RESUMO
Initiation is the rate-limiting step in translation, and its dysregulation is vital for carcinogenesis, including hematopoietic malignancy. Thus, discovery of novel translation initiation regulators may provide promising therapeutic targets. Here, combining Ribo-seq, mass spectrometry, and RNA-seq datasets, we discovered an oncomicropeptide, APPLE (a peptide located in ER), encoded by a non-coding RNA transcript in acute myeloid leukemia (AML). APPLE is overexpressed in various subtypes of AML and confers a poor prognosis. The micropeptide is enriched in ribosomes and regulates the initiation step to enhance translation and to maintain high rates of oncoprotein synthesis. Mechanically, APPLE promotes PABPC1-eIF4G interaction and facilitates mRNA circularization and eIF4F initiation complex assembly to support a specific pro-cancer translation program. Targeting APPLE exhibited broad anti-cancer effects in vitro and in vivo. This study not only reports a previously unknown function of micropeptides but also provides new opportunities for targeting the translation machinery in cancer cells.
Assuntos
Fator de Iniciação 4F em Eucariotos/química , Fator de Iniciação Eucariótico 4G/metabolismo , Neoplasias Hematológicas/metabolismo , Peptídeos/química , Biossíntese de Proteínas , Animais , Progressão da Doença , Genoma Humano , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fases de Leitura Aberta , Polirribossomos/química , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/genética , Ribossomos/metabolismo , Sensibilidade e Especificidade , Resultado do TratamentoRESUMO
Polygenic risk score (PRS) has demonstrated its great utility in biomedical research through identifying high-risk individuals for different diseases from their genotypes. However, the broader application of PRS to the general population is hindered by the limited transferability of PRS developed in Europeans to non-European populations. To improve PRS prediction accuracy in non-European populations, we develop a statistical method called SDPRX that can effectively integrate genome wide association study summary statistics from different populations. SDPRX automatically adjusts for linkage disequilibrium differences between populations and characterizes the joint distribution of the effect sizes of a variant in two populations to be both null, population specific, or shared with correlation. Through simulations and applications to real traits, we show that SDPRX improves the prediction performance over existing methods in non-European populations.
Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Humanos , Herança Multifatorial/genética , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , Fatores de Risco , GenótipoRESUMO
ABSTRACT: An early event in the genesis of follicular lymphoma (FL) is the acquisition of new glycosylation motifs in the B-cell receptor (BCR) due to gene rearrangement and/or somatic hypermutation. These N-linked glycosylation motifs (N-motifs) contain mannose-terminated glycans and can interact with lectins in the tumor microenvironment, activating the tumor BCR pathway. N-motifs are stable during FL evolution, suggesting that FL tumor cells are dependent on them for their survival. Here, we investigated the dynamics and potential impact of N-motif prevalence in FL at the single-cell level across distinct tumor sites and over time in 17 patients. Although most patients had acquired at least 1 N-motif as an early event, we also found (1) cases without N-motifs in the heavy or light chains at any tumor site or time point and (2) cases with discordant N-motif patterns across different tumor sites. Inferring phylogenetic trees of the patients with discordant patterns, we observed that both N-motif-positive and N-motif-negative tumor subclones could be selected and expanded during tumor evolution. Comparing N-motif-positive with N-motif-negative tumor cells within a patient revealed higher expression of genes involved in the BCR pathway and inflammatory response, whereas tumor cells without N-motifs had higher activity of pathways involved in energy metabolism. In conclusion, although acquired N-motifs likely support FL pathogenesis through antigen-independent BCR signaling in most patients with FL, N-motif-negative tumor cells can also be selected and expanded and may depend more heavily on altered metabolism for competitive survival.
Assuntos
Linfoma Folicular , Humanos , Linfoma Folicular/patologia , Glicosilação , Filogenia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Lectinas , Microambiente TumoralRESUMO
N6 -Methyladenosine (m6 A) is an important RNA modification catalyzed by methyltransferase-like 3 (METTL3) and METTL14. m6 A homeostasis mediated by the methyltransferase (MTase) complex plays key roles in various biological processes. However, the mechanism underlying METTL14 protein stability and its role in m6 A homeostasis remain elusive. Here, we show that METTL14 stability is regulated by the competitive interaction of METTL3 with the E3 ligase STUB1. STUB1 directly interacts with METTL14 to mediate its ubiquitination at lysine residues K148, K156, and K162 for subsequent degradation, resulting in a significant decrease in total m6 A levels. The amino acid regions 450-454 and 464-480 of METTL3 are essential to promote METTL14 stabilization. Changes in STUB1 expression affect METTL14 protein levels, m6 A modification and tumorigenesis. Collectively, our findings uncover an ubiquitination mechanism controlling METTL14 protein levels to fine-tune m6 A homeostasis. Finally, we present evidence that modulating STUB1 expression to degrade METTL14 could represent a promising therapeutic strategy against cancer.
Assuntos
Adenosina , Metiltransferases , Adenosina/metabolismo , Metiltransferases/genética , HomeostaseRESUMO
Various infections trigger a storm of proinflammatory cytokines in which IL-6 acts as a major contributor and leads to diffuse alveolar damage in patients. However, the metabolic regulatory mechanisms of IL-6 in lung injury remain unclear. Polyriboinosinic-polyribocytidylic acid [poly(I:C)] activates pattern recognition receptors involved in viral sensing and is widely used in alternative animal models of RNA virus-infected lung injury. In this study, intratracheal instillation of poly(I:C) with or without an IL-6-neutralizing antibody model was combined with metabonomics, transcriptomics, and so forth to explore the underlying molecular mechanisms of IL-6-exacerbated lung injury. We found that poly(I:C) increased the IL-6 concentration, and the upregulated IL-6 further induced lung ferroptosis, especially in alveolar epithelial type II cells. Meanwhile, lung regeneration was impaired. Mechanistically, metabolomic analysis showed that poly(I:C) significantly decreased glycolytic metabolites and increased bile acid intermediate metabolites that inhibited the bile acid nuclear receptor farnesoid X receptor (FXR), which could be reversed by IL-6-neutralizing antibody. In the ferroptosis microenvironment, IL-6 receptor monoclonal antibody tocilizumab increased FXR expression and subsequently increased the Yes-associated protein (YAP) concentration by enhancing PKM2 in A549 cells. FXR agonist GW4064 and liquiritin, a potential natural herbal ingredient as an FXR regulator, significantly attenuated lung tissue inflammation and ferroptosis while promoting pulmonary regeneration. Together, the findings of the present study provide the evidence that IL-6 promotes ferroptosis and impairs regeneration of alveolar epithelial type II cells during poly(I:C)-induced murine lung injury by regulating the FXR-PKM2-YAP axis. Targeting FXR represents a promising therapeutic strategy for IL-6-associated inflammatory lung injury.
Assuntos
Ferroptose , Interleucina-6 , Pulmão , Poli I-C , Receptores Citoplasmáticos e Nucleares , Ferroptose/efeitos dos fármacos , Animais , Poli I-C/farmacologia , Interleucina-6/metabolismo , Camundongos , Receptores Citoplasmáticos e Nucleares/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/tratamento farmacológico , Humanos , Transdução de Sinais/efeitos dos fármacosRESUMO
Inteins are unique single-turnover enzymes that can excise themselves from the precursor protein without the aid of any external cofactors or energy. In most cases, inteins are covalently linked with the extein sequences and protein splicing happens spontaneously. In this study, a novel protein ligation system was developed based on two atypical split inteins without cross reaction, in which the large segments of one S1 and one S11 split intein fusion protein acted as a protein ligase, the small segments (only several amino acids long) was fused to the N-extein and C-extein, respectively. The splicing activity was demonstrated in E. coli and in vitro with different extein sequences, which showed â¼15% splicing efficiency in vitro. The protein trans-splicing in vitro was further optimized, and possible reaction explanations were explored. As a proof of concept, we expect this approach to expand the scope of trans-splicing-based protein engineering and provide new clues for intein based protein ligase.
Assuntos
Escherichia coli , Inteínas , Processamento de Proteína , Inteínas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Ligases/metabolismo , Ligases/genética , Ligases/química , Exteínas/genéticaRESUMO
Polarization photodetection taking advantage of the anisotropy of 2D materials shines brilliantly in optoelectronic fields owing to differentiating optical information. However, the previously reported polarization detections are mostly dependent on external power sources, which is not conducive to device integration and energy conservation. Herein, a 2D polar perovskite (CBA)2CsPb2Br7 (CCPB, CBA = 4-chlorobenzyllamine) has been successfully synthesized, which shows anticipated bulk photovoltaic effect (BPVE) with an open-circuited photovoltage up to ≈0.2 V. Devices based on CCPB monomorph fulfill a fascinating self-powered polarized photodetection with a large polarization ratio of 2.7 at room temperature. Moreover, CCPB features a high phase-transition temperature (≈475 K) which prompts such self-powered polarized photodetection in a large temperature window of device operation, since BPVE generated by spontaneous polarization can only exist in the polar structure prior to the phase transition. Further computational investigation reveals the introduction of CBA+ with a large dipole moment contributes to quite large polarization (17.5 µC cm-2) and further super high phase transition temperature of CCPB. This study will promote the application of 2D perovskite materials for self-powered polarized photodetection in high-temperature conditions.
RESUMO
The development of two-dimensional (2D) layered metal-organic frameworks (MOFs) through precise molecular-level design and synthesis has emerged as a prominent research endeavor. However, the utilization of MOFs in their pristine form as electrodes for supercapacitors poses a significant challenge due to their limited tolerance in alkaline environments. To address these issues, we have developed Co- and Cu-based pillar-layered MOFs by regulating the structure of their inner layers through introducing an alkaline N-containing "pillar" to enhance the performance of alkaline supercapacitor electrodes. From the microstructure study and theoretical calculation, the high-density redox centers and efficient chemical bonding modes of Co-MOF determine a unique electron conduction pathway, resulting in excellent energy storage performance. This study underscores the significance of chemical bonding modes and active-site distribution in enhancing the energy storage capabilities of pillar-layered MOFs in alkaline environments, presenting a promising approach for the development of high-performance MOF-based materials for supercapacitor applications.
RESUMO
INTRODUCTION: Intraductal papillary mucinous neoplasm (IPMN) is an important precursor lesion of pancreatic cancer. Systemic inflammatory parameters are widely used in the prognosis prediction of cancer; however, their prognostic implications in IPMN with associated invasive carcinoma (IPMN-INV) are unclear. This study aims to explore the prognostic value of systemic inflammatory parameters in patients with IPMN-INV. METHODS: From 2015 to 2021, patients with pathologically confirmed IPMN who underwent surgical resection at Peking Union Medical College Hospital were enrolled. The clinical, radiological, and pathological data of the enrolled patients were collected and analyzed. Preoperative systemic inflammatory parameters were calculated as previously reported. RESULTS: Eighty-six patients with IPMN-INV met the inclusion criteria. The lymphocyte-to-monocyte ratio (LMR) was the only systemic inflammatory parameter independently associated with the cancer-specific survival (CSS). An LMR higher than 3.5 was significantly associated with a favorable CSS in univariate (hazard ratio [HR] 0.305, p = 0.003) and multivariate analyses (HR 0.221, p = 0.001). Other independently prognostic factors included the presence of clinical symptoms, cyst size, N stage, and tumor differentiation. Additionally, a model including LMR was established for the prognosis prediction of IPMN-INV and had a C-index of 0.809. CONCLUSIONS: Preoperative LMR could serve as a feasible prognostic biomarker for IPMN-INV. A decreased LMR (cutoff value of 3.5) was an independent predictor of poor survival for IPMN-INV.
Assuntos
Linfócitos , Monócitos , Neoplasias Pancreáticas , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Prognóstico , Estudos Retrospectivos , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/cirurgia , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/patologia , Neoplasias Intraductais Pancreáticas/mortalidade , Neoplasias Intraductais Pancreáticas/cirurgia , Neoplasias Intraductais Pancreáticas/patologia , Neoplasias Intraductais Pancreáticas/sangue , Invasividade Neoplásica , Taxa de Sobrevida , Hospitais com Alto Volume de Atendimentos , Adenocarcinoma Mucinoso/mortalidade , Adenocarcinoma Mucinoso/cirurgia , Adenocarcinoma Mucinoso/sangue , Adenocarcinoma Mucinoso/patologia , Contagem de Linfócitos , Contagem de LeucócitosRESUMO
Morphological control of all-polymer blends is quintessential yet challenging in fabricating high-performance organic solar cells. Recently, solid additives (SAs) have been approved to be capable in tuning the morphology of polymer: small-molecule blends improving the performance and stability of devices. Herein, three perhalogenated thiophenes, which are 3,4-dibromo-2,5-diiodothiophene (SA-T1), 2,5-dibromo-3,4-diiodothiophene (SA-T2), and 2,3-dibromo-4,5-diiodothiophene (SA-T3), were adopted as SAs to optimize the performance of all-polymer organic solar cells (APSCs). For the blend of PM6 and PY-IT, benefitting from the intermolecular interactions between perhalogenated thiophenes and polymers, the molecular packing properties could be finely regulated after introducing these SAs. In situ UV/Vis measurement revealed that these SAs could assist morphological character evolution in the all-polymer blend, leading to their optimal morphologies. Compared to the as-cast device of PM6 : PY-IT, all SA-treated binary devices displayed enhanced power conversion efficiencies of 17.4-18.3 % with obviously elevated short-circuit current densities and fill factors. To our knowledge, the PCE of 18.3 % for SA-T1-treated binary ranks the highest among all binary APSCs to date. Meanwhile, the universality of SA-T1 in other all-polymer blends is demonstrated with unanimously improved device performance. This work provide a new pathway in realizing high-performance APSCs.
RESUMO
Disordered polymer chain entanglements within all-polymer blends limit the formation of optimal donor-acceptor phase separation. Therefore, developing effective methods to regulate morphology evolution is crucial for achieving optimal morphological features in all-polymer organic solar cells (APSCs). In this study, two isomers, 4,5-difluorobenzo-c-1,2,5-thiadiazole (SF-1) and 5,6-difluorobenzo-c-1,2,5-thiadiazole (SF-2), were designed as solid additives based on the widely-used electron-deficient benzothiadiazole unit in nonfullerene acceptors. The incorporation of SF-1 or SF-2 into PM6 : PY-DT blend induces stronger molecular packing via molecular interaction, leading to the formation of continuous interpenetrated networks with suitable phase-separation and vertical distribution. Furthermore, after treatment with SF-1 and SF-2, the exciton diffusion lengths for PY-DT films are extended to over 40â nm, favoring exciton diffusion and charge transport. The asymmetrical SF-2, characterized by an enhanced dipole moment, increases the power conversion efficiency (PCE) of PM6 : PY-DT-based device to 18.83 % due to stronger electrostatic interactions. Moreover, a ternary device strategy boosts the PCE of SF-2-treated APSC to over 19 %. This work not only demonstrates one of the best performances of APSCs but also offers an effective approach to manipulate the morphology of all-polymer blends using rational-designed solid additives.
RESUMO
Oligomeric acceptors (OAs) have attracted considerable attention in the organic photovoltaics (OPV) field owing to their capacity in balancing the merits from both monomeric and polymeric acceptors. A delicate control over the distortion between blocks of OAs usually determines the performance and stability of relevant OPV devices. However, it imposes great complexity to realize a controllable degree of distortion by tuning the skeleton of blocks and the position of linker between blocks. Herein, we developed a facile strategy to rationally control the geometry distortion of OAs via a straightforward substitution of alkoxy side-chains on their blocks. This helps elucidate the integrated influences of molecular distortion and non-bonded contacts on the selective interactions between OA molecules and between OA and host acceptor in ternary blend. We demonstrate the alkoxy-OA molecules having stronger self-interactions would mitigate their interactions with host acceptor, therefore alleviating the kinetic diffusion and excessive aggregation of total acceptors. Combining with a composite-interlayer strategy by introducing a phenyl-substituted self-assembled monolayer to enhance the doping with polyoxometalate, an impressive efficiency of 20.1% is achieved accompanied by a negligible burn-in loss against physical aging. This study demonstrates the validation of tuning of selective interactions towards high-performance and burn-in-free OPV.
RESUMO
Yang-Lee edge singularities (YLES) are the edges of the partition function zeros of an interacting spin model in the space of complex control parameters. They play an important role in understanding non-Hermitian phase transitions in many-body physics, as well as characterizing the corresponding nonunitary criticality. Even though such partition function zeroes have been measured in dynamical experiments where time acts as the imaginary control field, experimentally demonstrating such YLES criticality with a physical imaginary field has remained elusive due to the difficulty of physically realizing non-Hermitian many-body models. We provide a protocol for observing the YLES by detecting kinked dynamical magnetization responses due to broken PT symmetry, thus enabling the physical probing of nonunitary phase transitions in nonequilibrium settings. In particular, scaling analyses based on our nonunitary time evolution circuit with matrix product states accurately recover the exponents uniquely associated with the corresponding nonunitary CFT. We provide an explicit proposal for observing YLES criticality in Floquet quenched Rydberg atomic arrays with laser-induced loss, which paves the way towards a universal platform for simulating non-Hermitian many-body dynamical phenomena.
RESUMO
To exploit the potential of our newly developed three-dimensional (3D) dimerized acceptors, a series of chlorinated 3D acceptors (namely CH8-3/4/5) were reported by precisely tuning the position of chlorine (Cl) atom. The introduction of Cl atom in central unit affects the molecular conformation. Whereas, by replacing fluorinated terminal groups (CH8-3) with chlorinated terminal groups (CH8-4 and CH8-5), the red-shift absorption and enhanced crystallization are achieved. Benefiting from these, all devices received promising power conversion efficiencies (PCEs) over 16 % as well as decent thermal/photo-stabilities. Among them, PM6:CH8-4 based device yielded a best PCE of 17.58 %. Besides, the 3D merits with multi alkyl chains enable their versatile processability during the device preparation. Impressive PCEs of 17.27 % and 16.23 % could be achieved for non-halogen solvent processable devices prepared in glovebox and ambient, respectively. 2.88â cm2 modules also obtained PCEs over 13 % via spin-coating and blade-coating methods, respectively. These results are among the best performance of dimerized acceptors. The decent performance of CH8-4 on small-area devices, modules and non-halogen solvent-processed devices highlights the versatile processing capability of our 3D acceptors, as well as their potential applications in the future.
RESUMO
The brain functional connectome, the collection of interconnected neural circuits along functional networks, facilitates a cutting-edge understanding of brain functioning, and has a potential to play a mediating role within the effect pathway between an exposure and an outcome. While existing mediation analytic approaches are capable of providing insight into complex processes, they mainly focus on a univariate mediator or mediator vector, without considering network-variate mediators. To fill the methodological gap and accomplish this exciting and urgent application, in the article, we propose an integrative mediation analysis under a Bayesian paradigm with networks entailing the mediation effect. To parameterize the network measurements, we introduce individually specified stochastic block models with unknown block allocation, and naturally bridge effect elements through the latent network mediators induced by the connectivity weights across network modules. To enable the identification of truly active mediating components, we simultaneously impose a feature selection across network mediators. We show the superiority of our model in estimating different effect components and selecting active mediating network structures. As a practical illustration of this approach's application to network neuroscience, we characterize the relationship between a therapeutic intervention and opioid abstinence as mediated by brain functional sub-networks.
Assuntos
Conectoma , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Análise de Mediação , Rede NervosaRESUMO
Artificial visual systems with image sensing and storage functions have considerable potential in the field of artificial intelligence. Light-stimulated synaptic devices can be applied for neuromorphic computing to build artificial visual systems. Here, optoelectronic synaptic transistors based on 5,15-(2-hydroxyphenyl)-10,20-(4-nitrophenyl)porphyrin (TPP) and dinaphtho[2,3-b:2',3'-f ]thieno[3,2-b]thiophene (DNTT) are demonstrated. By utilizing stable TPP with high light absorption, the number of photogenerated carriers in the transport layer can be increased significantly. The devices exhibit high photosensitivity and tunable synaptic plasticity. The synaptic weight can be effectively modulated by the intensity, width, and wavelength of the light signals. Due to the high light absorption of TPP, an ultrasensitive artificial visual array based on these devices is developed, which can detect weak light signals as low as 1 µW cm-2 . Low-voltage operation is further demonstrated. Even with applied voltages as low as -70 µV, the devices can still show obvious responses, leading to an ultralow energy consumption of 1.4 fJ. The devices successfully demonstrate image sensing and storage functions, which can accurately identify visual information. In addition, the devices can preprocess information and achieve noise reduction. The excellent synaptic behavior of the TPP-based electronics suggests their good potential in the development of new intelligent visual systems.
RESUMO
Artificial synaptic devices have potential for overcoming the bottleneck of von Neumann architecture and building artificial brain-like computers. Up to now, developing synaptic devices by utilizing biocompatible and biodegradable materials in electronic devices has been an interesting research direction due to the requirements of sustainable development. Here, a degradable photonic synaptic device is reported by combining biomaterials chlorophyll-a and single-walled carbon nanotubes (SWCNTs). Several basic synaptic functions, including excitatory postsynaptic current (EPSC), paired pulse facilitation (PPF), transition from short-term memory (STM) to long-term memory (LTM), and learning and forgetting behaviors, are successfully emulated through the chlorophyll-a/SWCNTs synaptic device. Furthermore, decent synaptic behaviors can still be achieved at a low drain voltage of -0.0001 V, which results in quite low energy consumption of 17.5 fJ per pulse. Finally, the degradability of this chlorophyll-a/SWCNTs transistor array is demonstrated, indicating that the device can be environmentally friendly. This work provides a new guide to the development of next-generation green and degradable neuromorphic computing electronics.
Assuntos
Nanotubos de Carbono , Materiais Biocompatíveis , Eletrônica , Sinapses , Transistores EletrônicosRESUMO
Internal tandem duplication (ITD) mutations within FMS-like tyrosine kinase-3 (FLT3) occur in up to 30% of acute myeloid leukemia (AML) patients and confer a very poor prognosis. The oncogenic form of FLT3 is an important therapeutic target, and inhibitors specifically targeting FLT3 kinase can induce complete remission; however, relapse after remission has been observed due to acquired resistance with secondary mutations in FLT3, highlighting the need for new strategies to target FLT3-ITD mutations. Recent studies have reported that the aberrant formations of circular RNAs (circRNAs) are biological tumorigenesis-relevant mechanisms and potential therapeutic targets. Herein, we discovered a circRNA, circMYBL2, derived from the cell-cycle checkpoint gene MYBL2. circMYBL2 is more highly expressed in AML patients with FLT3-ITD mutations than in those without the FLT3-ITD mutation. We found that circMYBL2 knockdown specifically inhibits proliferation and promotes the differentiation of FLT3-ITD AML cells in vitro and in vivo. Interestingly, we found that circMYBL2 significantly influences the protein level of mutant FLT3 kinase, which contributes to the activation of FLT3-ITD-dependent signaling pathways. Mechanistically, circMYBL2 enhanced the translational efficiency of FLT3 kinase by increasing the binding of polypyrimidine tract-binding protein 1 (PTBP1) to FLT3 messenger RNA. Moreover, circMYBL2 knockdown impaired the cytoactivity of inhibitor-resistant FLT3-ITD+ cells, with a significant decrease in FLT3 kinase expression, followed by the inactivation of its downstream pathways. In summary, we are the first to reveal a circRNA that specifically influences FLT3-ITD AML and regulates FLT3 kinase levels through translational regulation, suggesting that circMYBL2 may be a potential therapeutic target for FLT3-ITD AML.
Assuntos
Proteínas de Ciclo Celular/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Leucemia Mieloide Aguda/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Circular/genética , Transativadores/genética , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Linhagem Celular Tumoral , Progressão da Doença , Xenoenxertos , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Biossíntese de Proteínas , Sequências de Repetição em TandemRESUMO
A subset of patients with metastatic melanoma have sustained remissions following treatment with immune checkpoint inhibitors. However, analyses of pretreatment tumor biopsies for markers predictive of response, including PD-1 ligand (PD-L1) expression and mutational burden, are insufficiently precise to guide treatment selection, and clinical radiographic evidence of response on therapy may be delayed, leading to some patients receiving potentially ineffective but toxic therapy. Here, we developed a molecular signature of melanoma circulating tumor cells (CTCs) to quantify early tumor response using blood-based monitoring. A quantitative 19-gene digital RNA signature (CTC score) applied to microfluidically enriched CTCs robustly distinguishes melanoma cells, within a background of blood cells in reconstituted and in patient-derived (n = 42) blood specimens. In a prospective cohort of 49 patients treated with immune checkpoint inhibitors, a decrease in CTC score within 7 weeks of therapy correlates with marked improvement in progression-free survival [hazard ratio (HR), 0.17; P = 0.008] and overall survival (HR, 0.12; P = 0.04). Thus, digital quantitation of melanoma CTC-derived transcripts enables serial noninvasive monitoring of tumor burden, supporting the rational application of immune checkpoint inhibition therapies.
Assuntos
Antineoplásicos Imunológicos , Biomarcadores Tumorais/sangue , Melanoma , Células Neoplásicas Circulantes , Neoplasias Cutâneas , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/química , Terapia Baseada em Transplante de Células e Tecidos , Feminino , Humanos , Estimativa de Kaplan-Meier , Biópsia Líquida , Masculino , Melanoma/sangue , Melanoma/diagnóstico , Melanoma/tratamento farmacológico , Melanoma/mortalidade , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/química , Células Neoplásicas Circulantes/efeitos dos fármacos , RNA/análise , RNA/genética , RNA/metabolismo , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/mortalidadeRESUMO
Life monitoring technology as the basis of health evaluation, in recent years, its related technology research also has new development, in which cardiopulmonary parameters are the core physiological indicators to measure the basic state of vital signs, the analysis of its monitoring technology is particularly important. In this study, the main means of life monitoring are analyzed, and the monitoring technology of cardiopulmonary parameters is the main focus. What is more, the research status and development of contact and non-contact cardiopulmonary monitoring technology at home and abroad were also considered. Lastly, this study will be combined with the radar wave vital signs monitoring technology, which has been achieved good results in the field of cardiopulmonary monitoring, in order to provide a reference for the long-term development of life monitoring field and the technology integration of intelligent pension, intelligent automobile and other related industries.