Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Cell Biochem ; 123(2): 275-288, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668232

RESUMO

Systemic and intracellular metabolic states are critical factors affecting immune cell functions. The metabolic regulator AMP-activated protein kinase (AMPK) senses AMP levels and mediates cellular responses to energy-restrained conditions. The ubiquitously expressed AMPK participates in various biological functions in numerous cell types, including innate immune cell macrophages and osteoclasts, which are their specialized derivatives in bone tissues. Previous studies have demonstrated that the activation of AMPK promotes macrophage polarization toward anti-inflammatory M2 status. Additionally, AMPK acts as a negative regulator of osteoclastogenesis, and upregulation of AMPK disrupts the differentiation of osteoclasts. However, the regulation and roles of AMPK in differentiated osteoclasts have not been characterized. Here, we report that inflammatory stimuli-regulated-AMPK activation of differentiated and undifferentiated osteoclasts in opposite ways. Lipopolysaccharide (LPS) inhibited the phosphorylation of AMPK in macrophages and undifferentiated osteoclasts, but it activated AMPK in differentiated osteoclasts. Inactivating AMPK decreased cellular responses against the activation of toll-like receptor signaling, including the transcriptional activation of proinflammatory cytokines and the bone resorption genes TRAP, and MMP9. The elevation of bone resorption by LPS stimulation was disrupted by AMPK inhibitor, indicating the pivotal roles of AMPK in inflammation-induced activities in differentiated osteoclasts. The AMPK activator metformin did not increase proinflammatory responses, possibly because other factors are also required for this regulation. Notably, changing the activation status of AMPK did not alter the expression levels of bone resorption genes in unstimulated osteoclasts, indicating the essential roles of AMPK in cellular responses to inflammatory stimuli but not in the maintenance of basal levels. Unlike its M2-polarizing roles in macrophages, AMPK was not responsive to the M2 stimulus of interleukin-4. Our observations revealed differences in the cellular properties of macrophages and osteoclasts as well as the complexity of regulatory mechanisms for osteoclast functions.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Reabsorção Óssea , Diferenciação Celular/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Osteoclastos/enzimologia , Animais , Reabsorção Óssea/induzido quimicamente , Reabsorção Óssea/enzimologia , Inflamação/induzido quimicamente , Inflamação/enzimologia , Camundongos , Células RAW 264.7
2.
Mol Biol Rep ; 49(5): 3927-3937, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35218446

RESUMO

BACKGROUND: Clinical data and phenotypes of several in vivo models demonstrated that interleukin-6 (IL-6) is an essential positive regulator in inflammation-induced bone loss. However, how IL-6 affect bone resorption and the osteoclast differentiation remains in debate. In this study we elucidate the cellular responses of receptor activator of nuclear factor kappa-Β ligand (RANKL)-stimulated RAW254.7 macrophage, the process mimicking osteoclast differentiation, upon IL-6 co-stimulation. IL-6 is a pleiotropic cytokine triggering various cellular responses, ranging from pro-inflammatory responses, differentiation to proliferation or apoptosis in different cell types. Those cellular events in the RANKL-stimulated RAW cells were examined to understand how differentiating monocytic cells respond to IL-6 exposure. MATERIALS AND METHODS: Proliferation, apoptosis, differentiation and Pro-inflammatory responses of RANKL-stimulated RAW254.7 macrophage treated with or without IL-6 were measured by MTT assay, quantitative PCR assay of the expression of apoptotic genes, osteoclast differentiation markers, and pro-inflammatory genes, respectively. The results were collected from different time points in a 6-day differentiation period. Also, western blot on STAT3, ERK and AKT were also performed to investigate the IL-6 signaling in those cells. CONCLUSIONS: IL-6 triggered transient proliferation, but not apoptosis, in RANKL-stimulated RAW cells. Osteoclastogenesis was disrupted as the expression of essential genes for bone resorption were inhibited, and the osteoclast precursors maintained their undifferentiated phenotypes, with pro-inflammatory genes upregulated. Our results suggested that IL-6 interferes osteoclastogenesis. Additionally, IL-6 promote pro-inflammatory responses of monocytic cells and aggravate inflammation.


Assuntos
Reabsorção Óssea , Interleucina-6 , Osteoclastos , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular , Proliferação de Células , Humanos , Inflamação , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese , Ligante RANK/metabolismo , Ligante RANK/farmacologia
3.
Mol Biol Rep ; 49(12): 12007-12015, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36273336

RESUMO

BACKGROUND: Interferon-gamma (IFN-γ) is an immune-derived cytokines in the innate and adaptive immune responses, and functions as a major pro-inflammatory cytokine. IFNγ has previously been reported involving in the regulation of bone metabolism. However, contradictory results about the roles of IFN-γ in bone formation or bone resorption have been reported. It is possible that the functions of IFN-γ in bone formation is dose-dependent or time-dependent. In this study we examined the effect of IFN-γ on different stages of osteoblastogenesis and bone formation. MATERIALS AND METHODS: Cell proliferation, gene expression and protein levels of the critical effectors involving in different stages of differentiation were compared between differentiating preosteoblast MC3T3-E1 treated with or without IFN-γ at different stages. Cell proliferation were determined by MTT assay. Expression levels of osteoblast differentiation markers was performed by quantitative PCR assay. Also, western blot was conducted to investigate the protein levels in those effectors. CONCLUSION: IFN-γ regulates osteoblast and bone formation in a stage-dependent manner. IFN-γ did not alter and the expression of critical osteogenic transcription factors, such as Runx2 and Cbfb, suggesting that the differentiation was not disrupted by IFN-γ. The cell number and the levels of matrix proteins, including COL1A and BSP, at both early and late stage of osteoblastogenesis were downregulated by IFN-γ, indicating its negative regulating roles in early stages. In contrast, the mineralization protein ALP and OCN was upregulated at late stages. The results suggested that IFN-γ might act as a negative regulator in osteoblast differentiation and bone formation at early stages but switch into positive regulator at late stage. Our data revealed the complex features of the effects of IFN-γ on osteoblast differentiation. The detailed mechanisms of how IFN-γ influence on the bone formation and balance of bone remodeling will be further studied.


Assuntos
Reabsorção Óssea , Osteogênese , Humanos , Interferon gama/farmacologia , Interferon gama/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos , Reabsorção Óssea/metabolismo , Remodelação Óssea , Diferenciação Celular
4.
Chin J Physiol ; 63(6): 286-293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33380613

RESUMO

Glucocorticoid (GC)-induced bone loss is the most prevalent form of secondary osteoporosis. Previous studies demonstrated that long-term incubation of dexamethasone (DEX) induced oxidative stress and mitochondrial dysfunctions, consequently leading to apoptosis of differentiated osteoblasts. This DEX-induced cell death might be the main causes of bone loss. We previously described that DEX induced biphasic mitochondrial alternations. As GC affects mitochondrial physiology through several different possible routes, the short-term and long-term effects of GC treatment on mitochondria in the osteoblast have not been carefully characterized. Here, we examined the expression levels of genes that are associated with mitochondrial functions at several different time points after incubation with DEX. Mitochondrial biogenesis-mediated genes nuclear respiratory factor 1 (Nrf1) and Nrf2 were upregulated after 4-h incubation, and then declined after 24-h incubation, suggesting that mitochondrial biogenesis were transiently upregulated by DEX. In contrast, mitochondrial fusion gene optic atrophy 1 (Opa1) and mitofusin 2 (Mfn2) started to be elevated as the biogenesis started to decrease. Finally, the mitochondrial fission increased and apoptosis becomes prominent. Agree with the mitochondrial biphasic alterations hypothesis, the results suggested an early increase of mitochondrial activities and biogenesis upon DEX stimulation to the osteoblasts. The oxidative phosphorylation and inducible nitric oxide synthase levels increased results in oxidative stress accumulation, leading to mitochondrial fusion, and subsequently fission and triggering the apoptosis. Our results indicated that the primary effects of GC on mitochondria are promoting their functions and biogenesis. Mitochondrial breakdown and the activation of the apoptotic pathways appeared to be the secondary effect after long-term treatment.


Assuntos
Biogênese de Organelas , Osteoblastos , Apoptose , Dexametasona/metabolismo , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Mitocôndrias
5.
Chin J Physiol ; 62(2): 70-79, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31243177

RESUMO

Glucocorticoid-induced bone loss is the most common form of secondary osteoporosis. This toxic effect has not been efficiently managed, possibly due to the incomplete understanding of the extraordinarily diverse cellular responses induced by glucocorticoid treatment. Previous literatures revealed that high dose of exogenous glucocorticoid triggers apoptosis in osteocytes and osteoblasts. This cell death is associated with glucocorticoid-induced oxidative stress. In this study, we aimed to investigate the mechanisms of glucocorticoid-induced apoptosis in osteoblasts and examine the responses of osteoclasts to the synthetic glucocorticoid, dexamethasone. We demonstrated the biphasic effects of exogenous glucocorticoid on osteoblastic mitochondrial functions and elevated intracellular oxidative stress in a dose- and time-dependent manner. On comparison, similar treatment did not induce mitochondrial dysfunctions and oxidative stress in osteoclasts. The production of reactive oxygen/nitrogen species was decreased in osteoclasts. The differences are not due to varying efficiency of cellular antioxidant system. The opposite effects on nitrogen oxide synthase might provide an explanation, as the expression levels of nos2 gene are suppressed in the osteoclast but elevated in the osteoblast. We further revealed that glucocorticoids have a substantial impact on the osteoblastic mitochondria. Basal respiration rate and ATP production were increased upon 24 h incubation of glucocorticoids. The increase in proton leak and nonmitochondrial respiration suggests a potential source of glucocorticoid-induced oxidative stress. Long-term incubation of glucocorticoids accumulates these detrimental changes and results in cytochrome C release and mitochondrial breakdown, consequently leading to apoptosis in osteoblasts. The mitochondrial alterations might be other sources of glucocorticoid-induced oxidative stress in osteoblasts.


Assuntos
Osteoclastos , Estresse Oxidativo , Apoptose , Glucocorticoides , Osteoblastos , Osteócitos
6.
Prenat Diagn ; 34(5): 487-95, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24464940

RESUMO

OBJECTIVES: Amniotic fluid stem cells (AFSCs) are derived from the amniotic fluid of the developing fetus and can give rise to diverse differentiated cells of ectoderm, mesoderm, and endoderm lineages. Intrauterine transplantation is an approach used to cure inherited genetic fetal defects during the gestation period of pregnant dams. Certain disease such as osteogenesis imperfecta was successfully treated in affected fetal mice using this method. However, the donor cell destiny remains uncertain. METHODS: The purpose of this study was to investigate the biodistribution and cell fate of Ds-red-harboring porcine AFSCs (Ds-red pAFSCs) after intrauterine transplantation into enhanced green fluorescent protein-harboring fetuses of pregnant mice. Pregnant mice (12.5 days) underwent open laparotomy with intrauterine pAFSC transplantation (5 × 10(4) cells per pup) into fetal peritoneal cavity. RESULTS: Three weeks after birth, the mice were sacrificed. Several samples from different organs were obtained for histological examination and flow cytometric analysis. Ds-red pAFSCs migrated most frequently into the intestines. Furthermore, enhanced green fluorescent protein and red fluorescent protein signals were co-expressed in the intestine and liver cells via immunohistochemistry studies. CONCLUSION: In utero xenotransplantation of pAFSCs fused with recipient intestinal cells instead of differentiating or maintaining the undifferentiated status in the tissue.


Assuntos
Líquido Amniótico/citologia , Células-Tronco Fetais/citologia , Proteínas de Fluorescência Verde/genética , Mucosa Intestinal/citologia , Fígado/citologia , Transplante de Células-Tronco , Animais , Diferenciação Celular , Fusão Celular , Feminino , Proteínas de Fluorescência Verde/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Gravidez , Suínos , Transplante Heterólogo
7.
Polymers (Basel) ; 16(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38794581

RESUMO

Hydrogels, recognized for their flexibility and diverse characteristics, are extensively used in medical fields such as wearable sensors and soft robotics. However, many hydrogel sensors derived from biomaterials lack mechanical strength and fatigue resistance, emphasizing the necessity for enhanced formulations. In this work, we utilized acrylamide and polyacrylamide as the primary polymer network, incorporated chemically modified poly(ethylene glycol) (DF-PEG) as a physical crosslinker, and introduced varying amounts of methacrylated lysine (LysMA) to prepare a series of hydrogels. This formulation was labeled as poly(acrylamide)-DF-PEG-LysMA, abbreviated as pADLx, with x denoting the weight/volume percentage of LysMA. We observed that when the hydrogel contained 2.5% w/v LysMA (pADL2.5), compared to hydrogels without LysMA (pADL0), its stress increased by 642 ± 76%, strain increased by 1790 ± 95%, and toughness increased by 2037 ± 320%. Our speculation regarding the enhanced mechanical performance of the pADL2.5 hydrogel revolves around the synergistic effects arising from the co-polymerization of LysMA with acrylamide and the formation of multiple intermolecular hydrogen bonds within the network structures. Moreover, the acid, amine, and amide groups present in the LysMA molecules have proven to be instrumental contributors to the self-adhesion capability of the hydrogel. The validation of the pADL2.5 hydrogel's exceptional mechanical properties through rigorous tensile tests further underscores its suitability for use in strain sensors. The outstanding stretchability, adhesive strength, and fatigue resistance demonstrated by this hydrogel affirm its potential as a key component in the development of robust and reliable strain sensors that fulfill practical requirements.

8.
Biomedicines ; 12(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791052

RESUMO

Periodontal defects present a significant challenge in dentistry, necessitating innovative solutions for comprehensive regeneration. Traditional restoration methods have inherent limitations in achieving complete and functional periodontal tissue reconstruction. Tissue engineering, a multidisciplinary approach integrating cells, biomaterials, and bioactive factors, holds tremendous promise in addressing this challenge. Central to tissue engineering strategies are scaffolds, pivotal in supporting cell behavior and orchestrating tissue regeneration. Natural and synthetic materials have been extensively explored, each offering unique advantages in terms of biocompatibility and tunable properties. The integration of growth factors and stem cells further amplifies the regenerative potential, contributing to enhanced tissue healing and functional restoration. Despite significant progress, challenges persist. Achieving the seamless integration of regenerated tissues, establishing proper vascularization, and developing biomimetic scaffolds that faithfully replicate the natural periodontal environment are ongoing research endeavors. Collaborative efforts across diverse scientific disciplines are essential to overcoming these hurdles. This comprehensive review underscores the critical need for continued research and development in tissue engineering strategies for periodontal regeneration. By addressing current challenges and fostering interdisciplinary collaborations, we can unlock the full regenerative potential, paving the way for transformative advancements in periodontal care. This research not only enhances our understanding of periodontal tissues but also offers innovative approaches that can revolutionize dental therapies, improving patient outcomes and reshaping the future of periodontal treatments.

9.
J Allergy Clin Immunol Pract ; 12(3): 686-698.e8, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37778630

RESUMO

BACKGROUND: Clinical heterogeneity may exist within asthma subtypes defined by inflammatory markers. However, the heterogeneity of neutrophilic asthma (NA) remains largely unexplored. OBJECTIVE: To explore potential clusters and the stability of NA. METHODS: Participants with NA from the Australasian Severe Asthma Network underwent a multidimensional assessment. They were then asked to participate in a 12-month longitudinal cohort study. We explored potential clusters using a hierarchical cluster analysis and validated the differential future risk of asthma exacerbations in the identified clusters. A decision tree analysis was developed to predict cluster assignments. Finally, the stability of prespecified clusters was examined within 1 month. RESULTS: Three clusters were identified in 149 patients with NA. Cluster 1 (n = 99; 66.4%) was characterized by female-predominant nonsmokers with well-controlled NA, cluster 2 (n = 16; 10.7%) by individuals with comorbid anxiety/depressive symptoms with poorly controlled NA, and cluster 3 by older male smokers with late-onset NA. Cluster 2 had a greater proportion of participants with severe exacerbations (P = .005), hospitalization (P = .010), and unscheduled visits (P = .013) and a higher number of emergency room visits (P = .039) than that of the other two clusters. The decision tree assigned 92.6% of participants correctly. Most participants (87.5%; n = 7) in cluster 2 had a stable NA phenotype, whereas participants of clusters 1 and 3 had variable phenotypes. CONCLUSIONS: We identified three clinical clusters of NA, in which cluster 2 represents an uncontrolled and stable NA subtype with an elevated risk of exacerbations. These findings have clinical implications for the management of NA.


Assuntos
Asma , Humanos , Estudos Longitudinais , Asma/diagnóstico , Fenótipo , Comorbidade , Análise por Conglomerados
10.
BMC Complement Med Ther ; 23(1): 204, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340378

RESUMO

BACKGROUND: Acemannan is an acetylated polysaccharide of Aloe vera extract with antimicrobial, antitumor, antiviral, and antioxidant activities. This study aims to optimize the synthesis of acemannan from methacrylate powder using a simple method and characterize it for potential use as a wound-healing agent. METHODS: Acemannan was purified from methacrylated acemannan and characterized using high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR), and 1H-nuclear magnetic resonance (NMR). 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays were performed to investigate the antioxidant activity of acemannan and its effects on cell proliferation and oxidative stress damage, respectively. Further, a migration assay was conducted to determine the wound healing properties of acemannan. RESULTS: We successfully optimized the synthesis of acemannan from methacrylate powder using a simple method. Our results demonstrated that methacrylated acemannan was identified as a polysaccharide with an acetylation degree similar to that in A. vera, with the FTIR revealing peaks at 1739.94 cm-1 (C = O stretching vibration), 1370 cm-1 (deformation of the H-C-OH bonds), and 1370 cm-1 (C-O-C asymmetric stretching vibration); 1H NMR showed an acetylation degree of 1.202. The DPPH results showed the highest antioxidant activity of acemannan with a 45% radical clearance rate, compared to malvidin, CoQ10, and water. Moreover, 2000 µg/mL acemannan showed the most optimal concentration for inducing cell proliferation, while 5 µg/mL acemannan induced the highest cell migration after 3 h. In addition, MTT assay findings showed that after 24 h, acemannan treatment successfully recovered cell damage due to H2O2 pre-treatment. CONCLUSION: Our study provides a suitable technique for effective acemannan production and presents acemannan as a potential agent for use in accelerating wound healing through its antioxidant properties, as well as cell proliferation- and migration-inducing activities.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Antioxidantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Pós/farmacologia , Polissacarídeos/farmacologia , Proliferação de Células
11.
J Allergy Clin Immunol Pract ; 11(3): 863-872.e8, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36535523

RESUMO

BACKGROUND: Dyslipidemia has been widely documented to be associated with cardiovascular disease, and recent studies have found an association with asthma prevalence. However, longitudinal studies investigating the relationships between dyslipidemia, asthma phenotypes, and future asthma exacerbations (AEs) are lacking. OBJECTIVE: To investigate the relationships between dyslipidemia, asthma phenotypes, and AEs. METHODS: This study used an observational cohort study design with a 12-month follow-up. All subjects underwent serum lipid measurement, and they were then classified into 2 groups: the normal-lipidemia group and the dyslipidemia group. Demographic and clinical information and details regarding pulmonary function and asthma phenotypes at baseline were collected. All patients were followed up regularly to assess AEs. Associations of dyslipidemia with airway obstruction and asthma phenotypes were assessed at baseline, whereas dyslipidemia and AEs were assessed longitudinally. RESULTS: A total of 477 patients with asthma were consecutively enrolled in this study. At baseline, the dyslipidemia group (n = 218) had a higher proportion of uncontrolled asthma, defined by the 6-item Asthma Control Questionnaire score (≥1.5). Furthermore, dyslipidemia was associated with severe asthma, nonallergic asthma, asthma with fixed airflow limitation, and older adult asthma phenotypes at baseline. In addition, dyslipidemia was associated with increased frequencies of severe AEs and moderate to severe AEs during the 12-month follow-up. In sensitivity analyses, after excluding the patients who were receiving statins, results did not differ significantly from those of the main analysis. CONCLUSIONS: We identified the clinical relevance of dyslipidemia, which is associated with specific asthma phenotypes and increased AEs, independent of other components of metabolic syndrome. These findings highlight the importance of considering dyslipidemia as an "extrapulmonary trait" in asthma management.


Assuntos
Asma , Dislipidemias , Humanos , Estudos Prospectivos , Asma/epidemiologia , Pulmão , Estudos Longitudinais , Dislipidemias/epidemiologia
12.
J Allergy Clin Immunol Pract ; 11(4): 1200-1210.e4, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36581067

RESUMO

BACKGROUND: A few studies have explored the association between short sleep duration and worse asthma outcomes in patients with self-reported asthma; however, all of them were cross-sectional. OBJECTIVES: To investigate the association between self-reported sleep duration and asthma-related clinical and inflammatory characteristics and whether sleep duration is associated with asthma exacerbations (AEs) in the following year. METHODS: A prospective cohort study consecutively recruited participants with asthma, who were classified into short (n = 58), normal (n = 380), and long (n = 84) sleep duration groups. We investigated the clinical and inflammatory characteristics and exacerbations within a 1-year follow-up. RESULTS: Patients with short sleep duration were older and had significantly lower total IgE and FeNO levels and higher airway inflammation, characterized by increased levels of IL-6 and TNF-α in sputum than those of patients with normal sleep duration. Furthermore, they had a significantly increased risk for poorly controlled asthma (adjusted odds ratio = 2.741; 95% CI, 1.379-5.447; P = .004) and moderate to severe AEs (adjusted incidence rate ratio = 1.798; 95% CI, 1.098-2.942; P = .020). CONCLUSIONS: Short sleep duration was associated with non-type 2 inflammation and is an independent risk factor for future AEs. Therefore, as a potentially treatable trait, sleep duration may have clinical implications for asthma management.


Assuntos
Asma , Privação do Sono , Humanos , Autorrelato , Estudos Prospectivos , Asma/epidemiologia , Inflamação/epidemiologia
13.
J Allergy Clin Immunol Pract ; 11(1): 210-219.e3, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191867

RESUMO

BACKGROUND: Emerging evidence suggests that aging affects asthma outcomes, but the mechanism remains largely unexplored. OBJECTIVE: To explore age-related clinical characteristics, inflammatory features, phenotypes, and treatment response in asthma. METHODS: This was a prospective cohort study of asthmatic patients with a 12-month follow-up in a real-world setting. Clinical inflammatory and phenotypic characteristics, future risk for exacerbations, and treatment response were assessed across different age groups (young was defined as age 18 to 39 years; middle-aged, 40 to 64 years; and elderly, 65 years or older). RESULTS: Compared with young (n = 106) and middle-aged (n = 179) asthmatic patients, elderly patients (n = 55) had worse airway obstruction, more comorbidities including chronic obstructive pulmonary disease and diabetes, less atopy, and lower levels of IgE and FeNO, and were more likely to have late-onset and fixed airflow obstruction asthma and a reduced risk for having type 2 profile asthma. Levels of IFN-gamma, IL-17A, and IL-8 in induced sputum were significantly increased in elderly asthmatic patients (all P < .05). Path analysis indicated that age directly and significantly led to future exacerbations in asthma, partially mediated by an upregulation of airway IFN-gamma. Moreover, elderly patients with asthma had a reduced treatment response (improvement in FEV1 of 12% or greater, or 200 mL, and a reduction in Borg scores of 1 or greater) (adjusted odds ratio = 0.11; 95% CI, 0.02-0.52; and adjusted odds ratio = 0.12; 95% CI, 0.03-0.49, respectively). CONCLUSIONS: This study confirms that asthma in the elderly population represents a specific phenotype and indicates that aging can influence asthma in terms of clinical characteristics, inflammatory features, exacerbations, and treatment response.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Idoso , Humanos , Estudos Prospectivos , Asma/tratamento farmacológico , Asma/epidemiologia , Fenótipo , Pulmão , Escarro
14.
Gels ; 8(3)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35323262

RESUMO

The generation of hepatic spheroids is beneficial for a variety of potential applications, including drug development, disease modeling, transplantation, and regenerative medicine. Natural hydrogels are obtained from tissues and have been widely used to promote the growth, differentiation, and retention of specific functionalities of hepatocytes. However, relying on natural hydrogels for the generation of hepatic spheroids, which have batch to batch variations, may in turn limit the previously mentioned potential applications. For this reason, we researched a way to establish a three-dimensional (3D) culture system that more closely mimics the interaction between hepatocytes and their surrounding microenvironments, thereby potentially offering a more promising and suitable system for drug development, disease modeling, transplantation, and regenerative medicine. Here, we developed self-assembling and bioactive hybrid hydrogels to support the generation and growth of hepatic spheroids. Our hybrid hydrogels (PC4/Cultrex) inspired by the sandcastle worm, an Arg-Gly-Asp (RGD) cell adhesion sequence, and bioactive molecules derived from Cultrex BME (Basement Membrane Extract). By performing optimizations to the design, the PC4/Cultrex hybrid hydrogels can enhance HepG2 cells to form spheroids and express their molecular signatures (e.g., Cyp3A4, Cyp7a1, A1at, Afp, Ck7, Ck1, and E-cad). Our study demonstrated that this hybrid hydrogel system offers potential advantages for hepatocytes in proliferating, differentiating, and self-organizing to form hepatic spheroids in a more controllable and reproducible manner. In addition, it is a versatile and cost-effective method for 3D tissue cultures in mass quantities. Importantly, we demonstrate that it is feasible to adapt a bioinspired approach to design biomaterials for 3D culture systems, which accelerates the design of novel peptide structures and broadens our research choices on peptide-based hydrogels.

15.
Biochem Pharmacol ; 201: 115099, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35617999

RESUMO

Periodontal diseases are prevalent worldwide. Lipoteichoic acid (LTA), a major component of gram-positive bacteria, may play a key role in periodontally inflammatory diseases. Carbon monoxide (CO) is a critical messenger in many biological processes. It can elicit various biological properties, especially anti-inflammatory effects. As the straight administration of CO remains difficult, CO-releasing molecules (CO-RMs) are emerging as promising alternatives. To explore the pharmacological actions and signaling pathways of CO battling LTA-induced periodontal inflammation, this study investigated the cytoprotective effects of CORM-2 against the adhesion of THP-1 monocytes to human gingival fibroblasts (HGFs) and the underlying molecular mechanism. After exposing HGFs to LTA with or without CORM-2 pretreatment, monocyte adhesion was determined. VCAM-1 and ICAM-1 expression in HGFs was measured by real-time PCR. To identify the signaling pathways of CO involved in the cytoprotective effects of CORM-2, HGFs underwent pharmacological or genetical interventions before LTA incubation. The expression and/or activity of possible regulatory molecules were determined. The release of pro-inflammatory cytokines, including IL-1ß, IL-6, and TNF-α, were measured using ELISA. The results showed that LTA increased cytokine production and upregulated VCAM-1 and ICAM-1 expression in HGFs, promoting monocyte adhesion. These events were dependent on TLR2/MyD88/TRAF6- and PI3K/Akt/NADPH oxidase/ROS-regulated NF-κB activation. CORM-2 inhibited LTA-induced inflammatory cascades in HGFs, in which CO seemed to be the hitman. To conclude, CO released from CORM-2 can prevent the LTA-stimulated HGFs from increasing VCAM-1 and ICAM-1 expression and promoting monocyte adhesion by inhibiting TLR2/MyD88/TRAF6 association and PI3K/Akt/NADPH oxidase/ROS signaling, both converge on the canonical NF-κB activation.


Assuntos
NF-kappa B , Compostos Organometálicos , Espécies Reativas de Oxigênio , Fator 6 Associado a Receptor de TNF , Receptor 2 Toll-Like , Molécula 1 de Adesão de Célula Vascular , Fibroblastos , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos , Fator 88 de Diferenciação Mieloide/metabolismo , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Compostos Organometálicos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Ácidos Teicoicos , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
16.
J Allergy Clin Immunol Pract ; 9(7): 2812-2824, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33991705

RESUMO

BACKGROUND: Few prospective studies have investigated the relationship between IgE variability and risk for asthma exacerbations (AEs). OBJECTIVE: To explore the relationship between IgE variability and AEs. METHODS: Recruited patients with stable asthma underwent two serum total IgE tests within a month (at screening [baseline IgE] and at 1 month) to obtain the coefficient of variation (CV) of base 10 log-transformed IgE. Patients with IgE CV were divided into IgE CV-high and IgE CV-low cohorts based on the CV median and were observed within 12 months, during which the association between IgE variability and AEs was explored using a negative binomial regression model. RESULTS: The IgE CV levels obtained from 340 patients classified patients into two groups (n = 170 for the IgE CV-high and IgE CV-low groups, respectively) based on the serum total IgE CV median of 2.12% (quartiles 1 and 3: 0.98% and 3.91%, respectively). The IgE CV-high patients exhibited worse asthma control and lung function and more marked airway inflammation, and received more intensive medication use compared with IgE CV-low patients. The IgE CV-high patients exhibited increased rates of moderate-to-severe (adjusted rate ratio = 2.88; 95% confidence interval, 1.65-5.03; P < .001) and severe (adjusted rate ratio = 2.16; 95% confidence interval, 1.08-4.32; P = .029) AEs during the follow-up year compared with IgE CV-low patients. Furthermore, sputum IL-6 partially mediated the associations between IgE CV with moderate-to-severe and severe AEs. CONCLUSIONS: Variability in total serum IgE levels is an easily obtained and practical measure for predicting AEs. Future studies are needed to investigate whether IgE variability can be used to guide precision medicine in asthma.


Assuntos
Antiasmáticos , Asma , Antiasmáticos/uso terapêutico , Asma/diagnóstico , Asma/tratamento farmacológico , Asma/epidemiologia , Humanos , Imunoglobulina E , Estudos Prospectivos
17.
RSC Adv ; 9(66): 38658-38668, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35540186

RESUMO

Four previously undescribed ginsenosides, along with five known analogues were isolated from wild ginseng by a UPLC-QTOF-MS-guided fractionation procedure. Their structures were elucidated on the basis of spectroscopic and spectrometric data (1D and 2D NMR, HR-ESI-MS). The isolated compounds could significantly inhibit the cigarette smoke extract (CSE)-induced inflammatory reaction in A549 cells. The HDAC2 pathway might be involved in the protective effect against the CSE-mediated inflammatory response in A549 cells.

18.
Eur J Pharmacol ; 862: 172623, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31445014

RESUMO

Accumulating evidence suggests that non-typeable Haemophilus influenzae (NTHi) infection drives the development of steroid-resistant allergic airway disease (SRAAD), exacerbates clinical symptoms, worsens quality of life, and accounts for most of the related healthcare burden. The poor understanding of the pathogenesis of SRAAD deters the development of more effective therapeutic strategies. Here, we established a murine model of NTHi infection-induced exacerbation of allergic airway disease. We showed that NTHi infection drove Th 17-mediated pulmonary neutrophilic inflammation, aggravated airway hyper-responsiveness, and upset the balance of MUC5AC and MUC5B expression. Dexamethasone treatment effectively inhibited the features of allergic airway disease but failed to reduce NTHi-induced exacerbation, which was associated with the hyper-phosphorylation of p38 mitogen-activated protein kinase (MAPK). Interestingly, inhibition of p38 using a specific inhibitor (SB203580) only partly suppressed the airway hyper-responsiveness and mucus hyper-secretion but failed to abrogate the infection-induced neutrophilic inflammatory response in SRAAD. However, SB203580 and dexamethasone co-treatment substantially suppressed all the features of NTHi-induced SRAAD. Our findings highlight the importance of p38 MAPK in the pathogenesis of NTHi-induced steroid resistance, and this combined treatment approach may be a novel strategy against steroid-resistant asthma.


Assuntos
Asma/tratamento farmacológico , Dexametasona/farmacologia , Haemophilus influenzae/imunologia , Imidazóis/farmacologia , Inflamação/tratamento farmacológico , Piridinas/farmacologia , Animais , Asma/imunologia , Asma/microbiologia , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Humanos , Imidazóis/uso terapêutico , Inflamação/imunologia , Inflamação/microbiologia , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Camundongos , Mucina-5AC/metabolismo , Mucina-5B/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Piridinas/uso terapêutico , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Exacerbação dos Sintomas , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
J Sports Sci Med ; 7(4): 556-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-24149966

RESUMO

Break dancing is a popular activity in teenagers and is associated with severe trauma to bones and tissues. We report the first known case of a break dancer with an ulnar stress fracture. Such injuries occur in a variety of sports due to substantial stress on the ulna and repetitive excessive rotation of the forearm. In this study we describe a patient who experienced an ulnar stress fracture during break dancing training. The diagnosis was established by history and physical examination. Initial radiographic findings were negative. However, radiographs taken 3 months after initial presented revealed callus formation over the ulnar shaft. This suggested that readjustment is required in break dancing training protocols. It is important to increase awareness of this injury among physicians to expedite the diagnosis and to prevent the possibility of conversion to an overt fracture in the future. Key pointsStress fractures should not be ignored when the patient changes exercise loading.A thoroughly detailed clinical history, physical examination, and plain radiographs were used diagnostically in this clinical case.The best methods for the treatment of stress fractures include readjustment training protocols to prevent conversion to overt fractures.

20.
Taiwan J Obstet Gynecol ; 53(2): 151-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25017258

RESUMO

OBJECTIVE: Liver fibrosis results from the wound healing response to chronic liver damage. Advanced liver fibrosis results in cirrhosis and liver failure, and liver transplantation is often the only option for effective therapy; however, the shortage of available donor livers limits this treatment. Thus, new therapies for advanced liver fibrosis are essential. MATERIALS AND METHODS: Amniotic fluid contains an abundance of stem cells, which are derived from all three germ layers of the developing fetus. These cells do not induce teratomas in vivo and do not pose any ethical concerns. To generate liver fibrosis models, male ICR mice were treated with CCl4 via oral gavage for 4 weeks, and the serum levels of glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, and albumin were higher than in the control group following chemical induction. To assess the potential of amniotic-fluid-derived stem cells (mAFSCs) to ameliorate liver fibrosis in vivo, mAFSCs were isolated from amniotic fluid of 13.5-day-old transgenic mice, which globally express the fluorescent protein, enhanced green fluorescent protein (EGFP), for tracing purposes (EGFP-mAFSCs). Single cells were injected via the mesentery (1 × 10(6) cells/mouse) of transplanted mice with liver fibrosis. RESULTS: Four weeks after EGFP-mAFSC transplantation, the serum glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, and albumin levels of recipient mice in the EGFP-mAFSC-injected group were significantly decreased when compared with mice in the saline-injected group. Additionally, fibrotic tissues were evaluated using Masson's trichrome staining 4 weeks after cell transplantation. Shrinkage of the fibrotic area was observed in the EGFP-mAFSC-injected group. The tissue-repair effects were also confirmed by hydroxyproline content analysis. CONCLUSION: The possible repair mechanism from our data revealed that EGFP-mAFSCs may fuse with the recipient liver cells. Overall, EGFP-mAFSCs can ameliorate liver fibrosis in mice, thus providing insight into the future development of regenerative medicine.


Assuntos
Líquido Amniótico/citologia , Células-Tronco Fetais/transplante , Cirrose Hepática/terapia , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Tetracloreto de Carbono , Modelos Animais de Doenças , Hidroxiprolina/análise , Fígado/química , Cirrose Hepática/sangue , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Albumina Sérica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA