RESUMO
Rising temperatures pose a threat to the stability of climate regulation by carbon metabolism in subtropical forests. Although the effects of temperature on leaf carbon metabolism traits in sun-exposed leaves are well understood, there is limited knowledge about its impacts on shade leaves and the implications for ecosystem-climate feedbacks. In this study, we measured temperature response curves of photosynthesis and respiration for 62 woody species in summer (including both evergreen and deciduous species) and 20 evergreen species in winter. The aim was to uncover the temperature dependence of carbon metabolism in both sun and shade leaves in subtropical forests. Our findings reveal that shade had no significant effects on the mean optimum photosynthetic temperatures (TOpt) or temperature range (T90). However, there were decreases observed in mean stomatal conductance, mean area-based photosynthetic rates at TOpt and 25 °C, as well as mean area-based dark respiration rates at 25 °C in both evergreen and deciduous species. Moreover, the respiration-temperature sensitivity (Q10) of sun leaves was higher than that of shade leaves in winter, with the reverse being true in summer. Leaf economics spectrum traits, such as leaf mass per area, and leaf concentration of nitrogen and phosphorus across species, proved to be good predictors of TOpt, T90, mass-based photosynthetic rate at TOpt, and mass-based photosynthetic and respiration rate at 25 °C. However, Q10 was poorly predicted by these leaf economics spectrum traits except for shade leaves in winter. Our results suggest that model estimates of carbon metabolism in multilayered subtropical forest canopies do not necessitate independent parameterization of T90 and TOpt temperature responses in sun and shade leaves. Nevertheless, a deeper understanding and quantification of canopy variations in Q10 responses to temperature are necessary to confirm the generality of temperature-carbon metabolism trait responses and enhance ecosystem model estimates of carbon dynamics under future climate warming.
Assuntos
Ecossistema , Árvores , Temperatura , Árvores/fisiologia , Folhas de Planta/fisiologia , Florestas , Fotossíntese/fisiologiaRESUMO
Cortex radius (CR) and stele radius (SR) are important functional traits associated with the nutrient acquisition and transport functions of fine roots, respectively. However, for developmental and anatomical reasons, the resource acquisition-transport relationship of fine roots is expected to be different for different root orders. To address this issue, critical fine root anatomical traits were examined for the first three orders of roots of 59 subtropical woody plants. Designating the most distal fine roots as order one, SR scaled isometrically with respect to root radius (RR) (i.e., SR â RR1.0) in the three root orders, whereas CR scaled allometrically with respect to RR (i.e., CR â RR>1.0) with the numerical values of scaling exponents increasing significantly with increasing root orders thereby indicating a disproportional increase in CR with increasing root orders. There were also differences between normalized root tissue (CR/RR and SR/RR) and RR in different root orders. A negative isometric relationship (i.e., SR/RR â RR-1.0) existed between SR/RR and RR in three order roots, whereas the allometric exponent between CR/RR and RR increased with root order (from 0.88 to 1.55). Collectively, the data indicate that root anatomical and functional traits change as a function of RR and that these changes need to be considered when modeling fine root resource acquisition-transport functions.
RESUMO
This study aimed to develop and validate a combined nomogram model based on superb microvascular imaging (SMI)-based deep learning (DL), radiomics characteristics, and clinical factors for noninvasive differentiation between immunoglobulin A nephropathy (IgAN) and non-IgAN.We prospectively enrolled patients with chronic kidney disease who underwent renal biopsy from May 2022 to December 2022 and performed an ultrasound and SMI the day before renal biopsy. The selected patients were randomly divided into training and testing cohorts in a 7:3 ratio. We extracted DL and radiometric features from the two-dimensional ultrasound and SMI images. A combined nomograph model was developed by combining the predictive probability of DL with clinical factors using multivariate logistic regression analysis. The proposed model's utility was evaluated using receiver operating characteristics, calibration, and decision curve analysis. In this study, 120 patients with primary glomerular disease were included, including 84 in the training and 36 in the test cohorts. In the testing cohort, the ROC of the radiomics model was 0.816 (95% CI:0.663-0.968), and the ROC of the DL model was 0.844 (95% CI:0.717-0.971). The nomogram model combined with independent clinical risk factors (IgA and hematuria) showed strong discrimination, with an ROC of 0.884 (95% CI:0.773-0.996) in the testing cohort. Decision curve analysis verified the clinical practicability of the combined nomogram. The combined nomogram model based on SMI can accurately and noninvasively distinguish IgAN from non-IgAN and help physicians make clearer patient treatment plans.
Assuntos
Aprendizado Profundo , Glomerulonefrite por IGA , Microvasos , Nomogramas , Humanos , Glomerulonefrite por IGA/complicações , Glomerulonefrite por IGA/diagnóstico por imagem , Hematúria , Glomérulos Renais , Estudos Retrospectivos , Microvasos/diagnóstico por imagem , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/patologia , BiópsiaRESUMO
The plant economics spectrum describes the trade-off between plant resource acquisition and storage, and sheds light on plant responses to environmental changes. However, the data used to construct the plant economics spectrum comes mainly from seed plants, thereby neglecting vascular non-seed plant lineages such as the ferns. To address this omission, we evaluated whether a fern economics spectrum exists using leaf and root traits of 23 fern species living under three subtropical forest conditions differing in light intensity and nutrient gradients. The fern leaf and root traits were found to be highly correlated and formed a plant economics spectrum. Specific leaf mass and root tissue density were found to be on one side of the spectrum (conservative strategy), whereas photosynthesis rate, specific root area, and specific root length were on the other side of the spectrum (acquisitive strategy). Ferns had higher photosynthesis and respiration rates, and photosynthetic nitrogen-use efficiency under high light conditions and higher specific root area and lower root tissue density in high nutrient environments. However, environmental changes did not significantly affect their resource acquisition strategies. Thus, the plant economics spectrum can be broadened to include ferns, which expands its phylogenetic and ecological implications and utility.
Assuntos
Gleiquênias , Florestas , Nitrogênio , Fotossíntese/fisiologia , Filogenia , Folhas de Planta/fisiologia , PlantasRESUMO
With extensive research on the pathogenesis and treatment of hepatitis B virus (HBV) and hepatitis D virus (HDV) infections, the current treatment of interferon and nucleoside or nucleotide analogues provides reasonable control of viral replication in chronic hepatitis B (CHB). However, drug resistance may occur as a result of long-term treatment, and continuous covalently closed circular DNA (cccDNA) can cause disease relapse after drug withdrawal. Therefore, there is an urgent need for safe and effective antiviral drugs or methods to treat HBV and HDV infections. Myrcludex B is the first entry inhibitor that can inactivate HBV and HDV receptors, compete with HBV for the sodium-taurocholate co-transporting polypeptide, which has been identified as the bona fide receptor for HBV and HDV, block HBV infection in hepatocytes, and participate in HBV transcriptional suppression. Myrcludex B plays an important role in the inhibition of HBV replication and is a potential drug for phase III clinical trials. In this article, we review the progress on the efficacy and clinical application of myrcludex B in recent years.
Assuntos
Hepatite B , Hepatite D , Antivirais/farmacologia , Antivirais/uso terapêutico , Hepatite B/tratamento farmacológico , Vírus da Hepatite B , Hepatite D/tratamento farmacológico , Vírus Delta da Hepatite/genética , Hepatócitos , Humanos , Lipopeptídeos/uso terapêuticoRESUMO
OBJECTIVE: To examine the role of YTHDF1 knock-down macrophages on the immunity of severe sepsis rats with ECMO. METHODS: 15 SD rats were randomly allocated into 3 groups: mild sepsis (I), severe sepsis with ECMO (II), and YTHDF1 knock-down macrophages treatment groups (III). Blood biochemical indexes, different immune factors and brain changes were detected by RT-PCR, ELISA, ELISPOT and HE staining. Isolated macrophages subtypes and signal proteins were detected by flow cytometry, western blot and m6A RNA methylation test. RESULTS: The levels of HMGB1, RAGE, YTHDF1 and IL-17 in peripheral blood were significantly higher (p < 0.01), while the level of CXCL9 and TNF-α, and LPS-specific CD8+CTL function were significantly decreased in group II compared with group I (p < 0.01). The ratio of CD63+ macrophages (p < 0.05) and CD64+ macrophages (p< 0.05) decreased and the level of elastase (p < 0.01) and CCR2highCX3CR1low/CCR2lowCX3CR1high (p < 0.01) of macrophages increased in group II. The above were consistent with the severity of biochemical indicators, the increasing endothelial injury factor (Ang2/Ang1), lower endothelial protective factor (sTie2), severer brain injury in group II. After YTHDF1 knock-down macrophages treatment, the above indexes' changes were opposite when Group III versus Group II through the down-regulation of m6A RNA methylation of JAK2/STAT3 (p < 0.01) and protein expression of PJAK2/PSTAT3 (p < 0.05) in isolated macrophages. CONCLUSIONS: YTHDF1 knock-down macrophages improved the immune paralysis of macrophages, Th1/Th17 and CTL and reduced the entry of macrophages into the brain to cause endothelial damage of severe sepsis rats with ECMO through the inhibition of HMGB1/RAGE and YTHDF1, m6A RNA methylation of JAK2/STAT3 and PJAK2/PSTAT3 proteins expression in macrophages.
Assuntos
Lesões Encefálicas/prevenção & controle , Encéfalo/imunologia , Oxigenação por Membrana Extracorpórea , Macrófagos/transplante , Pneumonia/terapia , Proteínas de Ligação a RNA/fisiologia , Sepse/terapia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/imunologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Células Cultivadas , Citocinas/sangue , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Técnicas de Silenciamento de Genes , Mediadores da Inflamação/sangue , Macrófagos/imunologia , Macrófagos/metabolismo , Fenótipo , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia , Proteínas de Ligação a RNA/genética , Ratos Sprague-Dawley , Sepse/imunologia , Sepse/metabolismo , Sepse/patologia , Transdução de Sinais , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismoRESUMO
PREMISE: Photosynthetic light-response (PLR) curves for leaves are important components of models related to carbon fixation in forest ecosystems, linking the Mitscherlich equation and Michaelis-Menten equation to traits of the leaf economics spectrum (LES). However, models do not consider changes in leaf habits (i.e., evergreen and deciduous) and within-canopy shading variation in these PLR curves. METHODS: Here, we measured the PLR curves in sun and shade leaves of 44 evergreen and 31 deciduous species to examine the relationships between variables of the Mitscherlich equation and Michaelis-Menten equation, leaf nitrogen (N) and phosphorus (P) content, and leaf mass per area (LMA). RESULTS: Small changes were caused by different leaf habits and shade variations in relationships linking variables of the two equations to leaf N and P content and LMA. Values of the scaling exponents for PLR curve parameters did not differ regardless of canopy position and leaf habit (P > 0.05). The PLR curves in species with different leaf habits (i.e., evergreen and deciduous) at different canopy positions could be predicted using the general allometric relations between leaf traits and PLR parameters in the two equations. For photosynthetic photon flux densities from 0 to 2000 µmol m-2 s-1 , approximately 71% (Mitscherlich equation) and 70% (Michaelis-Menten equation) of the net assimilation rates could be predicted. CONCLUSIONS: These findings indicate that leaf net assimilation rates can be predicted through the large available data for LES traits. Incorporation of values for these traits available in the LES databases into ecosystem models of forest productivity and carbon fixation warrants further investigation.
Assuntos
Ecossistema , Árvores , Florestas , Hábitos , Fotossíntese , Folhas de PlantaRESUMO
OBJECTIVE: The aim of the study was to explore the relationship between criticality, brain complications, and immune mechanisms in extracorporeal membrane oxygenation (ECMO) children with pneumonia and severe sepsis. METHODS: Patients with simple pneumonia (group I), ECMO patients with pneumonia and severe sepsis accompanied by brain complications (group II), and those without brain complication (group III) admitted to our pediatric intensive care unit were selected to be investigated. The relationship among the peripheral blood subgroups of immune cells, immune factors, adaptive immune responses, endothelial factors, and criticality and brain complications was then studied. RESULTS: Severe paralysis of normal immunity, excess abnormal immunity, and endothelial injury were consistent with the increase in the absolute value of base excess, lactic acid (Lac) content, and average hospitalization days and brain complications involved in group II (vs. group I). The ratio of CD63+ macrophage and CD63+ neutrophil subpopulation increased (p < 0.05); the expression levels of elastase+ neutrophil denatured subgroup (p < 0.05), the ratio of CCR2highCX3CR1low/CCR2lowCX3CR1high of macrophages and neutrophils (p < 0.0001), high-mobility group box 1 (HMGB1), YTHDF1, interleukin-17 protein and mRNA, and RAGE gene decreased to some extent (p < 0.05); the expression levels of Th1 cells chemokine CXCL9 protein and mRNA and sTIE2 protein increased to some extent (p < 0.05); the adaptive immune response of CD8+ CTL stimulated by lipopolysaccharide (LPS) was slightly enhanced (p < 0.05) in group III(vs. group II), which was consistent with the improvement of criticality, average hospitalization days, and the absence of brain complications in group III (vs. group II). CONCLUSION: ECMO support with brain complication was related to the upregulation of HMGB1 and YTHDF1 protein; the decreased number of CD63+ macrophages and neutrophils; the increased denatured neutrophil subgroup, especially the upregulated ratio of CCR2highCX3CR1low/CCR2lowCX3CR1high of macrophages and neutrophils; the imbalance of Th17/Th1, LPS-specific CD8+ CTL adaptive immune response paralysis; and the reduced endothelial sTIE2 protein expression level which caused clinical deterioration and prolonged average hospitalization days.
Assuntos
Oxigenação por Membrana Extracorpórea , Sepse , Encéfalo , Humanos , Paralisia , Prognóstico , Estudos Retrospectivos , Sepse/complicaçõesRESUMO
Variation in terrestrial net primary production (NPP) with climate is thought to originate from a direct influence of temperature and precipitation on plant metabolism. However, variation in NPP may also result from an indirect influence of climate by means of plant age, stand biomass, growing season length and local adaptation. To identify the relative importance of direct and indirect climate effects, we extend metabolic scaling theory to link hypothesized climate influences with NPP, and assess hypothesized relationships using a global compilation of ecosystem woody plant biomass and production data. Notably, age and biomass explained most of the variation in production whereas temperature and precipitation explained almost none, suggesting that climate indirectly (not directly) influences production. Furthermore, our theory shows that variation in NPP is characterized by a common scaling relationship, suggesting that global change models can incorporate the mechanisms governing this relationship to improve predictions of future ecosystem function.
Assuntos
Clima , Ecossistema , Internacionalidade , Plantas/metabolismo , Adaptação Fisiológica , Biomassa , Desenvolvimento Vegetal , Chuva , Estações do Ano , Temperatura , MadeiraRESUMO
In a controlled experiment, we assessed the effect of phosphate-solubilizing bacterium (PSB) on the soil metal (Cu2+) phytoremediation by Wedelia trilobata and examined the effect of the interaction of Cu contamination and PSB on the growth of W. trilobata. We also explored the effect of the interaction of Cu contamination and PSB on the soil microflora. The results showed that the removal efficiency of Cu from soil by W. trilobata increased with an increase in the concentration of PSB, and the translocation factors of Cu (i.e., leaf:root and stem:root) were both significantly upregulated by PSB. The PSB significantly promoted the growth of W. trilobata; however, the effect of the Cu-PSB interaction on the leaf net photosynthetic rate (Pn) of W. trilobata was not significant, whereas copper contamination had a significant negative influence on the soil microflora, PSB had a significant positive influence on the soil microflora. Thus, PSB improved the phytoremediation efficiency of W. trilobata in Cu-contaminated soil because of the positive influence on the soil microflora, improving soil quality, which then increased the growth of W. trilobata in Cu-contaminated soil. The vigorous growth of W. trlobata led to higher of Cu absorption and translocation from soil as the ultimate result.
Assuntos
Fosfatos , Wedelia , Bactérias , Biodegradação Ambiental , SoloRESUMO
PREMISE OF STUDY: Leaf area and dry mass are crucial for plant metabolic performance. The "diminishing returns" hypothesis predicts that leaf area will scale less than one with respect to leaf dry mass, indicating that the cost of light interception increases with leaf area. However, it remains unclear whether and how this scaling relationship varies among species growing in different environments. METHODS: More than 2000 measurements from five bamboo species adapted to high and low light and growing at different elevations in Wuyi Mountains, Southeast China, were used to explore how the leaf area vs. dry mass scaling relationship was affected by light and elevation. KEY RESULTS: The data indicate that (1) the normalization constants for leaf area vs. dry mass were positively but not significantly correlated with increasing leaf size and that (2) the scaling exponents remained numerically invariant among all five bamboo species, with a common slope of 0.85. Standardized major axis (SMA) analyses and comparisons of 95% confidence intervals also showed that the numerical values of the scaling exponents did not differ regardless of elevation and were similar between shaded and unshaded adapted species, whereas the numerical values of the normalization constants increased with decreasing light. CONCLUSIONS: The data collected for all five bamboo species are consistent with the "diminishing returns" hypothesis, i.e., the scaling exponents governing the leaf area vs. dry mass scaling relationship are less than one within and across species and are insensitive to light conditions or elevation.
Assuntos
Altitude , Luz , Folhas de Planta/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , ChinaRESUMO
Competing endogenous RNAs (ceRNAs) refer to RNA transcripts, such as mRNAs, non-coding RNAs, pseudogene transcripts, and circular RNAs, that can regulate each other by competing for the same pool of miRNAs. ceRNAs involve in the pathogenesis of several common cancers such as prostate cancer, liver cancer, breast cancer, lung cancer, gastric cancer, endometrial cancer, and so on. ceRNA activity is determined by factors such as miRNA/ceRNA abundance, ceRNAs binding affinity to miRNAs, RNA editing, and RNA-binding proteins. The alteration of any of these factors may lead to ceRNA network imbalance and thus contribute to cancer initiation and progression. There are generally three steps in ceRNA research conductions: ceRNA prediction, ceRNA validation, and ceRNA functional investigation. Deciphering ceRNA interplay in cancer provides new insight into cancer pathogenesis and opportunities for therapy exploration. In this review, we try to give readers a concise and reliable illustration on the mechanism, functions, research approaches, and perspective of ceRNA in cancer.
Assuntos
MicroRNAs/genética , Neoplasias/genética , RNA Mensageiro/genética , RNA/genética , Redes Reguladoras de Genes , Humanos , Neoplasias/patologia , RNA Circular , RNA não Traduzido/genética , Proteínas de Ligação a RNA/genéticaRESUMO
BACKGROUND AND AIMS: Empirical studies and allometric partitioning (AP) theory indicate that plant above-ground biomass (MA) scales, on average, one-to-one (isometrically) with below-ground biomass (MR) at the level of individual trees and at the level of entire forest communities. However, the ability of the AP theory to predict the biomass allocation patterns of understorey plants has not been established because most previous empirical tests have focused on canopy tree species or very large shrubs. METHODS: In order to test the AP theory further, 1586 understorey sub-tropical forest plants from 30 sites in south-east China were harvested and examined. The numerical values of the scaling exponents and normalization constants (i.e. slopes and y-intercepts, respectively) of log-log linear MA vs. MR relationships were determined for all individual plants, for each site, across the entire data set, and for data sorted into a total of 19 sub-sets of forest types and successional stages. Similar comparisons of MA/MR were also made. KEY RESULTS: The data revealed that the mean MA/MR of understorey plants was 2·44 and 1·57 across all 1586 plants and for all communities, respectively, and MA scaled nearly isometrically with respect to MR, with scaling exponents of 1·01 for all individual plants and 0·99 for all communities. The scaling exponents did not differ significantly among different forest types or successional stages, but the normalization constants did, and were positively correlated with MA/MR and negatively correlated with scaling exponents across all 1586 plants. CONCLUSIONS: The results support the AP theory's prediction that MA scales nearly one-to-one with MR (i.e. MA â MR (≈1·0)) and that plant biomass partitioning for individual plants and at the community level share a strikingly similar pattern, at least for the understorey plants examined in this study. Furthermore, variation in environmental conditions appears to affect the numerical values of normalization constants, but not the scaling exponents of the MA vs. MR relationship. This feature of the results suggests that plant size is the primary driver of the MA vs. MR biomass allocation pattern for understorey plants in sub-tropical forests.
Assuntos
Biomassa , Florestas , Modelos Biológicos , Árvores/fisiologia , China , Luz , Fotossíntese , Clima TropicalRESUMO
PREMISE OF THE STUDY: Empirical studies and theory indicate that respiration rates (R) of small plants scale nearly isometrically with both leaf biomass (ML) and total plant biomass (MT). These predictions are based on angiosperm species and apply only across a small range of body mass. Whether these relationships hold true for different plants, such as conifers, remains unclear. METHODS: We tested these predictions using the whole-plant maintenance respiration rates and the biomass allocation patterns of the seedlings of two conifer tree species and two angiosperm tree species. Model Type II regression protocols were used to compare the scaling exponents (α) and normalization constants (ß) across all four species and within each of the four species. KEY RESULTS: The data show that the scaling exponents varied among the four species and that all differed significantly from isometry. For conifers, scaling exponents for R vs. MT, and R and ML were numerically smaller than those of the broadleaved angiosperm species. However, across the entire data set, R scaled isometrically with ML and with MT as predicted by the West, Brown, and Enquist (WBE) theory. We also observed higher respiration rates for small conifer seedlings compared to comparably sized angiosperm seedlings. CONCLUSIONS: Our data add credence to the view that the R vs. M scaling relationship differs among species, and that in general, the numerical values of this interspecific scaling relationship will depend on the species pooled in the analysis and on the range of body sizes within the data set.
Assuntos
Cupressaceae/fisiologia , Lauraceae/fisiologia , Pinus/fisiologia , Biomassa , Cupressaceae/crescimento & desenvolvimento , Lauraceae/crescimento & desenvolvimento , Modelos Biológicos , Pinus/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Análise de Regressão , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Especificidade da Espécie , Árvores/crescimento & desenvolvimento , Árvores/fisiologiaRESUMO
Color constancy is a well-studied topic in color vision. Methods are generally categorized as (1) low-level statistical methods, (2) gamut-based methods, and (3) learning-based methods. In this work, we distinguish methods depending on whether they work directly from color values (i.e., color domain) or from values obtained from the image's spatial information (e.g., image gradients/frequencies). We show that spatial information does not provide any additional information that cannot be obtained directly from the color distribution and that the indirect aim of spatial-domain methods is to obtain large color differences for estimating the illumination direction. This finding allows us to develop a simple and efficient illumination estimation method that chooses bright and dark pixels using a projection distance in the color distribution and then applies principal component analysis to estimate the illumination direction. Our method gives state-of-the-art results on existing public color constancy datasets as well as on our newly collected dataset (NUS dataset) containing 1736 images from eight different high-end consumer cameras.
RESUMO
Introduction: The pivotal roles of both abundant and rare bacteria in ecosystem function are widely acknowledged. Despite this, the diversity elevational patterns of these two bacterial taxa in different seasons and influencing factors remains underexplored, especially in the case of rare bacteria. Methods: Here, a metabarcoding approach was employed to investigate elevational patterns of these two bacterial communities in different seasons and tested the roles of soil physico-chemical properties in structuring these abundant and rare bacterial community. Results and discussion: Our findings revealed that variation in elevation and season exerted notably effects on the rare bacterial diversity. Despite the reactions of abundant and rare communities to the elevational gradient exhibited similarities during both summer and winter, distinct elevational patterns were observed in their respective diversity. Specifically, abundant bacterial diversity exhibited a roughly U-shaped pattern along the elevation gradient, while rare bacterial diversity increased with the elevational gradient. Soil moisture and N:P were the dominant factor leading to the pronounced divergence in elevational distributions in summer. Soil temperature and pH were the key factors in winter. The network analysis revealed the bacteria are better able to adapt to environmental fluctuations during the summer season. Additionally, compared to abundant bacteria, the taxonomy of rare bacteria displayed a higher degree of complexity. Our discovery contributes to advancing our comprehension of intricate dynamic diversity patterns in abundant and rare bacteria in the context of environmental gradients and seasonal fluctuations.
RESUMO
Leaf respiration in the light (Rlight) is crucial for understanding the net CO2 exchange of individual plants and entire ecosystems. However, Rlight is poorly quantified and rarely discussed in the context of the leaf economic spectrum (LES), especially among woody species differing in plant functional types (PFTs) (e.g., evergreen vs. deciduous species). To address this gap in our knowledge, Rlight, respiration in the dark (Rdark), light-saturated photosynthetic rates (Asat), leaf dry mass per unit area (LMA), leaf nitrogen (N) and phosphorus (P) concentrations, and maximum carboxylation (Vcmax) and electron transport rates (Jmax) of 54 representative subtropical woody evergreen and deciduous species were measured. With the exception of LMA, the parameters quantified in this study were significantly higher in deciduous species than in evergreen species. The degree of light inhibition did not significantly differ between evergreen (52%) and deciduous (50%) species. Rlight was significantly correlated with LES traits such as Asat, Rdark, LMA, N and P. The Rlight vs. Rdark and N relationships shared common slopes between evergreen and deciduous species, but significantly differed in their y-intercepts, in which the rates of Rlight were slower or faster for any given Rdark or N in deciduous species, respectively. A model for Rlight based on three traits (i.e., Rdark, LMA and P) had an explanatory power of 84.9%. These results show that there is a link between Rlight and the LES, and highlight that PFTs is an important factor in affecting Rlight and the relationships of Rlight with Rdark and N. Thus, this study provides information that can improve the next generation of terrestrial biosphere models (TBMs).
Assuntos
Ecossistema , Plantas , Fotossíntese , Respiração , Transporte de Elétrons , Folhas de Planta , ÁrvoresRESUMO
Understanding the invasion of moso bamboo (Phyllostachys edulis) into adjacent evergreen broadleaf forest based on functional traits is crucial due to its significant influence on ecosystem processes. However, existing research has primarily focused on above- or below-ground traits in isolation, lacking a comprehensive integration of both. In this study, we conducted a trait-based analysis including 23 leaf traits and 11 root traits in three forest types - bamboo forest, mixed bamboo and broadleaf forest, and evergreen broadleaf forest - to investigate trait differences, phenotypic integration, and above- and below-ground resource strategies in bamboo and broadleaf species. Our findings demonstrated significant differences in leaf and root key traits between bamboo and broadleaf species, strongly supporting the "phenotypic divergence hypothesis". Bamboo exhibited stronger trait correlations compared to broadleaf species, indicating higher phenotypic integration. Above- and below-ground strategies were characterized by trade-offs rather than coordination, resulting in a multi-dimensional trait syndrome. Specifically, a unidimensional leaf economics spectrum revealed that bamboo with higher leaf N concentrations (LNC), P concentrations (LPC), and specific leaf area (SLA) adopted a "fast acquisitive" above-ground strategy, while broadleaf species with thicker leaves employed a "slow conservative" above-ground strategy. A two-dimensional root trait syndrome indicated a "conservation" gradient with bamboo adopting a "slow conservative" below-ground strategy associated with higher root tissue density (RTD), and broadleaf species exhibiting a "fast acquisitive" below-ground strategy linked to higher root N concentrations (RNC) and P concentrations (RPC), and a "collaboration" gradient probably ranging from broadleaf species with a "do-it-yourself" strategy characterized by high specific root length (SRL), to bamboo adopting an "outsourcing" strategy with thicker roots. In conclusion, key trait divergence from coexisting broadleaf species, higher phenotypic integration, and multi-dimensional opposite above- and below-ground resource strategies confer competitive advantages to moso bamboo, shedding light on the mechanistic understanding of its invasion into subtropical evergreen broadleaf forest and providing theoretical guidance for maintaining the stability of subtropical forest ecosystem.
RESUMO
PURPOSE: The specific neurovascular compression (NVC) event responsible for the symptomatic manifestation of hemifacial spasm (HFS) remains difficult to assess accurately using magnetic resonance imaging (MRI). We aim to evaluate the MRI characteristics of HFS. METHOD: We retrospectively included patients with HFS and divided them into a test group (n = 186) and a validation group (n = 28). The presence, severity, and offending vessel type of NVC in each portion, and the orientation of the offending vessel around the facial nerve, were recorded. Conditional logistic regression analyses were performed to evaluate correlations using test group. The validation group was used to verify whether our findings improved diagnostic performance. RESULTS: Deformity in the proximal cisternal segment was significantly correlated with HFS occurrence (odds ratio [OR]: 256.58, p = .002), whereas contact was not (p = .233). Both contact and deformity in the root detachment point (OR: 19.98 and 37.22, p < .001 and p = .013, respectively) or attached segment (OR: 4.99 and 252.52, p = .001 and p < .001, respectively) were significantly correlated with HFS occurrence. Our findings improved specificity, positive predictive value, and accuracy of diagnosis than conventional diagnostic methods. The vertebral artery predominantly compress the facial nerve in the inferior-anterior position, the anterior inferior cerebellar artery predominantly in the inferior position, the posterior inferior cerebellar artery predominantly in the inferior position, vein predominantly in the posterior-superior position. CONCLUSIONS: This study further demonstrates that within the susceptible portion of facial nerve, different portions of the nerve respond differently to NVC. Each offending vessel has its own preferred conflict orientation. Our study offers reference for neurosurgeons in diagnosis and treatment.