Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Cardiovasc Electrophysiol ; 31(7): 1678-1686, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32314841

RESUMO

INTRODUCTION: Catheter stability during atrial fibrillation ablation is associated with higher ablation success rates. Rapid cardiac pacing and high-frequency jet ventilation (HFJV) independently improve catheter stability. Simultaneous modulation of cardiac and respiratory motion has not been previously studied. The objective of this study was to determine the effect of simultaneous heart rate and respiratory rate modulation on catheter stability. METHODS: Forty patients undergoing paroxysmal atrial fibrillation ablation received ablation lesions at 15 prespecified locations (12 left atria, 3 right atria). Patients were randomly assigned to undergo rapid atrial pacing for either the first or the second half of each lesion. Within each group, half of the patients received HFJV and the other half standard ventilation. Contact force and ablation data for all lesions were compared among the study groups. Standard deviation of contact force was the primary endpoint defined to examine contact force variability. RESULTS: Lesions with no pacing and standard ventilation had the greatest contact force standard deviation (5.86 ± 3.08 g), compared to lesions with pacing and standard ventilation (5.45 ± 3.28 g; P < .01) or to lesions with no pacing and HFJV (4.92 ± 3.00 g; P < .01). Lesions with both pacing and HFJV had the greatest reduction in contact force standard deviation (4.35 ± 2.81 g; P < .01), confirming an additive benefit of each maneuver. Pacing and HFJV together was also associated with a reduction in the proportion of lesions with excessive maximum contact force (P < .001). DISCUSSION: Rapid pacing and HFJV additively improve catheter stability. Simultaneous pacing with HFJV further improves catheter stability over pacing or HFJV alone to optimize ablation lesions.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Ventilação em Jatos de Alta Frequência , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Catéteres , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Humanos
2.
Stem Cells ; 33(4): 1200-12, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25532725

RESUMO

The use of bone marrow-derived mesenchymal stromal cells (BMSC) in the treatment of alloimmune and autoimmune conditions has generated much interest, yet an understanding of the therapeutic mechanism remains elusive. We therefore explored immune modulation by a clinical-grade BMSC product in a model of human-into-mouse xenogeneic graft-versus-host disease (x-GVHD) mediated by human CD4(+) Th1 cells. BMSC reversed established, lethal x-GVHD through marked inhibition of Th1 cell effector function. Gene marking studies indicated BMSC engraftment was limited to the lung; furthermore, there was no increase in regulatory T cells, thereby suggesting a paracrine mechanism of BMSC action. BMSC recipients had increased serum CD73 expressing exosomes that promoted adenosine accumulation ex vivo. Importantly, immune modulation mediated by BMSC was fully abrogated by pharmacologic therapy with an adenosine A2A receptor antagonist. To investigate the potential clinical relevance of these mechanistic findings, patient serum samples collected pre- and post-BMSC treatment were studied for exosome content: CD73 expressing exosomes promoting adenosine accumulation were detected in post-BMSC samples. In conclusion, BMSC effectively modulate experimental GVHD through a paracrine mechanism that promotes adenosine-based immune suppression.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Células-Tronco Mesenquimais/imunologia , Transdução de Sinais/imunologia , Células Th1/imunologia , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Técnicas de Cocultura , Doença Enxerto-Hospedeiro/imunologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transdução de Sinais/efeitos dos fármacos , Células Th1/efeitos dos fármacos
3.
JACC Clin Electrophysiol ; 5(5): 626-634, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31122386

RESUMO

OBJECTIVES: This study sought to determine whether a radiation safety time-out reduces radiation exposure in electrophysiology procedures. BACKGROUND: Time-outs are integral to improving quality and safety. The authors hypothesized that a radiation safety time-out would reduce radiation exposure levels for patients and the health care team members. METHODS: The study was performed at the New York University Langone Health Electrophysiology Lab. Baseline data were collected for 6 months prior to the time-out. On implementation of the time-out, data were collected prospectively with analyses to be performed every 3 months. The primary endpoint was dose area product. The secondary endpoints included reference point dose, fluoroscopy time, use of additional shielding, and use of alternative imaging such as intracardiac and intravascular ultrasound. RESULTS: A total of 1,040 patient cases were included. The median dose area product prior to time-out was 18.7 Gy∙cm2, and the median during the time-out was 14.7 Gy∙cm2, representing a 21% reduction (p = 0.007). The median reference point dose prior to time-out was 163 mGy, and during the time-out was 122 mGy (p = 0.011). The use of sterile disposable protective shields and ultrasound imaging for access increased significantly during the time-out. CONCLUSIONS: A radiation safety time-out significantly reduces radiation exposure in electrophysiology procedures. Electrophysiology laboratories, as well as other areas of cardiovascular medicine using fluoroscopy, should strongly consider the use of radiation safety time-outs to reduce radiation exposure and improve safety.


Assuntos
Técnicas Eletrofisiológicas Cardíacas , Segurança do Paciente , Doses de Radiação , Exposição à Radiação , Idoso , Idoso de 80 Anos ou mais , Técnicas Eletrofisiológicas Cardíacas/métodos , Técnicas Eletrofisiológicas Cardíacas/normas , Feminino , Fluoroscopia/normas , Humanos , Masculino , Estudos Prospectivos , Exposição à Radiação/prevenção & controle , Exposição à Radiação/normas , Exposição à Radiação/estatística & dados numéricos , Fatores de Tempo
4.
JACC Clin Electrophysiol ; 4(4): 483-490, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-30067488

RESUMO

OBJECTIVES: This study sought to investigate the effect of pacing mediated heart rate modulation on catheter-tissue contact and impedance reduction during radiofrequency ablation in human atria during atrial fibrillation (AF) ablation. BACKGROUND: In AF ablation, improved catheter-tissue contact enhances lesion quality and acute pulmonary vein isolation rates. Previous studies demonstrate that catheter-tissue contact varies with ventricular contraction. The authors investigated the impact of modulating heart rate on the consistency of catheter-tissue contact and its effect on lesion quality. METHODS: Twenty patients undergoing paroxysmal AF ablation received ablation lesions at 15 pre-specified locations (12 left atria, 3 right atria). Patients were assigned randomly to undergo rapid atrial pacing for either the first half or the second half of each lesion. Contact force and ablation data with and without pacing were compared for each of the 300 ablation lesions. RESULTS: Compared with lesion delivery without pacing, pacing resulted in reduced contact force variability, as measured by contact force SD, range, maximum, minimum, and time within the pre-specified goal contact force range (p < 0.05). There was no difference in the mean contact force or force-time integral. Reduced contact force variability was associated with a 30% greater decrease in tissue impedance during ablation (p < 0.001). CONCLUSIONS: Pacing induced heart rate acceleration reduces catheter-tissue contact variability, increases the probability of achieving pre-specified catheter-tissue contact endpoints, and enhances impedance reduction during ablation. Modulating heart rate to improve catheter-tissue contact offers a new approach to optimize lesion quality in AF ablation. (The Physiological Effects of Pacing on Catheter Ablation Procedures to Treat Atrial Fibrillation [PEP AF]; NCT02766712).


Assuntos
Fibrilação Atrial/cirurgia , Estimulação Cardíaca Artificial/métodos , Ablação por Cateter/métodos , Átrios do Coração/cirurgia , Frequência Cardíaca/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA