Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 30(4): 619-631, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38737324

RESUMO

Bletilla striata (Thunb.) Rchb.f., a medicinal plant in the Orchidaceae family, is mainly found in East Asia and has extensive pharmacological activities. Plant's volatile components are important active ingredients with a wide range of physiological activities, and B. striata has a special odor and unique volatile components. Yet it has received little attention, hindering a full understanding of its phytochemical components. Employing the ultrasonic-assisted extraction method, the volatile components of B. striata's fibrous root, bud, aerial part and tuber were extracted, resulting in yields of 0.06%, 0.64%, 3.38% and 4.47%, respectively. A total of 78 compounds were identified from their chemical profiles using gas chromatography-mass spectrometry (GC-MS), including 45 components with the main compounds of linoleic acid (content accounting for 31.23%), n-hexadecanoic acid (13.53%), and octadecanoic acid (9.5%) from the tuber, 34 components with the main compounds of eicosane, 2-methyl- (28.42%), linoelaidic acid (10.43%), linoleic acid (4.53%), and n-hexadecanoic acid (6.91%) from the fibrous root, 38 components with the main compounds of pentadeca-6,9-dien-1-ol (9.29%), n-hexadecanoic acid (11%), eicosane,2-methyl- (23.43%), and linoleic acid (23.53%) from the bud, and 27 components with the main compounds of linoelaidic acid (5.97%), n-hexadecanoic acid (15.99%), and linolenic acid ethyl ester (18.9%) from the aerial part. Additionally, the growth inhibition activity against colon cancer HCT116 cells was evaluated using sulforhodamine B (SRB) assay and the thiazolyl blue tetrazolium bromide (MTT) assay, and the accumulation of reactive oxygen species (ROS) was determined using dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining and fluorescence intensity analysis. The volatile extracts exhibited significant growth inhibitory efficacy against HCT116 cells, with half-maximal inhibitory concentration (IC50) values of 3.65, 2.32, 2.42 and 3.89 mg/mL in the SRB assay, and 3.55, 2.58, 3.12 and 4.80 mg/mL in the MTT assay for the root, bud, aerial part, and tuber, respectively. Notably, treatment with the aerial part extract caused morphological changes in the cells and significantly raised the intracellular ROS level. In summary, the chemical profiles of the volatile components of B. striata were revealed for the first time, demonstrating a certain tissue specificity. Additionally, it demonstrated for the first time that these volatile extracts possess potent anti-colon cancer activity, highlighting the importance of these volatile components in B. striata's medicinal properties.

2.
Front Chem ; 11: 1233443, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547906

RESUMO

A series of 1,4-benzoxazin-3-one derivatives containing an acylhydrazone moiety were designed, synthesized and evaluated for their in vitro antifungal activities against Gibberella zeae, Pellicularia sasakii, Phytophthora infestans, Capsicum wilt, and Phytophthora capsica. The structures of target compounds were characterized by 1H NMR, 13H NMR, 19F NMR and HRMS. The preliminary antifungal evaluation of all target compounds showed that some target compounds possessed moderate to good activities against G. zeae, P. sasakii, P. infestans and C. wilt. Among them, compounds 5L and 5o exhibited noticeable inhibition effects against G. zeae with the EC50 values (effective concentration for 50% activity) of 20.06 and 23.17 µg/ml, respectively, which were even nearly double effective than that of hymexazol (40.51 µg/ml). Meanwhile, compound 5q displayed a notable inhibitory effect toward P. sasakii, with the EC50 value of 26.66 µg/ml, which was better than that of hymexazol (32.77 µg/ml). In addition, compound 5r yielded the EC50 value of 15.37 µg/ml against P. infestans, which was less than those of hymexazol (18.35 µg/ml) and carbendazim (34.41 µg/ml). Eventually, compound 5p showed higher inhibitory effect against C. wilt, with EC50 value of 26.76 µg/ml, which was better than that of hymexazol (>50 µg/ml).

3.
J Phys Chem B ; 126(29): 5443-5457, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35834372

RESUMO

The interaction of low-energy electrons (LEEs) with DNA plays a significant role in the mechanisms leading to biological damage induced by ionizing radiation, particularly in radiotherapy, and its sensitization by chemotherapeutic drugs and nanoparticles. Plasmids constitute the form of DNA found in mitochondria and appear as a suitable model of genomic DNA. In a search for the best LEE targets, damage was induced to plasmids, in thin films in vacuum, by 6, 10, and 100 eV electrons under single collision conditions. The yields of single- and double-strand breaks, other cluster damage, isolated base lesions, and crosslinks were measured by electrophoresis and enzyme treatment. The films were deposited on oriented graphite or polycrystalline tantalum, with or without DNA autoassembly via diaminopropane (Dap) intercalation. Yields were correlated with the influence of vacuum, film uniformity, surface density, substrates, and the DNA environment. Aided by surface potential measurements and scanning electron microscopy and atomic force microscopy images, the lyophilized Dap-DNA films were found to be the most practical high-quality targets. These studies pave the way to the fabrication of LEE target-films composed of plasmids intercalated with biomolecules that could mimic the cellular environment; for example, as a first step, by replacing Dap with an amino acid.


Assuntos
DNA , Elétrons , DNA/química , Dano ao DNA , Microscopia de Força Atômica , Plasmídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA