Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(1): 143-155, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942611

RESUMO

BACKGROUND: BETs (bromodomain and extraterminal domain-containing epigenetic reader proteins), including BRD4 (bromodomain-containing protein 4), orchestrate transcriptional programs induced by pathogenic stimuli, as intensively studied in cardiovascular disease and elsewhere. In endothelial cells (ECs), BRD4 directs induced proinflammatory, proatherosclerotic transcriptional responses; BET inhibitors, like JQ1, repress these effects and decrease atherosclerosis. While BET effects in pathogenic conditions have prompted therapeutic BET inhibitor development, BET action under basal conditions, including ECs, has remained understudied. To understand BET action in basal endothelial transcriptional programs, we first analyzed EC RNA-Seq data in the absence versus presence of JQ1 before using BET regulation to identify novel determinants of EC biology and function. METHODS: RNA-Seq datasets of human umbilical vein ECs without and with JQ1 treatment were analyzed. After identifying C12orf34, also known as FAM222A (family with sequence similarity 222 member A), as a previously unreported, basally expressed, potently JQ1-induced EC gene, FAM222A was studied in endothelial and angiogenic responses in vitro using small-interference RNA silencing and lentiviral overexpression, in vitro, ex vivo and in vivo, including aortic sprouting, matrigel plug assays, and murine neonatal oxygen-induced retinopathy. RESULTS: Resting EC RNA-Seq data indicate BETs direct transcriptional programs underlying core endothelial properties including migration, proliferation, and angiogenesis. BET inhibition in resting ECs also significantly induced a subset of mRNAs, including FAM222A-a unique BRD4-regulated gene with no reported EC role. Silencing endothelial FAM222A significantly decreased cellular proliferation, migration, network formation, aorta sprouting, and Matrigel plug vascularization through coordinated modulation of VEGF (vascular endothelial growth factor) and NOTCH mediator expression in vitro, ex vivo, in vivo; lentiviral FAM222A overexpression had opposite effects. In vivo, siFAM222A significantly repressed retinal revascularization in neonatal murine oxygen-induced retinopathy through similar angiogenic signaling modulation. CONCLUSIONS: BET control over the basal endothelial transcriptome includes FAM222A, a novel, BRD4-regulated, key determinant of endothelial biology and angiogenesis.


Assuntos
Doenças Retinianas , Fatores de Transcrição , Animais , Humanos , Camundongos , Angiogênese , Biologia , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxigênio , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Fator A de Crescimento do Endotélio Vascular/genética
2.
Circ Res ; 130(11): 1662-1681, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35440172

RESUMO

BACKGROUND: Perivascular fibrosis, characterized by increased amount of connective tissue around vessels, is a hallmark for vascular disease. Ang II (angiotensin II) contributes to vascular disease and end-organ damage via promoting T-cell activation. Despite recent data suggesting the role of T cells in the progression of perivascular fibrosis, the underlying mechanisms are poorly understood. METHODS: TF (transcription factor) profiling was performed in peripheral blood mononuclear cells of hypertensive patients. CD4-targeted KLF10 (Kruppel like factor 10)-deficient (Klf10fl/flCD4Cre+; [TKO]) and CD4-Cre (Klf10+/+CD4Cre+; [Cre]) control mice were subjected to Ang II infusion. End point characterization included cardiac echocardiography, aortic imaging, multiorgan histology, flow cytometry, cytokine analysis, aorta and fibroblast transcriptomic analysis, and aortic single-cell RNA-sequencing. RESULTS: TF profiling identified increased KLF10 expression in hypertensive human subjects and in CD4+ T cells in Ang II-treated mice. TKO mice showed enhanced perivascular fibrosis, but not interstitial fibrosis, in aorta, heart, and kidney in response to Ang II, accompanied by alterations in global longitudinal strain, arterial stiffness, and kidney function compared with Cre control mice. However, blood pressure was unchanged between the 2 groups. Mechanistically, KLF10 bound to the IL (interleukin)-9 promoter and interacted with HDAC1 (histone deacetylase 1) inhibit IL-9 transcription. Increased IL-9 in TKO mice induced fibroblast intracellular calcium mobilization, fibroblast activation, and differentiation and increased production of collagen and extracellular matrix, thereby promoting the progression of perivascular fibrosis and impairing target organ function. Remarkably, injection of anti-IL9 antibodies reversed perivascular fibrosis in Ang II-infused TKO mice and C57BL/6 mice. Single-cell RNA-sequencing revealed fibroblast heterogeneity with activated signatures associated with robust ECM (extracellular matrix) and perivascular fibrosis in Ang II-treated TKO mice. CONCLUSIONS: CD4+ T cell deficiency of Klf10 exacerbated perivascular fibrosis and multi-organ dysfunction in response to Ang II via upregulation of IL-9. Klf10 or IL-9 in T cells might represent novel therapeutic targets for treatment of vascular or fibrotic diseases.


Assuntos
Linfócitos T CD4-Positivos , Hipertensão , Angiotensina II/farmacologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce , Fibrose , Humanos , Interleucina-9 , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA
3.
Angiogenesis ; 26(1): 107-127, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36074222

RESUMO

Peripheral artery disease (PAD) is an occlusive disease of limb arteries. Critical limb ischemia (CLI) is an advanced form of PAD that is prognostically worse in subjects with diabetes and can result in limb loss, gangrene, and death, although the underlying signaling mechanisms that contribute to its development remain poorly understood. By comparing plasma samples from diabetic humans with PAD and mouse models of PAD, we identified miR-375 to be significantly downregulated in humans and mice during progression to CLI. Overexpression of miR-375 was pro-angiogenic in endothelial cells in vitro and induced endothelial migration, proliferation, sprouting, and vascular network formation, whereas miR-375 inhibition conferred anti-angiogenic effects. Intramuscular delivery of miR-375 improved blood flow recovery to diabetic mouse hindlimbs following femoral artery ligation (FAL) and improved neovessel growth and arteriogenesis in muscle tissues. Using RNA-sequencing and prediction algorithms, Kruppel-like factor 5 (KLF5) was identified as a direct target of miR-375 and siRNA knockdown of KLF5 phenocopied the effects of miR-375 overexpression in vitro and in vivo through regulatory changes in NF-kB signaling. Together, a miR-375-KLF5-NF-kB signaling axis figures prominently as a potential therapeutic pathway in the development CLI in diabetes.


Assuntos
Diabetes Mellitus , MicroRNAs , Animais , Humanos , Camundongos , Isquemia Crônica Crítica de Membro , Células Endoteliais/metabolismo , Isquemia/metabolismo , Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Fisiológica , NF-kappa B , Fatores de Transcrição
4.
FASEB J ; 36(6): e22353, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35593587

RESUMO

Endothelial cell (EC) aging plays a vital role in the pathogenesis of cardiovascular disease (CVD). MicroRNAs have emerged as crucial regulators of target gene expression by inhibiting mRNA translation and/or promoting mRNA degradation. We identify an aging-related and oxidative stress-responsive microRNA, miR-181b, that inhibits endothelial cell apoptosis and senescence. In gain- or loss-of-function studies, miR-181b regulated the expression of key apoptosis markers (Bcl2, Bax, cleaved-Caspase3) and senescence markers (p16, p21, γH2AX) and the ratio of apoptotic cells (TUNEL-positive) and senescent cells (SA-ßgal-positive) in H2 O2 -induced ECs. Mechanistically, miR-181b targets MAP3K3 and modulates a MAP3K3/MKK/MAPK signaling pathway. MAP3K3 knockdown recapitulated the phenotype of miR-181b overexpression and miR-181b was dependent on MAP3K3 for regulating EC apoptosis and senescence. In vivo, miR-181b expression showed a negative correlation with increasing age in the mouse aorta. Endothelial-specific deficiency of miR-181a2b2 increased the target MAP3K3, markers of vascular senescence (p16, p21), and DNA double-strand breaks (γH2AX) in the aorta of aged mice. Collectively, this study unveils an important role of miR-181b in regulating vascular endothelial aging via an MAP3K3-MAPK signaling pathway, providing new potential therapeutic targets for antiaging therapy in CVD.


Assuntos
Doenças Cardiovasculares , Sistema de Sinalização das MAP Quinases , MicroRNAs , Animais , Senescência Celular/genética , Endotélio Vascular/metabolismo , Camundongos , MicroRNAs/metabolismo
5.
FASEB J ; 36(4): e22239, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235229

RESUMO

Cellular reprogramming through targeting microRNAs (miRNAs) holds promise for regenerative therapy due to their profound regulatory effects in proliferation, differentiation, and function. We hypothesized that transdifferentiation of vascular smooth muscle cells (SMCs) into endothelial cells (ECs) using a miRNA cassette may provide a novel approach for use in vascular disease states associated with endothelial injury or dysfunction. miRNA profiling of SMCs and ECs and iterative combinatorial miRNA transfections of human coronary SMCs revealed a 4-miRNA cassette consisting of miR-143-3p and miR-145-5p inhibitors and miR-146a-5p and miR-181b-5p mimics that efficiently produced induced endothelial cells (iECs). Transcriptome profiling, protein expression, and functional studies demonstrated that iECs exhibit high similarity to ECs. Injected iECs restored blood flow recovery even faster than conventional ECs in a murine hindlimb ischemia model. This study demonstrates that a 4-miRNA cassette is sufficient to reprogram SMCs into ECs and shows promise as a novel regenerative strategy for endothelial repair.


Assuntos
MicroRNAs , Animais , Diferenciação Celular , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Humanos , Camundongos , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo
6.
Circulation ; 143(2): 163-177, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33222501

RESUMO

BACKGROUND: Chronic activation of the innate immune system drives inflammation and contributes directly to atherosclerosis. We previously showed that macrophages in the atherogenic plaque undergo RIPK3 (receptor-interacting serine/threonine-protein kinase 3)-MLKL (mixed lineage kinase domain-like protein)-dependent programmed necroptosis in response to sterile ligands such as oxidized low-density lipoprotein and damage-associated molecular patterns and that necroptosis is active in advanced atherosclerotic plaques. Upstream of the RIPK3-MLKL necroptotic machinery lies RIPK1 (receptor-interacting serine/threonine-protein kinase 1), which acts as a master switch that controls whether the cell undergoes NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells)-dependent inflammation, caspase-dependent apoptosis, or necroptosis in response to extracellular stimuli. We therefore set out to investigate the role of RIPK1 in the development of atherosclerosis, which is driven largely by NF-κB-dependent inflammation at early stages. We hypothesize that, unlike RIPK3 and MLKL, RIPK1 primarily drives NF-κB-dependent inflammation in early atherogenic lesions, and knocking down RIPK1 will reduce inflammatory cell activation and protect against the progression of atherosclerosis. METHODS: We examined expression of RIPK1 protein and mRNA in both human and mouse atherosclerotic lesions, and used loss-of-function approaches in vitro in macrophages and endothelial cells to measure inflammatory responses. We administered weekly injections of RIPK1 antisense oligonucleotides to Apoe-/- mice fed a cholesterol-rich (Western) diet for 8 weeks. RESULTS: We find that RIPK1 expression is abundant in early-stage atherosclerotic lesions in both humans and mice. Treatment with RIPK1 antisense oligonucleotides led to a reduction in aortic sinus and en face lesion areas (47.2% or 58.8% decrease relative to control, P<0.01) and plasma inflammatory cytokines (IL-1α [interleukin 1α], IL-17A [interleukin 17A], P<0.05) in comparison with controls. RIPK1 knockdown in macrophages decreased inflammatory genes (NF-κB, TNFα [tumor necrosis factor α], IL-1α) and in vivo lipopolysaccharide- and atherogenic diet-induced NF-κB activation. In endothelial cells, knockdown of RIPK1 prevented NF-κB translocation to the nucleus in response to TNFα, where accordingly there was a reduction in gene expression of IL1B, E-selectin, and monocyte attachment. CONCLUSIONS: We identify RIPK1 as a central driver of inflammation in atherosclerosis by its ability to activate the NF-κB pathway and promote inflammatory cytokine release. Given the high levels of RIPK1 expression in human atherosclerotic lesions, our study suggests RIPK1 as a future therapeutic target to reduce residual inflammation in patients at high risk of coronary artery disease.


Assuntos
Aterosclerose/metabolismo , Inativação Gênica/fisiologia , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Animais , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Colesterol na Dieta/administração & dosagem , Colesterol na Dieta/efeitos adversos , Feminino , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
7.
Cardiovasc Diabetol ; 21(1): 31, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35209901

RESUMO

BACKGROUND: Type 2 diabetes (T2D) is associated with coronary microvascular dysfunction, which is thought to contribute to compromised diastolic function, ultimately culminating in heart failure with preserved ejection fraction (HFpEF). The molecular mechanisms remain incompletely understood, and no early diagnostics are available. We sought to gain insight into biomarkers and potential mechanisms of microvascular dysfunction in obese mouse (db/db) and lean rat (Goto-Kakizaki) pre-clinical models of T2D-associated diastolic dysfunction. METHODS: The microRNA (miRNA) content of circulating extracellular vesicles (EVs) was assessed in T2D models to identify biomarkers of coronary microvascular dysfunction/rarefaction. The potential source of circulating EV-encapsulated miRNAs was determined, and the mechanisms of induction and the function of candidate miRNAs were assessed in endothelial cells (ECs). RESULTS: We found an increase in miR-30d-5p and miR-30e-5p in circulating EVs that coincided with indices of coronary microvascular EC dysfunction (i.e., markers of oxidative stress, DNA damage/senescence) and rarefaction, and preceded echocardiographic evidence of diastolic dysfunction. These miRNAs may serve as biomarkers of coronary microvascular dysfunction as they are upregulated in ECs of the left ventricle of the heart, but not other organs, in db/db mice. Furthermore, the miR-30 family is secreted in EVs from senescent ECs in culture, and ECs with senescent-like characteristics are present in the db/db heart. Assessment of miR-30 target pathways revealed a network of genes involved in fatty acid biosynthesis and metabolism. Over-expression of miR-30e in cultured ECs increased fatty acid ß-oxidation and the production of reactive oxygen species and lipid peroxidation, while inhibiting the miR-30 family decreased fatty acid ß-oxidation. Additionally, miR-30e over-expression synergized with fatty acid exposure to down-regulate the expression of eNOS, a key regulator of microvascular and cardiomyocyte function. Finally, knock-down of the miR-30 family in db/db mice decreased markers of oxidative stress and DNA damage/senescence in the microvascular endothelium. CONCLUSIONS: MiR-30d/e represent early biomarkers and potential therapeutic targets that are indicative of the development of diastolic dysfunction and may reflect altered EC fatty acid metabolism and microvascular dysfunction in the diabetic heart.


Assuntos
Diabetes Mellitus Tipo 2 , Células Endoteliais/patologia , Ácidos Graxos/metabolismo , Insuficiência Cardíaca , MicroRNAs , Animais , Biomarcadores , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Células Endoteliais/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Volume Sistólico
9.
Arterioscler Thromb Vasc Biol ; 41(9): 2399-2416, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34289702

RESUMO

Objective: Vascular smooth muscle cell (VSMC) plasticity plays a critical role in the development of atherosclerosis. Long noncoding RNAs (lncRNAs) are emerging as important regulators in the vessel wall and impact cellular function through diverse interactors. However, the role of lncRNAs in regulating VSMCs plasticity and atherosclerosis remains unclear. Approach and Results: We identified a VSMC-enriched lncRNA cardiac mesoderm enhancer-associated noncoding RNA (CARMN) that is dynamically regulated with progression of atherosclerosis. In both mouse and human atherosclerotic plaques, CARMN colocalized with VSMCs and was expressed in the nucleus. Knockdown of CARMN using antisense oligonucleotides in Ldlr−/− mice significantly reduced atherosclerotic lesion formation by 38% and suppressed VSMCs proliferation by 45% without affecting apoptosis. In vitro CARMN gain- and loss-of-function studies verified effects on VSMC proliferation, migration, and differentiation. TGF-ß1 (transforming growth factor-beta) induced CARMN expression in a Smad2/3-dependent manner. CARMN regulated VSMC plasticity independent of the miR143/145 cluster, which is located in close proximity to the CARMN locus. Mechanistically, lncRNA pulldown in combination with mass spectrometry analysis showed that the nuclear-localized CARMN interacted with SRF (serum response factor) through a specific 600­1197 nucleotide domain. CARMN enhanced SRF occupancy on the promoter regions of its downstream VSMC targets. Finally, knockdown of SRF abolished the regulatory role of CARMN in VSMC plasticity. Conclusions: The lncRNA CARMN is a critical regulator of VSMC plasticity and atherosclerosis. These findings highlight the role of a lncRNA in SRF-dependent signaling and provide implications for a range of chronic vascular occlusive disease states.


Assuntos
Aterosclerose/metabolismo , Plasticidade Celular , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Resposta Sérica/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Linhagem Celular , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fenótipo , Placa Aterosclerótica , RNA Longo não Codificante/genética , Receptores de LDL/deficiência , Receptores de LDL/genética , Fator de Resposta Sérica/genética , Transdução de Sinais
10.
Arterioscler Thromb Vasc Biol ; 40(3): 523-533, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31893949

RESUMO

Peripheral artery disease, caused by chronic arterial occlusion of the lower extremities, affects over 200 million people worldwide. Peripheral artery disease can progress into critical limb ischemia (CLI), its more severe manifestation, which is associated with higher risk of limb amputation and cardiovascular death. Aiming to improve tissue perfusion, therapeutic angiogenesis held promise to improve ischemic limbs using delivery of growth factors but has not successfully translated into benefits for patients. Moreover, accumulating studies suggest that impaired downstream signaling of these growth factors (or angiogenic resistance) may significantly contribute to CLI, particularly under harsh environments, such as diabetes mellitus. Noncoding RNAs are essential regulators of gene expression that control a range of pathophysiologies relevant to CLI, including angiogenesis/arteriogenesis, hypoxia, inflammation, stem/progenitor cells, and diabetes mellitus. In this review, we summarize the role of noncoding RNAs, including microRNAs and long noncoding RNAs, as functional mediators or biomarkers in the pathophysiology of CLI. A better understanding of these ncRNAs in CLI may provide opportunities for new targets in the prevention, diagnosis, and therapeutic management of this disabling disease state.


Assuntos
Isquemia/genética , Doença Arterial Periférica/genética , RNA não Traduzido/genética , Animais , Estado Terminal , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Diabetes Mellitus/terapia , Regulação da Expressão Gênica , Hemodinâmica , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Hipóxia/terapia , Inflamação/genética , Inflamação/metabolismo , Inflamação/fisiopatologia , Inflamação/terapia , Isquemia/metabolismo , Isquemia/fisiopatologia , Isquemia/terapia , Neovascularização Fisiológica , Doença Arterial Periférica/metabolismo , Doença Arterial Periférica/fisiopatologia , Doença Arterial Periférica/terapia , Prognóstico , RNA não Traduzido/metabolismo , Fluxo Sanguíneo Regional , Fatores de Risco , Transdução de Sinais , Células-Tronco/metabolismo
11.
Development ; 144(13): 2428-2444, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28536097

RESUMO

The transcriptional pathways activated downstream of vascular endothelial growth factor (VEGF) signaling during angiogenesis remain incompletely characterized. By assessing the signals responsible for induction of the Notch ligand delta-like 4 (DLL4) in endothelial cells, we find that activation of the MAPK/ERK pathway mirrors the rapid and dynamic induction of DLL4 transcription and that this pathway is required for DLL4 expression. Furthermore, VEGF/ERK signaling induces phosphorylation and activation of the ETS transcription factor ERG, a prerequisite for DLL4 induction. Transcription of DLL4 coincides with dynamic ERG-dependent recruitment of the transcriptional co-activator p300. Genome-wide gene expression profiling identified a network of VEGF-responsive and ERG-dependent genes, and ERG chromatin immunoprecipitation (ChIP)-seq revealed the presence of conserved ERG-bound putative enhancer elements near these target genes. Functional experiments performed in vitro and in vivo confirm that this network of genes requires ERK, ERG and p300 activity. Finally, genome-editing and transgenic approaches demonstrate that a highly conserved ERG-bound enhancer located upstream of HLX (which encodes a transcription factor implicated in sprouting angiogenesis) is required for its VEGF-mediated induction. Collectively, these findings elucidate a novel transcriptional pathway contributing to VEGF-dependent angiogenesis.


Assuntos
Proteína p300 Associada a E1A/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio , Bovinos , Elementos Facilitadores Genéticos/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Íntrons/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Neovascularização Fisiológica/genética , Regulador Transcricional ERG/metabolismo , Peixe-Zebra/embriologia
12.
FASEB J ; 33(4): 5599-5614, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30668922

RESUMO

Angiogenesis is a critical process in repair of tissue injury that is regulated by a delicate balance between pro- and antiangiogenic factors. In disease states associated with impaired angiogenesis, we identified that miR-135a-3p is rapidly induced and serves as an antiangiogenic microRNA (miRNA) by targeting endothelial cell (EC) p38 signaling in vitro and in vivo. MiR-135a-3p overexpression significantly inhibited EC proliferation, migration, and network tube formation in matrigel, whereas miR-135-3p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3'-UTR reporter and miRNA ribonucleoprotein complex -immunoprecipitation assays, and small interfering RNA dependency studies revealed that miR-135a-3p inhibits the p38 signaling pathway in ECs by targeting huntingtin-interacting protein 1 (HIP1). Local delivery of miR-135a-3p inhibitors to wounds of diabetic db/db mice markedly increased angiogenesis, granulation tissue thickness, and wound closure rates, whereas local delivery of miR-135a-3p mimics impaired these effects. Finally, through gain- and loss-of-function studies in human skin organoids as a model of tissue injury, we demonstrated that miR-135a-3p potently modulated p38 signaling and angiogenesis in response to VEGF stimulation by targeting HIP1. These findings establish miR-135a-3p as a pivotal regulator of pathophysiological angiogenesis and tissue repair by targeting a VEGF-HIP1-p38K signaling axis, providing new targets for angiogenic therapy to promote tissue repair.-Icli, B., Wu, W., Ozdemir, D., Li, H., Haemmig, S., Liu, X., Giatsidis, G., Cheng, H. S., Avci, S. N., Kurt, M., Lee, N., Guimaraes, R. B., Manica, A., Marchini, J. F., Rynning, S. E., Risnes, I., Hollan, I., Croce, K., Orgill, D. P., Feinberg, M. W. MicroRNA-135a-3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells.


Assuntos
Células Endoteliais/patologia , MicroRNAs/genética , Neovascularização Patológica/genética , Transdução de Sinais/genética , Cicatrização/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Animais , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD/genética , Fator A de Crescimento do Endotélio Vascular/genética
13.
Arterioscler Thromb Vasc Biol ; 39(7): 1458-1474, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31092013

RESUMO

Objective- In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and antiangiogenic factors. We aimed to identify and characterize microRNAs that regulate angiogenesis in response to tissue injury. Approach and Results- We show that in response to tissue injury, microRNA-615-5p (miR-615-5p) is rapidly induced and serves as an antiangiogenic microRNA by targeting endothelial cell VEGF (vascular endothelial growth factor)-AKT (protein kinase B)/eNOS (endothelial nitric oxide synthase) signaling in vitro and in vivo. MiR-615-5p expression is increased in wounds of diabetic db/db mice, in plasma of human subjects with acute coronary syndromes, and in plasma and skin of human subjects with diabetes mellitus. Ectopic expression of miR-615-5p markedly inhibited endothelial cell proliferation, migration, network tube formation in Matrigel, and the release of nitric oxide, whereas miR-615-5p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3' untranslated region reporter and microribonucleoprotein immunoprecipitation assays, and small interfering RNA dependency studies demonstrate that miR-615-5p inhibits the VEGF-AKT/eNOS signaling pathway in endothelial cells by targeting IGF2 (insulin-like growth factor 2) and RASSF2 (Ras-associating domain family member 2). Local delivery of miR-615-5p inhibitors, markedly increased angiogenesis, granulation tissue thickness, and wound closure rates in db/db mice, whereas miR-615-5p mimics impaired these effects. Systemic miR-615-5p neutralization improved skeletal muscle perfusion and angiogenesis after hindlimb ischemia in db/db mice. Finally, modulation of miR-615-5p expression dynamically regulated VEGF-induced AKT signaling and angiogenesis in human skin organoids as a model of tissue injury. Conclusions- These findings establish miR-615-5p as an inhibitor of VEGF-AKT/eNOS-mediated endothelial cell angiogenic responses and that manipulating miR-615-5p expression could provide a new target for angiogenic therapy in response to tissue injury. Visual Overview- An online visual overview is available for this article.


Assuntos
Células Endoteliais/fisiologia , MicroRNAs/fisiologia , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/fisiologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/fisiologia
14.
Vasc Med ; 25(5): 401-410, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32853041

RESUMO

Flow-limiting atherosclerotic lesions of arteries supplying the limbs are a cause of symptoms in patients with peripheral artery disease (PAD). Musculoskeletal metabolic factors also contribute to the pathophysiology of claudication, which is manifest as leg discomfort that impairs walking capacity. Accordingly, we conducted a case-control study to determine whether skeletal muscle metabolic gene expression is altered in PAD. Calf skeletal muscle gene expression of patients with PAD and healthy subjects was analyzed using microarrays. The top-ranking gene differentially expressed between PAD and controls (FDR < 0.001) was PLA2G16, which encodes adipose-specific phospholipase A2 (AdPLA) and is implicated in the maintenance of insulin sensitivity and regulation of lipid metabolism. Differential expression was confirmed by qRT-PCR; PLA2G16 was downregulated by 68% in patients with PAD (p < 0.001). Expression of Pla2g16 was then measured in control (db/+) and diabetic (db/db) mice that underwent unilateral femoral artery ligation. There was significantly reduced expression of Pla2g16 in the ischemic leg of both control and diabetic mice (by 51%), with significantly greater magnitude of reduction in the diabetic mice (by 79%). We conclude that AdPLA is downregulated in humans with PAD and in mice with hindlimb ischemia. Reduced AdPLA may contribute to impaired walking capacity in patients with PAD via its effects on skeletal muscle metabolism. Further studies are needed to fully characterize the role of AdPLA in PAD and to investigate its potential as a therapeutic target for alleviating symptoms of claudication.


Assuntos
Claudicação Intermitente/enzimologia , Isquemia/enzimologia , Músculo Esquelético/enzimologia , Doença Arterial Periférica/enzimologia , Fosfolipases A2 Independentes de Cálcio/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Idoso , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Resistência à Insulina , Claudicação Intermitente/genética , Claudicação Intermitente/fisiopatologia , Isquemia/genética , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Doença Arterial Periférica/genética , Doença Arterial Periférica/fisiopatologia , Fosfolipases A2 Independentes de Cálcio/genética , Proteínas Supressoras de Tumor/genética , Caminhada
15.
Circ Res ; 121(4): 354-367, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28637783

RESUMO

RATIONALE: Inflammation is a key contributor to atherosclerosis. MicroRNA-146a (miR-146a) has been identified as a critical brake on proinflammatory nuclear factor κ light chain enhancer of activated B cells signaling in several cell types, including endothelial cells and bone marrow (BM)-derived cells. Importantly, miR-146a expression is elevated in human atherosclerotic plaques, and polymorphisms in the miR-146a precursor have been associated with risk of coronary artery disease. OBJECTIVE: To define the role of endogenous miR-146a during atherogenesis. METHODS AND RESULTS: Paradoxically, Ldlr-/- (low-density lipoprotein receptor null) mice deficient in miR-146a develop less atherosclerosis, despite having highly elevated levels of circulating proinflammatory cytokines. In contrast, cytokine levels are normalized in Ldlr-/-;miR-146a-/- mice receiving wild-type BM transplantation, and these mice have enhanced endothelial cell activation and elevated atherosclerotic plaque burden compared with Ldlr-/- mice receiving wild-type BM, demonstrating the atheroprotective role of miR-146a in the endothelium. We find that deficiency of miR-146a in BM-derived cells precipitates defects in hematopoietic stem cell function, contributing to extramedullary hematopoiesis, splenomegaly, BM failure, and decreased levels of circulating proatherogenic cells in mice fed an atherogenic diet. These hematopoietic phenotypes seem to be driven by unrestrained inflammatory signaling that leads to the expansion and eventual exhaustion of hematopoietic cells, and this occurs in the face of lower levels of circulating low-density lipoprotein cholesterol in mice lacking miR-146a in BM-derived cells. Furthermore, we identify sortilin-1(Sort1), a known regulator of circulating low-density lipoprotein levels in humans, as a novel target of miR-146a. CONCLUSIONS: Our study reveals that miR-146a regulates cholesterol metabolism and tempers chronic inflammatory responses to atherogenic diet by restraining proinflammatory signaling in endothelial cells and BM-derived cells.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , MicroRNAs/metabolismo , Animais , Aterosclerose/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Bovinos , VLDL-Colesterol/metabolismo , Dieta Aterogênica/efeitos adversos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Receptores de LDL/metabolismo
16.
Arterioscler Thromb Vasc Biol ; 38(1): 49-63, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28882869

RESUMO

OBJECTIVE: During inflammation, macrophages secrete vesicles carrying RNA, protein, and lipids as a form of extracellular communication. In the vessel wall, extracellular vesicles (EVs) have been shown to be transferred between vascular cells during atherosclerosis; however, the role of macrophage-derived EVs in atherogenesis is not known. Here, we hypothesize that atherogenic macrophages secrete microRNAs (miRNAs) in EVs to mediate cell-cell communication and promote proinflammatory and proatherogenic phenotypes in recipient cells. APPROACH AND RESULTS: We isolated EVs from mouse and human macrophages treated with an atherogenic stimulus (oxidized low-density lipoprotein) and characterized the EV miRNA expression profile. We confirmed the enrichment of miR-146a, miR-128, miR-185, miR-365, and miR-503 in atherogenic EVs compared with controls and demonstrate that these EVs are taken up and transfer exogenous miRNA to naive recipient macrophages. Bioinformatic pathway analysis suggests that atherogenic EV miRNAs are predicted to target genes involved in cell migration and adhesion pathways, and indeed delivery of EVs to naive macrophages reduced macrophage migration both in vitro and in vivo. Inhibition of miR-146a, the most enriched miRNA in atherogenic EVs, reduced the inhibitory effect of EVs on macrophage migratory capacity. EV-mediated delivery of miR-146a repressed the expression of target genes IGF2BP1 (insulin-like growth factor 2 mRNA-binding protein 1) and HuR (human antigen R or ELAV-like RNA-binding protein 1) in recipient cells, and knockdown of IGF2BP1 and HuR using short interfering RNA greatly reduced macrophage migration, highlighting the importance of these EV-miRNA targets in regulating macrophage motility. CONCLUSIONS: EV-derived miRNAs from atherogenic macrophages, in particular miR-146a, may accelerate the development of atherosclerosis by decreasing cell migration and promoting macrophage entrapment in the vessel wall.


Assuntos
Aterosclerose/metabolismo , Movimento Celular , Vesículas Extracelulares/metabolismo , Macrófagos Peritoneais/metabolismo , MicroRNAs/metabolismo , Vesículas Secretórias/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Técnicas de Cocultura , Modelos Animais de Doenças , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Vesículas Extracelulares/patologia , Regulação da Expressão Gênica , Humanos , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , MicroRNAs/genética , Células RAW 264.7 , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Via Secretória , Vesículas Secretórias/patologia , Transdução de Sinais , Células THP-1
17.
Mol Med ; 23: 24-33, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28182191

RESUMO

miR-155 has been shown to participate in host response to infection and neuro-inflammation via negative regulation of blood-brain-barrier (BBB) integrity and T cell function. We hypothesized that miR-155 may contribute to the pathogenesis of cerebral malaria (CM). To test this hypothesis, we used a genetic approach to modulate miR-155 expression in an experimental model of cerebral malaria (ECM). In addition, an engineered endothelialized microvessel system and serum samples from Ugandan children with CM were used to examine an anti-miR-155 as a potential adjunctive therapeutic for severe malaria. Despite higher parasitemia, survival was significantly improved in miR-155-/- mice vs. wild-type littermate mice in ECM. Improved survival was associated with preservation of BBB integrity and reduced endothelial activation, despite increased levels of pro-inflammatory cytokines. Pre-treatment with antagomir-155 reduced vascular leak induced by human CM sera in an ex vivo endothelial microvessel model. These data provide evidence supporting a mechanistic role for miR-155 in host response to malaria via regulation of endothelial activation, microvascular leak and BBB dysfunction in CM.

18.
Blood ; 125(20): 3202-12, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25838349

RESUMO

The blood contains high concentrations of circulating extracellular vesicles (EVs), and their levels and contents are altered in several disease states, including cardiovascular disease. However, the function of circulating EVs, especially the microRNAs (miRNAs) that they contain, are poorly understood. We sought to determine the effect of secreted vesicles produced by quiescent endothelial cells (ECs) on monocyte inflammatory responses and to assess whether transfer of microRNAs occurs between these cells. We observed that monocytic cells cocultured (but not in contact) with ECs were refractory to inflammatory activation. Further characterization revealed that endothelium-derived EVs (EC-EVs) suppressed monocyte activation by enhancing immunomodulatory responses and diminishing proinflammatory responses. EVs isolated from mouse plasma also suppressed monocyte activation. Importantly, injection of EC-EVs in vivo repressed monocyte/macrophage activation, confirming our in vitro findings. We found that several antiinflammatory microRNAs were elevated in EC-EV-treated monocytes. In particular, miR-10a was transferred to monocytic cells from EC-EVs and could repress inflammatory signaling through the targeting of several components of the NF-κB pathway, including IRAK4. Our findings reveal that ECs secrete EVs that can modulate monocyte activation and suggest that altered EV secretion and/or microRNA content may affect vascular inflammation in the setting of cardiovascular disease.


Assuntos
Células Endoteliais/metabolismo , MicroRNAs/genética , Monócitos/imunologia , Monócitos/metabolismo , Vesículas Secretórias/metabolismo , Comunicação Celular , Linhagem Celular , Técnicas de Cocultura , Espaço Extracelular , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Fatores Reguladores de Interferon/metabolismo , Lipopolissacarídeos/imunologia , NF-kappa B/metabolismo , Transdução de Sinais
20.
Cell Rep ; 43(3): 113815, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38428421

RESUMO

Diabetes-associated atherosclerosis involves excessive immune cell recruitment and plaque formation. However, the mechanisms remain poorly understood. Transcriptomic analysis of the aortic intima in Ldlr-/- mice on a high-fat, high-sucrose-containing (HFSC) diet identifies a macrophage-enriched nuclear long noncoding RNA (lncRNA), MERRICAL (macrophage-enriched lncRNA regulates inflammation, chemotaxis, and atherosclerosis). MERRICAL expression increases by 249% in intimal lesions during progression. lncRNA-mRNA pair genomic mapping reveals that MERRICAL positively correlates with the chemokines Ccl3 and Ccl4. MERRICAL-deficient macrophages exhibit lower Ccl3 and Ccl4 expression, chemotaxis, and inflammatory responses. Mechanistically, MERRICAL guides the WDR5-MLL1 complex to activate CCL3 and CCL4 transcription via H3K4me3 modification. MERRICAL deficiency in HFSC diet-fed Ldlr-/- mice reduces lesion formation by 74% in the aortic sinus and 86% in the descending aorta by inhibiting leukocyte recruitment into the aortic wall and pro-inflammatory responses. These findings unveil a regulatory mechanism whereby a macrophage-enriched lncRNA potently inhibits chemotactic responses, alleviating lesion progression in diabetes.


Assuntos
Doenças da Aorta , Aterosclerose , Diabetes Mellitus , Placa Aterosclerótica , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Quimiotaxia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/metabolismo , Macrófagos/metabolismo , Diabetes Mellitus/patologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Receptores de LDL , Placa Aterosclerótica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA