TMS), electroencephalography (EEG), and concurrent TMS-EEG to investigate longitudinal neurophysiological changes post-stroke, and their relationship with behavioral changes. Subgroup analysis was performed based on the presence of paretic motor evoked potentials and motor function. RESULTS: Functional connectivity was increased dramatically in low-functioning individuals without elicitable motor evoked potentials (MEPs), which showed a positive effect on motor recovery. Functional connectivity was increased gradually in higher-functioning individuals without elicitable MEP during stroke recovery and influence from the contralesional hemisphere played a key role in motor recovery. In individuals with elicitable MEPs, negative correlations between interhemispheric functional connectivity and motor function suggest that the influence from the contralesional hemisphere may be detrimental to motor recovery. CONCLUSION: Our results demonstrate prominent clinical implications for individualized stroke rehabilitation based on both functional integrity of the ipsilesional corticomotor pathway and motor function.


Assuntos
Córtex Motor , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Adulto , Humanos , Estimulação Magnética Transcraniana/métodos , Córtex Motor/fisiologia , Eletroencefalografia , Potencial Evocado Motor/fisiologia
2.
Front Plant Sci ; 14: 1184058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416889

RESUMO

The 14-3-3 protein is a kind of evolutionary ubiquitous protein family highly conserved in eukaryotes. Initially, 14-3-3 proteins were reported in mammalian nervous tissues, but in the last decade, their role in various metabolic pathways in plants established the importance of 14-3-3 proteins. In the present study, a total of 22 14-3-3 genes, also called general regulatory factors (GRF), were identified in the peanut (Arachis hypogaea) genome, out of which 12 belonged to the ε group, whereas 10 of them belonged to the non- ε-group. Tissue-specific expression of identified 14-3-3 genes were studied using transcriptome analysis. The peanut AhGRFi gene was cloned and transformed into Arabidopsis thaliana. The investigation of subcellular localization indicated that AhGRFi is localized in the cytoplasm. Overexpression of the AhGRFi gene in transgenic Arabidopsis showed that under exogenous 1-naphthaleneacetic acid (NAA) treatment, root growth inhibition in transgenic plants was enhanced. Further analysis indicated that the expression of auxin-responsive genes IAA3, IAA7, IAA17, and SAUR-AC1 was upregulated and GH3.2 and GH3.3 were downregulated in transgenic plants, but the expression of GH3.2, GH3.3, and SAUR-AC1 showed opposite trends of change under NAA treatment. These results suggest that AhGRFi may be involved in auxin signaling during seedling root development. An in-depth study of the molecular mechanism of this process remains to be further explored.

3.
Front Neurosci ; 17: 1272003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901439

RESUMO

Background: Intermittent theta burst stimulation (iTBS) is a promising noninvasive therapy to restore the excitability of the cortex, and subsequently improve the function of the upper extremities. Several studies have demonstrated the effectiveness of iTBS in restoring upper limb function and modulating cortical excitability. We aimed to evaluate the effects of iTBS on upper limb motor recovery after stroke. Objective: The purpose of this article is to evaluate the influence of intermittent theta-burst stimulation on upper limb motor recovery and improve the quality of life. Method: A literature search was conducted using PubMed, EMBASE, MEDLINE, The Cochrane Library, Web of Science, and CBM, including only English studies, to identify studies that investigated the effects of iTBS on upper limb recovery, compared with sham iTBS used in control groups. Effect size was reported as standardized mean difference (SMD) or weighted mean difference (WMD). Results: Ten studies were included in the meta-analysis. The results of the meta-analysis indicated that when compared to the control group, the iTBS group had a significant difference in the Fugl-Meyer Assessment (FMA) and Action Research Arm Test (ARAT) (WMD: 3.20, 95% CI: 1.42 to 4.97; WMD: 3.72, 95% CI: 2.13 to 5.30, respectively). In addition, there was also a significant improvement in the modified Ashworth scale (MAS) compared to the sham group (WMD: -0.56; 95% CI: -0.85 to -0.28). More evidence is still needed to confirm the effect of Barthel Index (BI) scores after interventions. However, no significant effect was found for the assessment of Motor Evoked Potential (MEP) amplitude and MEP latency (SMD: 0.35; 95% CI: -0.21 to 0.90; SMD: 0.35, 95% CI: -0.18 to 0.87; SMD: 0.03, 95% CI: -0.49 to 0.55; respectively). Conclusion: Our results showed that iTBS significantly improved motor impairment, functional activities, and reduced muscle tone of upper limbs, thereby increasing the ability to perform Activities of Daily Living (ADL) in stroke patients, while there were no significant differences in MEPs. In conclusion, iTBS is a promising non-invasive brain stimulation as an adjunct to therapy and enhances the therapeutic effect of conventional physical therapy. In the future, more randomized controlled trials with large sample sizes, high quality, and follow-up are necessary to explore the neurophysiological effects. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023392739.

4.
Front Aging Neurosci ; 14: 818340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197845

RESUMO

OBJECTIVE: Intermittent theta burst stimulation (iTBS) has been widely used as a neural modulation approach in stroke rehabilitation. Concurrent use of transcranial magnetic stimulation and electroencephalography (TMS-EEG) offers a chance to directly measure cortical reactivity and oscillatory dynamics and allows for investigating neural effects induced by iTBS in all stroke survivors including individuals without recordable MEPs. Here, we used TMS-EEG to investigate aftereffects of iTBS following stroke. METHODS: We studied 22 stroke survivors (age: 65.2 ± 11.4 years; chronicity: 4.1 ± 3.5 months) with upper limb motor deficits. Upper-extremity component of Fugl-Meyer motor function assessment and action research arm test were used to measure motor function of stroke survivors. Stroke survivors were randomly divided into two groups receiving either Active or Sham iTBS applied over the ipsilesional primary motor cortex. TMS-EEG recordings were performed at baseline and immediately after Active or Sham iTBS. Time and time-frequency domain analyses were performed for quantifying TMS-evoked EEG responses. RESULTS: At baseline, natural frequency was slower in the ipsilesional compared with the contralesional hemisphere (P = 0.006). Baseline natural frequency in the ipsilesional hemisphere was positively correlated with upper limb motor function following stroke (P = 0.007). After iTBS, natural frequency in the ipsilesional hemisphere was significantly increased (P < 0.001). CONCLUSIONS: This is the first study to investigate the acute neural adaptations after iTBS in stroke survivors using TMS-EEG. Our results revealed that natural frequency is altered following stroke which is related to motor impairments. iTBS increases natural frequency in the ipsilesional motor cortex in stroke survivors. Our findings implicate that iTBS holds the potential to normalize natural frequency in stroke survivors, which can be utilized in stroke rehabilitation.

5.
Front Neurosci ; 15: 755709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744616

RESUMO

Objective: Intermittent theta burst stimulation (iTBS) is a special form of repetitive transcranial magnetic stimulation (rTMS), which effectively increases cortical excitability and has been widely used as a neural modulation approach in stroke rehabilitation. As effects of iTBS are typically investigated by motor evoked potentials, how iTBS influences functional brain network following stroke remains unclear. Resting-state electroencephalography (EEG) has been suggested to be a sensitive measure for evaluating effects of rTMS on brain functional activity and network. Here, we used resting-state EEG to investigate the effects of iTBS on functional brain network in stroke survivors. Methods: We studied thirty stroke survivors (age: 63.1 ± 12.1 years; chronicity: 4.0 ± 3.8 months; UE FMA: 26.6 ± 19.4/66) with upper limb motor dysfunction. Stroke survivors were randomly divided into two groups receiving either Active or Sham iTBS over the ipsilesional primary motor cortex. Resting-state EEG was recorded at baseline and immediately after iTBS to assess the effects of iTBS on functional brain network. Results: Delta and theta bands interhemispheric functional connectivity were significantly increased after Active iTBS (P = 0.038 and 0.011, respectively), but were not significantly changed after Sham iTBS (P = 0.327 and 0.342, respectively). Delta and beta bands global efficiency were also significantly increased after Active iTBS (P = 0.013 and 0.0003, respectively), but not after Sham iTBS (P = 0.586 and 0.954, respectively). Conclusion: This is the first study that used EEG to investigate the acute neuroplastic changes after iTBS following stroke. Our findings for the first time provide evidence that iTBS modulates brain network functioning in stroke survivors. Acute increase in interhemispheric functional connectivity and global efficiency after iTBS suggest that iTBS has the potential to normalize brain network functioning following stroke, which can be utilized in stroke rehabilitation.

6.
FEBS Lett ; 587(18): 3076-82, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23942253

RESUMO

Triacylglycerol (TAG) accumulation is essential for seed maturation in plants. Diacylglycerol acyltransferase 1 (DGAT1) is the rate-limiting enzyme in TAG biosynthesis. In this study, we show that TAG accumulation in Arabidopsis seedlings is correlated with environmental stress, and both ABI4 and ABI5 play important roles in regulating DGAT1 expression. Tobacco transient assays revealed the synergistic effect of ABI4 with ABI5 in regulating DGAT1 expression. Taken together, our findings indicate ABI5 is an important accessory factor with ABI4 in the activation of DGAT1 in Arabidopsis seedlings under stress.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Diacilglicerol O-Aciltransferase/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plântula/genética , Fatores de Transcrição/genética , Ácido Abscísico/farmacologia , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Genes Reporter , Germinação/efeitos dos fármacos , Luciferases , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Estresse Fisiológico , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/metabolismo , Triglicerídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA