Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(12): e2307537, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37939303

RESUMO

Constructing effective and robust biocatalysts with carbonic anhydrase (CA)-mimetic activities offers an alternative and promising pathway for diverse CO2-related catalytic applications. However, there is very limited success has been achieved in controllably synthesizing CA-mimetic biocatalysts. Here, inspired by the 3D coordination environments of CAs, this study reports on the design of an ultrafast ZnN3-OH2 center via tuning the 3D coordination structures and mesoporous defects in a zinc-dipyrazolate framework to serve as new, efficient, and robust CA-mimetic biocatalysts (CABs) to catalyze the hydration reactions. Owing to the structural advantages and high similarity with the active center of natural CAs, the double-walled CAB with mesoporous defects displays superior CA-like reaction kinetics in p-NPA hydrolysis (V0 = 445.16 nM s-1, Vmax = 3.83 µM s-1, turnover number: 5.97 × 10-3 s-1), which surpasses the by-far-reported metal-organic frameworks-based biocatalysts. This work offers essential guidance in tuning 3D coordination environments in artificial enzymes and proposes a new strategy to create high-performance CA-mimetic biocatalysts for broad applications, such as CO2 hydration/capture, CO2 sensing, and abundant hydrolytic reactions.

2.
Small ; : e2311584, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566551

RESUMO

2D materials have offered essential contributions to boosting biocatalytic efficiency in diverse biomedical applications due to the intrinsic enzyme-mimetic activity and massive specific surface area for loading metal catalytic centers. Since the difficulty of high-quality synthesis, the varied structure, and the tough choice of efficient surface loading sites with catalytic properties, the artificial building of 2D nanobiocatalysts still faces great challenges. Here, in this review, a timely and comprehensive summarization of the latest progress and future trends in the design and biotherapeutic applications of 2D nanobiocatalysts is provided, which is essential for their development. First, an overview of the synthesis-structure-fundamentals and structure-property relationships of 2D nanobiocatalysts, both metal-free and metal-based is provided. After that, the effective design of the active sites of nanobiocatalysts is discussed. Then, the progress of their applied research in recent years, including biomedical analysis, biomedical therapeutics, pharmacokinetics, and toxicology is systematically highlighted. Finally, future research directions of 2D nanobiocatalysts are prospected. Overall, this review to provide cutting-edge and multidisciplinary guidance for accelerating future developments and biomedical applications of 2D nanobiocatalysts is expected.

3.
Small ; : e2401673, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721983

RESUMO

One of the biggest challenges in biotechnology and medical diagnostics is finding extremely sensitive and adaptable biosensors. Since metal-based enzyme-mimetic biocatalysts may lead to biosafety concerns on accumulative toxicity, it is essential to synthesize metal-free enzyme-mimics with optimal biocatalytic activity and superior selectivity. Here, the pyridine-bridged covalent organic frameworks (COFs) with specific oxidase-like (OXD-like) activities as intelligent artificial enzymes for light-augmented biocatalytic sensing of biomarkers are disclosed. Because of the adjustable bandgaps of pyridine structures on the photocatalytic properties of the pristine COF structures, the pyridine-bridged COF exhibit efficient, selective, and light-responsive OXD-like biocatalytic activity. Moreover, the pyridine-bridged COF structures show tunable and light-augmented biocatalytic detection capabilities, which outperform the recently reported state-of-the-art OXD-mimics regarding biosensing efficiency. Notably, the pyridine-bridged COF exhibits efficient and multifaceted diagnostic activity, including the extremely low limit of detection (LOD), which enables visual assays for abundant reducibility biomarkers. It is believed that this design will offer unique metal-free biocatalysts for high-sensitive and low-cost colorimetric detection and also provide new insights to create highly efficient enzyme-like COF materials via linkage-modulation strategies for future biocatalytic applications.

4.
Chem Soc Rev ; 52(19): 6838-6881, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37705437

RESUMO

Benefiting from low costs, structural diversities, tunable catalytic activities, feasible modifications, and high stability compared to the natural enzymes, reactive oxygen nanobiocatalysts (RONBCs) have become dominant materials in catalyzing and mediating reactive oxygen species (ROS) for diverse biomedical and biological applications. Decoding the catalytic mechanism and structure-reactivity relationship of RONBCs is critical to guide their future developments. Here, this timely review comprehensively summarizes the recent breakthroughs and future trends in creating and decoding RONBCs. First, the fundamental classification, activity, detection method, and reaction mechanism for biocatalytic ROS generation and elimination have been systematically disclosed. Then, the merits, modulation strategies, structure evolutions, and state-of-art characterisation techniques for designing RONBCs have been briefly outlined. Thereafter, we thoroughly discuss different RONBCs based on the reported major material species, including metal compounds, carbon nanostructures, and organic networks. In particular, we offer particular insights into the coordination microenvironments, bond interactions, reaction pathways, and performance comparisons to disclose the structure-reactivity relationships and mechanisms. In the end, the future challenge and perspectives for RONBCs are also carefully summarised. We envision that this review will provide a comprehensive understanding and guidance for designing ROS-catalytic materials and stimulate the wide utilisation of RONBCs in diverse biomedical and biological applications.

5.
Chem Soc Rev ; 52(20): 7294-7295, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37753775

RESUMO

Correction for 'Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states' by Sujiao Cao et al., Chem. Soc. Rev., 2023, https://doi.org/10.1039/d3cs00087g.

6.
Angew Chem Int Ed Engl ; 63(1): e202310811, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37953675

RESUMO

With the sharp rise of antibiotic-resistant pathogens worldwide, it is of enormous importance to create new strategies for combating pathogenic bacteria. Here, we create an iron oxide-based spiky artificial peroxidase (POD) with V-O-Fe pair sites (V-Fe2 O3 ) for combating methicillin-resistant Staphylococcus aureus (MRSA). The experimental studies and theoretical calculations demonstrate that the V-Fe2 O3 can achieve the localized "capture and killing" bifunction from the spiky morphology and massive reactive oxygen species (ROS) production. The V-Fe2 O3 can reach nearly 100 % bacterial inhibition over a long period by efficiently oxidizing the lipid membrane. Our wound disinfection results identify that the V-Fe2 O3 can not only efficiently eliminate MRSA and their biofilm but also accelerate wound recovery without causing noticeable inflammation and toxicity. This work offers essential insights into the critical roles of V-O-Fe pair sites and localized "capture and killing" in biocatalytic disinfection and provides a promising pathway for the de novo design of efficient artificial peroxidases.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Peroxidases , Biofilmes
7.
Angew Chem Int Ed Engl ; 63(25): e202404019, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38622071

RESUMO

Accelerating sulfur conversion catalysis to alleviate the shuttle effect has become a novel paradigm for effective Li-S batteries. Although nitrogen-coordinated metal single-atom (M-N4) catalysts have been investigated, further optimizing its utilization rate and catalytic activities is urgently needed for practical applications. Inspired by the natural alveoli tissue with interconnected structure and well-distributed enzyme catalytic sites on the wall for the simultaneously fast diffusion and in situ catalytic conversion of substrates, here, we proposed the controllable synthesis of bioinspired carbon cathode with interconnected porous structure and asymmetric coordinated V-S1N3 sites for efficient and stable Li-S batteries. The enzyme-mimetic V-S1N3 shows asymmetric electronic distribution and high tunability, therefore enhancing in situ polysulfide conversion activities. Experimental and theoretical results reveal that the high charge asymmetry degree and large atom radius of S in V-S1N3 result in sloping adsorption for polysulfide, thereby exhibiting low thermodynamic energy barriers and long-range stability (0.076 % decay over 600 cycles).

8.
Angew Chem Int Ed Engl ; : e202406427, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837308

RESUMO

Tuning the interfacial structure of metal oxide substrates is an essential strategy to induce electronic structure reconstruction of supported catalysts, which is of great importance in optimizing their catalytic activities. Herein, vanadium oxides-supported Ir catalysts (Ir-V2O3, Ir-VO2, and Ir-V2O5) with different interfacial bonding environments (Ir-V, Ir-Obri, and Ir-O, respectively) were investigated for hydrogen evolution reaction (HER). The regulating mechanism of the influence of different interfacial bonding environments on HER activity was investigated by both experimental results and computational evidence. Benefiting from the unique advantages of interfacial Ir-V direct metal bonds in Ir-V2O3, including enhanced electron transfer and electron donation ability, an optimized HER performance can be obtained with lowest overpotentials of 16 and 26 mV at 10 mA cm-2, high mass activities of 11.24 and 6.66 A mg-1, and turnover frequency values of 11.20 and 6.63 s-1, in acidic and alkaline conditions respectively. Furthermore, the assembled Ir-V2O3||RuO2 anion exchange membrane (AEM) electrolyzer requires only 1.92 V to achieve a high current density of 500 mA cm-2 and realizes long-term stability. This study provides essential insights into the regulating mechanism of interfacial chemical bonding in electrocatalysts and offers a new pathway to design noble metal catalysts for different applications.

9.
Angew Chem Int Ed Engl ; 63(15): e202400838, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38372011

RESUMO

Developing artificial enzymes based on organic molecules or polymers for reactive oxygen species (ROS)-related catalysis has broad applicability. Herein, inspired by porphyrin-based heme mimics, we report the synthesis of polyphthalocyanine-based conjugated polymers (Fe-PPc-AE) as a new porphyrin-evolving structure to serve as efficient and versatile artificial enzymes for augmented reactive oxygen catalysis. Owing to the structural advantages, such as enhanced π-conjugation networks and π-electron delocalization, promoted electron transfer, and unique Fe-N coordination centers, Fe-PPc-AE showed more efficient ROS-production activity in terms of Vmax and turnover numbers as compared with porphyrin-based conjugated polymers (Fe-PPor-AE), which also surpassed reported state-of-the-art artificial enzymes in their activity. More interestingly, by changing the reaction medium and substrates, Fe-PPc-AE also revealed significantly improved activity and environmental adaptivity in many other ROS-related biocatalytic processes, validating the potential of Fe-PPc-AE to replace conventional (poly)porphyrin-based heme mimics for ROS-related catalysis, biosensors, or biotherapeutics. It is suggested that this study will offer essential guidance for designing artificial enzymes based on organic molecules or polymers.


Assuntos
Heme , Porfirinas , Heme/química , Oxigênio/química , Espécies Reativas de Oxigênio , Porfirinas/química , Catálise , Polímeros
10.
Small ; 19(18): e2206911, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36765452

RESUMO

The external-stimulation-induced reactive-oxygen-species (ROS) generation has attracted increasing attention in therapeutics for malignant tumors. However, engineering a nanoplatform that integrates with efficient biocatalytic ROS generation, ultrasound-amplified ROS production, and simultaneous relief of tumor hypoxia is still a great challenge. Here, we create new semiconducting titanate-supported Ru clusterzymes (RuNC/BTO) for ultrasound-amplified biocatalytic tumor nanotherapies. The morphology and chemical/electronic structure analysis prove that the biocatalyst consists of Ru nanoclusters that are tightly stabilized by Ru-O coordination on BaTiO3 . The peroxidase (POD)- and halogenperoxidase-like biocatalysis reveals that the RuNC/BTO can produce abundant •O2 - radicals. Notably, the RuNC/BTO exhibits the highest turnover number (63.29 × 10-3 s-1 ) among the state-of-the-art POD-mimics. Moreover, the catalase-like activity of the RuNC/BTO facilitates the decomposition of H2 O2 to produce O2 for relieving the hypoxia of the tumor and amplifying the ROS level via ultrasound irradiation. Finally, the systematic cellular and animal experiments have validated that the multi-modal strategy presents superior tumor cell-killing effects and suppression abilities. We believe that this work will offer an effective clusterzyme that can adapt to the tumor microenvironment-specific catalytic therapy and also provide a new pathway for engineering high-performance ROS production materials across broad therapeutics and biomedical fields.


Assuntos
Neoplasias , Rutênio , Animais , Biocatálise , Espécies Reativas de Oxigênio , Neoplasias/terapia , Ultrassonografia , Peroxidase , Peroxidases , Corantes , Oxigênio , Microambiente Tumoral , Linhagem Celular Tumoral
11.
Small ; 19(52): e2304532, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649195

RESUMO

Exploring highly efficient, portable, and robust biocatalysts is a great challenge in colorimetric biosensors. To overcome the challenging states in creating single-atom biocatalysts, such as insufficient activity and stability, here, this work has engineered a unique CeO2 support as nanoglue to tightly anchor the Ru single-atom sites (CeO2 -Ru) with strong electronic coupling for achieving highly sensitive and robust H2 O2 -related biocatalytic diagnosis. The morphology and chemical/electronic structure analysis demonstrates that the Ru atoms are well-dispersed on CeO2 surface to form high-density active sites. Benefiting from the unique structure, the prepared CeO2 -Ru exhibits outstanding peroxidase (POD) like catalytic activity and selectivity to H2 O2 . Steady-state kinetic study results show that the CeO2 -Ru presents the highest Vmax and turnover number than the state-of-the-art POD-like biocatalysts. Consequently, the CeO2 -Ru discloses a high efficiency, good selectivity, and robust stability in the colorimetric detection of L-cysteine, glucose, and uric acid. Notably, the limit of detection (LOD) can reach 0.176 × 10-3 m for the L-cysteine, 0.095 × 10-3 m for the glucose, and 0.088 × 10-3 m for the uric acid via cascade reaction. This work suggests that the proposed unique CeO2 nanoglue will offer a new path to create single-atom noble metal biocatalysts and take a step closer to future biotherapeutic and biocatalytic applications.


Assuntos
Cisteína , Ácido Úrico , Peroxidase , Peroxidases , Corantes , Glucose/análise
12.
Small ; 19(15): e2207527, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36651013

RESUMO

Achieving single-atom catalysts (SACs) with high metal content and outstanding performance as well as robust stability is critically needed for clean and sustainable energy. However, most of the synthesized SACs are undesired on the loading content of the metal due to the anchored metals and the supports as well as the synthesizing methods. Herein, a Rh-SAC with high accessibility by loading it on the metal nodes of metal-porphyrin-based PCN MOFs (PCN-224) as supporting material is reported. Significantly, the PCN-Rh15.9 /KB catalyst with a high Rh content of 15.9 wt% exhibits excellent hydrogen evolution activity with a low overpotential of 25 mV at a current density of 10 mA cm-2 and a mass activity of 7.7 A mg-1 Rh at overpotential of 150 mV, which is much better than that of the commercial Rh/C. Various characterizations reveal the Rh species is stabilized by the metal nodes bearing -O/OHx in MOFs, which is of importance for the high loading amount and the good activity. This work establishes an efficient approach to synthesize high content SACs on the nodes of MOFs for wide catalyst design.

13.
Small ; : e2306966, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38059865

RESUMO

Developing high-efficiency artificial biocatalysts for scavenging reactive oxygen species (ROS) is critical for treating inflammation diseases and promoting tissue regeneration. By mimicking the active sites in catalase, here, a Pt-clusters-equipped antioxidase-like biocatalysts (Pt─CN) with superior catalytic abilities for stem cell protection and periodontitis treatment are reported. Owing to the excellent effects of multiple Pt clusters, Pt─CN yields exceptional catalytic ROS-scavenging activities for multiple types of ROS. In vitro studies show that Pt─CN can effectively protect stem cell survival, adhesion, and differentiation in a high ROS levels microenvironment. Additionally, Pt─CN can reduce the M1/M2 ratio of macrophages when stimulated by lipopolysaccharide. In vivo treatment of mouse periodontitis further confirms the protection against bone loss and reduction in the inflammatory response. This study provides a basis for the application of biocatalysts with Pt catalytic center in macrophage polarization, stem cell protection, and periodontitis treatment, thus offering a new strategy for the design of high-performance artificial biocatalysts.

14.
Small ; 19(50): e2303594, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37626465

RESUMO

Bacterial infection continues to be an increasing global health problem with the most widely accepted treatment paradigms restricted to antibiotics. However, the overuse and misuse of antibiotics have triggered multidrug resistance of bacteria, frustrating therapeutic outcomes, and leading to higher mortality rates. Even worse, the tendency of bacteria to form biofilms on living and nonliving surfaces further increases the difficulty in confronting bacteria because the extracellular matrix can act as a robust barrier to prevent the penetration of antibiotics and resist environmental damage. As a result, the inability to eliminate bacteria and biofilms often leads to persistent infection, implant failure, and device damage. Therefore, it is of paramount importance to develop alternative antimicrobial agents while avoiding the generation of bacterial resistance to prevent the large-scale growth of bacterial resistance. In recent years, nano-antibacterial materials have played a vital role in the antibacterial field because of their excellent physical and chemical properties. This review focuses on new physicochemical antibacterial strategies and versatile antibacterial nanomaterials, especially the mechanism and types of 2D antibacterial nanomaterials. In addition, this advanced review provides guidance on the development direction of antibiotic-free disinfections in the antibacterial field in the future.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Nanoestruturas , Humanos , Antibacterianos/química , Desinfecção , Infecções Bacterianas/tratamento farmacológico , Bactérias
15.
Small ; 19(14): e2206949, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36599619

RESUMO

Ruthenium (Ru)-based catalysts have displayed compelling hydrogen evolution activities, which hold the promising potential to substitute platinum in alkaline H2 -evolution. In the challenging alkaline electrolytes, the water-dissociation process involves multistep reactions, while the profound origin and intrinsic factors of diverse Ru species on water-dissociation pathways and reaction principles remain ambiguous. Here the fundamental origin of water-dissociation pathways of Ru-based catalysts in alkaline media to be from their unique electronic structures in complex coordination environments are disclosed. These theoretical results validate that the modulated electronic structures with delocalization-localization coexistence at their boundaries between the Ru nanocluster and single-atom site have a profound influence on water-dissociation pathways, which push H2 O* migration and binding orientation during the splitting process, thus enhancing the dissociation kinetics. By creating Ru catalysts with well-defined nanocluster, single-atom site, and also complex site, the electrocatalytic data shows that both the nanocluster and single-atom play essential roles in water-dissociation, while the complex site possesses synergistically enhanced roles in alkaline electrolytes. This study discloses a new electronic structure-dependent water-dissociation pathway and reaction principle in Ru-based catalysts, thus offering new inspiration to design efficient and durable catalysts for the practical production of H2 in alkaline electrolytes.

16.
Small ; 19(10): e2206808, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36539263

RESUMO

Tuning the microenvironment and electronic structure of support materials is essential strategy to induce electron transfer between supports and active centers, which is of great importance in optimizing catalytic kinetics. In this study, the molybdenum oxycarbide supported Rh-clusters are synthesized with modulated interstitial C-O microenvironments (Rh/MoOC) for promoting efficient hydrogen evolution in water splitting. Both electronic structure characterizations and theoretical calculations uncover the apparent charge transfer from Rh to MoOC, which optimizes the d-band center, H2 O adsorption energy, and hydrogen binding energy, thus enhancing its intrinsic hydrogen-evolving activities. In addition, the co-occurrence of interstitial C and O atoms in MoOC supports plays a vital role in the dissociation reaction of water during the hydrogen-evolving process. Impressively, the Rh/MoOC exhibits excellent hydrogen-evolving activities in terms of exceptional turnover frequency values (11.4 and 39.41 H2 s-1 in alkaline and acidic media) and mass activities (21.3 and 73.87 A mg-1 in alkaline and acidic media) at an overpotential of 100 mV, which is more than 40 times higher than that of the benchmark commercial Rh/C catalysts. This work sheds new light on designing water dissociation materials that surpasses most of the reported catalysts.

17.
Small ; 19(42): e2302744, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37322373

RESUMO

Non-invasive cancer treatment strategies that enable local non-thermal ablation, hypoxia relief, and reactive oxygen species (ROS) production to achieve transiently destroying tumor tissue and long-term killing tumor cells would greatly facilitate their clinical applications. However, continuously generating oxygen cavitation nuclei, reducing the transient cavitation sound intensity threshold, relieving hypoxia, and improving its controllability in the ablation area still remains a significant challenge. Here, in this work, an Mn-coordinated polyphthalocyanine sonocavitation agent (Mn-SCA) with large d-π-conjugated network and atomic Mn-N sites is identified for the non-thermal sonocavitation and sonodynamic therapy in the liver cancer ablation. In the tumor microenvironment, the catalytical generation of oxygen assists cavitation formation and generates microjets to ablate liver cancer tissue and relieve hypoxia, this work reports for the first time to utilize the enzymatic properties of Mn-SCA to lower the cavitation threshold in situ. Moreover, under pHIFU irradiation, high reactive oxygen species (ROS) production can be achieved. The two merits in liver cancer ablation are demonstrated by cell destruction and high tumor inhibition efficiency. This work will help deepen the understanding of cavitation ablation and the sonodynamic mechanisms related to the nanostructures and guide the design of sonocavitation agents with high ROS production for solid tumor ablation.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias Hepáticas , Humanos , Espécies Reativas de Oxigênio , Hipóxia , Oxigênio , Neoplasias Hepáticas/terapia , Catálise , Linhagem Celular Tumoral , Microambiente Tumoral
18.
Small ; 19(27): e2208261, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37012603

RESUMO

The lack of high efficiency and pH-universal bifunctional electrocatalysts for water splitting to hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) hinders the large-scale production of green hydrogen. Here, an IrPd electrocatalyst supported on ketjenblack that exhibits outstanding bifunctional performance for both HER and OER at wide pH conditions is presented. The optimized IrPd catalyst exhibits a specific activity of 4.46 and 3.98 A mgIr -1 in the overpotential of 100 and 370 mV for HER and OER, respectively, in alkaline conditions. When applied to the anion exchange membrane electrolyzer, the Ir44 Pd56 /KB catalyst shows a stability of >20 h at a current of 250 mA cm-2 for water decomposition, indicating promising prospects for practical applications. Beyond offering an advanced electrocatalyst, this work also guides the rational design of desirable bifunctional electrocatalysts for HER and OER by regulating the microenvironments and electronic structures of metal catalytic sites for diverse catalysis.

19.
Angew Chem Int Ed Engl ; 62(1): e202215414, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321878

RESUMO

Accelerating insoluble Li2 S2 -Li2 S reduction catalysis to mitigate the shuttle effect has emerged as an innovative paradigm for high-efficient lithium-sulfur battery cathodes, such as single-atom catalysts by offering high-density active sites to realize in situ reaction with solid Li2 S2 . However, the profound origin of diverse single-atom species on solid-solid sulfur reduction catalysis and modulation principles remains ambiguous. Here we disclose the fundamental origin of Li2 S2 -Li2 S reduction catalysis in ferromagnetic elements-based single-atom materials to be from their spin density and magnetic moments. The experimental and theoretical studies disclose that the Fe-N4 -based cathodes exhibit the fastest deposition kinetics of Li2 S (226 mAh g-1 ) and the lowest thermodynamic energy barriers (0.56 eV). We believe that the accelerated Li2 S2 -Li2 S reduction catalysis enabled via spin polarization of ferromagnetic atoms provides practical opportunities towards long-life batteries.

20.
Angew Chem Int Ed Engl ; 62(22): e202302329, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37002706

RESUMO

Constructing highly effective biocatalysts with controllable coordination geometry for eliminating reactive oxygen species (ROS) to address the current bottlenecks in stem-cell-based therapeutics remains challenging. Herein, inspired by the coordination structure of manganese-based antioxidase, we report a manganese-coordinated polyphthalocyanine-based biocatalyst (Mn-PcBC) with axial Mn-N5 sites and 2D d-π-conjugated networks that serves as an artificial antioxidase to rescue stem cell fate. Owing to the unique chemical and electronic structures, Mn-PcBC displays efficient, multifaceted, and robust ROS-scavenging activities, including elimination of H2 O2 and O2 ⋅- . Consequently, Mn-PcBC efficiently rescues the bioactivity and functionality of stem cells in high-ROS-level microenvironments by protecting the transcription of osteogenesis-related genes. This study offers essential insight into the crucial functions of axially coordinated Mn-N5 sites in ROS scavenging and suggests new strategies to create efficient artificial antioxidases for stem-cell therapies.


Assuntos
Manganês , Células-Tronco , Espécies Reativas de Oxigênio , Manganês/química , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA