Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 194(2): 884-901, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37944026

RESUMO

A reliable and stable hydrogen gas (H2) supply will benefit agricultural laboratory and field trials. Here, we assessed ammonia borane (AB), an efficient hydrogen storage material used in the energy industry, and determined its effect on plant physiology and the corresponding mechanism. Through hydroponics and pot experiments, we discovered that AB increases tomato (Solanum lycopersicum) lateral root (LR) branching and this function depended on the increased endogenous H2 level caused by the sustainable H2 supply. In particular, AB might trigger LR primordia initiation. Transgenic tomato and Arabidopsis (Arabidopsis thaliana) expressing hydrogenase1 (CrHYD1) from Chlamydomonas reinhardtii not only accumulated higher endogenous H2 and phytomelatonin levels but also displayed pronounced LR branching. These endogenous H2 responses achieved by AB or genetic manipulation were sensitive to the pharmacological removal of phytomelatonin, indicating the downstream role of phytomelatonin in endogenous H2 control of LR formation. Consistently, extra H2 supply failed to influence the LR defective phenotypes in phytomelatonin synthetic mutants. Molecular evidence showed that the phytomelatonin-regulated auxin signaling network and cell-cycle regulation were associated with the AB/H2 control of LR branching. Also, AB and melatonin had little effect on LR branching in the presence of auxin synthetic inhibitors. Collectively, our integrated approaches show that supplying H2 via AB increases LR branching via phytomelatonin signaling. This finding might open the way for applying hydrogen storage materials to horticultural production.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Amônia/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/farmacologia , Hidrogênio , Raízes de Plantas/genética , Regulação da Expressão Gênica de Plantas
2.
Plant Physiol ; 193(4): 2734-2749, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37625793

RESUMO

Although the sources of molecular hydrogen (H2) synthesis in plants remain to be fully elucidated, ample evidence shows that plant-based H2 can regulate development and stress responses. Here, we present genetic and molecular evidence indicating that nitrate reductase (NR) might be a target of H2 sensing that positively regulates nitrogen use efficiency (NUE) and seed size in Arabidopsis (Arabidopsis thaliana). The expression level of NR and changes of NUE under control and, in particular, low nitrogen supply were positively associated with H2 addition supplied exogenously or through genetic manipulation. The improvement in nitrate assimilation achieved by H2 was also mediated via NR dephosphorylation. H2 control of seed size was impaired by NR mutation. Further genetic evidence revealed that H2, NR, and nitric oxide can synergistically regulate nitrate assimilation in response to N starvation conditions. Collectively, our data indicate that NR might be a target for H2 sensing, ultimately positively regulating nitrate uptake and seed size. These results provide insights into H2 signaling and its functions in plant metabolism.


Assuntos
Arabidopsis , Nitratos , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Nitrogênio/metabolismo , Hidrogênio
3.
Mar Drugs ; 22(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38393036

RESUMO

Microalgae are considered to be natural producers of bioactive pigments, with the production of pigments from microalgae being a sustainable and economical strategy that promises to alleviate growing demand. Chlorophyll, as the main pigment of photosynthesis, has been widely studied, but its medicinal applications as an antioxidant, antibacterial, and antitumor reagent are still poorly understood. Chlorophyll is the most important pigment in plants and algae, which not only provides food for organisms throughout the biosphere, but also plays an important role in a variety of human and man-made applications. The biological activity of chlorophyll is closely related to its chemical structure; its specific structure offers the possibility for its medicinal applications. This paper reviews the structural and functional roles of microalgal chlorophylls, commonly used extraction methods, and recent advances in medicine, to provide a theoretical basis for the standardization and commercial production and application of chlorophylls.


Assuntos
Microalgas , Humanos , Clorofila/química , Fotossíntese , Antioxidantes/farmacologia , Antioxidantes/química , Plantas
4.
Angew Chem Int Ed Engl ; 63(25): e202403927, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632085

RESUMO

All-inorganic metal halides with afterglow emission have attracted increasing attention due to their significantly longer afterglow duration and higher stability compared to their organic-inorganic hybrid counterparts. However, their afterglow colors have not yet reached the blue spectral region. Here, we report all-inorganic copper-doped Rb2AgBr3 single crystals with ultralong blue afterglow (>300 s) by modulating defect states through doping engineering. The introduction of copper(I) ions into Rb2AgBr3 facilitates the formation of bromine vacancies, thus increasing the density of trap states available for charge storage and enabling bright, persistent emission after ceasing the excitation. Moreover, cascade energy transfer between distinct emissive centers in the crystals results in ultra-broadband photoluminescence, not only covering the whole white light with near-unity quantum yield but also extending into the near-infrared region. This 'cocktail' of exotic light-emission properties, in conjunction with the excellent stability of copper-doped Rb2AgBr3 crystals, allowed us to demonstrate their implementation to solid-state lighting, night vision, and intelligent anti-counterfeiting.

5.
Angew Chem Int Ed Engl ; 63(8): e202319969, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38179817

RESUMO

Most of current metal halide materials, including all inorganic and organic-inorganic hybrids, are crystalline materials with poor workability and plasticity that limit their application scope. Here, we develop a novel class of materials termed polymeric metal halides (PMHs) through introducing polycations into antimony-based metal halide materials as A-site cations. A series of PMHs with orange-yellow broadband emission and large Stokes shift originating from inorganic self-trapped excitons are successfully prepared, which meanwhile exhibit the excellent processability and formability of polymers. The versatility of these PMHs is manifested as the broad choices of polycations, the ready extension to manganese- and copper-based halides, and the tolerance to molar ratios between polycations and metal halides in the formation of PMHs. The merger of polymer chemistry and inorganic chemistry thus provides a novel generic platform for the development of metal halide functional materials.

6.
Nanotechnology ; 34(24)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36930980

RESUMO

Multi-walled carbon nanotubes (MWCNTs) with one-dimensional nanostructure are an ideal support for oxygen reduction reaction (ORR) catalysts thanks to their intrinsic outstanding electrical conductivity and high specific surface area. Iron and nitrogen doping could alter the local electronic structure and therefore enhance the ORR activity of MWCNTs, but the preparation process always includes complicated growth conditions and post-treatment. Herein, an iron and nitrogen co-modified multi-walled carbon nanotubes (Fe-N-MWCNTs) with hierarchical nanostructure is engineered and synthesized via a simple two-step pyrolysis approach. Large specific surface area, low resistivity, and intensified charge density near the Fermi level synergistically endow the Fe-N-MWCNTs with outstanding ORR activity. The optimal Fe-N-MWCNTs exhibit a higher onset potential value of 0.92 V (versus RHE) and half-wave potential (E1/2) of 0.85 V (versus RHE) in 0.1 M KOH medium, which exceeds the benchmark Pt/C electrocatalyst (E1/2= 0.84 V). This strategy of modifying MWCNTs support by a simple calcination process provides a feasible method to prepare cost-efficient ORR electrocatalysts.

7.
Nanotechnology ; 35(7)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37918030

RESUMO

The all-trans conformation (ß-phase) possesses a significant impact on the piezoelectric polymer polyvinylidene fluoride (PVDF). Inducing more molecular chain [-CH2-CF2-]nto form all-trans conformation is one of the biggest obstacles for manufacturing high-performance piezoelectric sensing devices. Herein, the continuous vacuum technology is used to modulate the polarity of binary solvents by the proportion of the lower solvent. The regulated solvent forms a high dipole moment, an interaction between the dipole ofß-phase and the dipole moment makes the phase reversal in PVDF. Fourier transform infrared spectroscopy, piezoelectric constant test and other characterization results show that when the weakly polar acetone and the strongly polar solvent DMF reach a ratio of 4:6, the pure PVDF film possesses high piezoelectricity (d33∼ -44.8 pC N-1) and strong self-polarization. Additionally, the A4D6device exhibits high sensitivity (S1= 0.182 V/N, 0.5 N ∼ 30 N), driven capability (0.49 mW m-2), and reliability during the electrical tests as a pressure device. This work provides an effective and cost-effective route of optimizing the solvent's polarity to improve the piezoelectric characteristics of the polymer.

8.
BMC Plant Biol ; 22(1): 585, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517759

RESUMO

BACKGROUND: Cold stress adversely influences rapeseeds (Brassica napus L.) growth and yield during winter and spring seasons. Hydrogen (H2) is a potential gasotransmitter that is used to enhance tolerance against abiotic stress, including cold stress. However, convenience and stability are two crucial limiting factors upon the application of H2 in field agriculture. To explore the application of H2 in field, here we evaluated the role of ammonia borane (AB), a new candidate for a H2 donor produced by industrial chemical production, in plant cold tolerance. RESULTS: The application with AB could obviously alleviate the inhibition of rapeseed seedling growth and reduce the oxidative damage caused by cold stress. The above physiological process was closely related to the increased antioxidant enzyme system and reestablished redox homeostasis. Importantly, cold stress-triggered endogenous H2S biosynthesis was further stimulated by AB addition. The removal or inhibition of H2S synthesis significantly abolished plant tolerance against cold stress elicited by AB. Further field experiments demonstrated that the phenotypic and physiological performances of rapeseed plants after challenged with cold stress in the winter and early spring seasons were significantly improved by administration with AB. Particularly, the most studied cold-stress response pathway, the ICE1-CBF-COR transcriptional cascade, was significantly up-regulated either. CONCLUSION: Overall, this study clearly observed the evidence that AB-increased tolerance against cold stress could be suitable for using in field agriculture by stimulation of H2S signaling.


Assuntos
Boranos , Brassica napus , Brassica rapa , Sulfeto de Hidrogênio , Brassica napus/metabolismo , Sulfeto de Hidrogênio/metabolismo , Amônia , Resposta ao Choque Frio , Brassica rapa/metabolismo , Plantas/metabolismo
9.
J Exp Bot ; 73(17): 5851-5862, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35430633

RESUMO

Melatonin, a molecule that was first identified in animal tissues, has been confirmed to be involved as a potential phytohormone in a variety of plant physiological responses. It is considered primarily as an antioxidant with important actions in controlling reactive oxygen and reactive nitrogen species. In addition to its role in regulating plant growth and development, phytomelatonin is involved in protection against abiotic and biotic stresses. The 'gasotransmitter'-that is, a gaseous signaling molecule-is a new concept that has been advanced in the past two decades, with functions in animal and plant physiological regulation. Gasotransmitters including nitric oxide, carbon monoxide, hydrogen sulfide, methane, and, more recently identified, hydrogen gas are critical and indispensable in a wide range of biological processes. This review investigates the interrelationship between phytomelatonin and the above-mentioned gasotransmitters from the perspective of biosynthetic origin and functions. Moreover, the potential future research directions for phytomelatonin and gasotransmitters interactions are discussed.


Assuntos
Gasotransmissores , Sulfeto de Hidrogênio , Melatonina , Animais , Antioxidantes , Monóxido de Carbono , Gasotransmissores/fisiologia , Hidrogênio , Metano , Óxido Nítrico , Oxigênio , Reguladores de Crescimento de Plantas
10.
Ecotoxicol Environ Saf ; 231: 113197, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35032725

RESUMO

Magnesium hydride (MgH2) as a solid-state hydrogen source might be potentially applied in industry and medicine. However, its biological function in plants has not yet been fully discovered. In this report, it was observed that MgH2 administration could relieve copper (Cu) toxicity in alfalfa that was confirmed by a reduction in root growth inhibition. By using old MgH2 as a negative control, it was concluded that above MgH2 function was primarily derived from the releasing of molecular hydrogen (H2), but not caused by either magnesium metabolites or pH alteration. Further results revealed that Cu-triggered nitric oxide (NO) production was intensified by MgH2. Subsequent pharmacological and biochemical experiments suggested that nitrate reductase might be mainly responsible for NO production during above processes. Cu accumulation in the root tissues was also obviously reduced in the presence of MgH2. Meanwhile, increased non-protein thiols (NPTs) content and the deposition of Cu in cell wall of seedling roots could be used to explain the mechanism underlying MgH2-alleviated Cu toxicity via NO signaling. Further, the plant redox balance was reestablished since the Cu stress-modulated antioxidant enzymes activities, reactive oxygen species (ROS) accumulation, and oxidative injury detected by in vivo histochemical and biochemical analyses, were differentially abolished by MgH2. The above responses could be blocked by the removal of endogenous NO after the addition of its scavenger. Taken together, these results clearly suggested that MgH2 control of plant tolerance against Cu toxicity might be mediated by NO signaling, which might open a new window for the application of solid-state hydrogen materials in agriculture.


Assuntos
Cobre , Medicago sativa , Cobre/toxicidade , Magnésio , Óxido Nítrico , Raízes de Plantas , Plântula
11.
Bioprocess Biosyst Eng ; 45(3): 589-597, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34994848

RESUMO

This research of mixotrophic microalgae Isochrysis 3011 with glycerol was combined with the treatment of aqua-cultural wastewater, different initial concentrations, and optimized light intensities. The algae growth rate, removal efficiencies of total nitrogen (TN) and total phosphorus (TP) were determined. Results showed that the suitable initial concentration was 0.4 g L-1, and the optimum light intensity was 60 µmol m-2 s-1. The growth of the mixotrophic group was better than that of the autotrophic culture. The biomass yield of the mixotrophic group with glycerol was 0.17 g L-1 d-1, and the removal rates of TN and TP were 73.39% and 95.61%, respectively. The content of total lipid and total protein in mixotrophic group were higher than the values of the autotrophic group. This indicates that aquaculture wastewater treatment with mixotrophic bait microalgae can obtain superior micro-algal biomass, which is also a potential technology for wastewater utilization and ecological protection.


Assuntos
Haptófitas , Microalgas , Purificação da Água , Aquicultura , Biomassa , Nitrogênio/metabolismo , Águas Residuárias
12.
BMC Plant Biol ; 21(1): 359, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34353289

RESUMO

BACKGROUND: Plant height is an important architecture trait which is a fundamental yield-determining trait in crops. Variety with dwarf or semi-dwarf phenotype is a major objective in the breeding because dwarfing architecture can help to increase harvest index, increase planting density, enhance lodging resistance, and thus be suitable for mechanization harvest. Although some germplasm or genes associated with dwarfing plant type have been carried out. The molecular mechanisms underlying dwarfism in oilseed rape (Brassica napus L.) are poorly understood, restricting the progress of breeding dwarf varieties in this species. Here, we report a new dwarf mutant Bndwarf2 from our B. napus germplasm. We studied its inheritance and mapped the dwarf locus BnDWARF2. RESULTS: The inheritance analysis showed that the dwarfism phenotype was controlled by one semi-dominant gene, which was mapped in an interval of 787.88 kb on the C04 chromosome of B. napus by Illumina Brassica 60 K Bead Chip Array. To fine-map BnDWARF2, 318 simple sequence repeat (SSR) primers were designed to uniformly cover the mapping interval. Among them, 15 polymorphic primers that narrowed down the BnDWARF2 locus to 34.62 kb were detected using a F2:3 family population with 889 individuals. Protein sequence analysis showed that only BnaC04.BIL1 (BnaC04g41660D) had two amino acid residues substitutions (Thr187Ser and Gln399His) between ZS11 and Bndwarf2, which encoding a GLYCOGEN SYNTHASE KINASE 3 (GSK3-like). The quantitative real-time PCR (qRT-PCR) analysis showed that the BnaC04.BIL1 gene expressed in all tissues of oilseed rape. Subcellular localization experiment showed that BnaC04.BIL1 was localized in the nucleus in tobacco leaf cells. Genetic transformation experiments confirmed that the BnaC04.BIL1 is responsible for the plant dwarf phenotype in the Bndwarf2 mutants. Overexpression of BnaC04.BIL1 reduced plant height, but also resulted in compact plant architecture. CONCLUSIONS: A dominant dwarfing gene, BnaC04.BIL1, encodes an GSK3-like that negatively regulates plant height, was mapped and isolated. Our identification of a distinct gene locus may help to improve lodging resistance in oilseed rape.


Assuntos
Brassica napus/crescimento & desenvolvimento , Brassica napus/genética , Proteínas de Plantas/genética , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Quinase 3 da Glicogênio Sintase/genética , Mutação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/genética
13.
Virol J ; 18(1): 33, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568204

RESUMO

PURPOSE: To investigate the predictive significance of different pneumonia scoring systems in clinical severity and mortality risk of patients with severe novel coronavirus pneumonia. MATERIALS AND METHODS: A total of 53 cases of severe novel coronavirus pneumonia were confirmed. The APACHE II, MuLBSTA and CURB-65 scores of different treatment methods were calculated, and the predictive power of each score on clinical respiratory support treatment and mortality risk was compared. RESULTS: The APACHE II score showed the largest area under ROC curve in both noninvasive and invasive respiratory support treatment assessments, which is significantly different from that of CURB-65. Further, the MuLBSTA score had the largest area under ROC curve in terms of death risk assessment, which is also significantly different from that of CURB-65; however, no difference was noted with the APACHE II score. CONCLUSION: For patients with COVID, the APACHE II score is an effective predictor of the disease severity and mortality risk. Further, the MuLBSTA score is a good predictor only in terms of mortality risk.


Assuntos
COVID-19/diagnóstico , Pneumonia/diagnóstico , APACHE , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/mortalidade , COVID-19/terapia , COVID-19/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia/mortalidade , Pneumonia/terapia , Pneumonia/virologia , Prognóstico , Curva ROC , Medição de Risco , SARS-CoV-2 , Índice de Gravidade de Doença , Adulto Jovem
14.
Nanotechnology ; 32(30)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33794509

RESUMO

Elaborating the sensitization effects of different noble metals on In2O3has great significance in providing an optimum method to improve ethanol sensing performance. In this study, long-range ordered mesoporous In2O3has been fabricated through replicating the structure of SBA-15. Different noble metals (Au, Ag, Pt and Pd) with the same doping amount (1 at%) have been introduced by anin situdoping routine. The results of the gas sensing investigation indicate that the gas responses towards ethanol can be obviously increased by doping different noble metals. In particular, the best sensing performance towards ethanol detection can be achieved through Pd doping, and the sensors based on Pd-doped In2O3not only possess the highest response (39.0-100 ppm ethanol) but also have the shortest response and recovery times at the optimal operating temperature of 250 °C. The sensing mechanism of noble metal doped materials can be attributed to the synergetic effect combining 'catalysis' and 'electronic and chemical sensitization' of noble metals. In particular, the chemical state of the noble metal also has a great influence on the gas sensing mechanism. A detailed explanation of the enhancement of gas sensing performance through noble metal doping is presented in the gas sensing mechanism part of the manuscript.

15.
Nanotechnology ; 32(24)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33691290

RESUMO

Large-scale and well-alignedin situgrowth SnO2nanotube (NT) arrays have been synthesized directly on the surface of the Al2O3ceramic tube by a cost-effective template self-etching method. The morphology ofin situSnO2NTs can be adjusted by changing the concentration of urea. The structure and morphology characteristics of SnO2NT were examined via x-ray diffraction, BET, and scanning electron microscopy, respectively. A series of detections were carried out to evaluate the gas sensing performances. The results indicated thatin situgrowth SnO2NT arrays sensor exhibited an excellent response (S = 20.3), good linearity under the concentration range of ppm level (5-300 ppm), and outstanding selectivity to 100 ppm of acetone gas. Compared with the sensors fabricated by a slurry-coating method, the controllablein situassembled SnO2NT arrays exhibited a more stable structure and easier fabrication process. The high acetone sensing performance might due to the unique hollow structure and favorable orientation growth. The dominant sensing mechanism about thein situgrowth SnO2NT arrays sensor has been discussed in detail. It is expected thatin situgrowth SnO2NT arrays sensor with the general working principle and controllable growth strategy will become a promising functional material in monitoring and detecting acetone.

16.
Ecotoxicol Environ Saf ; 224: 112640, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34392154

RESUMO

Hydrogen agriculture is recently recognized as an emerging and promising approach for low-carbon society. Since shorter retention time for hydrogen gas (H2) in conventional electrolytically produced hydrogen-rich water (HRW) limits its application, seeking a more suitable method to produce and maintain H2 level in HRW for longer time remain a challenge for scientific community. To solve above problems, we compared and concluded that the H2 in HRW prepared by ammonia borane (NH3·BH3) could meet above requirement. The biological effects of HRW prepared by NH3·BH3 were further evaluated in seedlings of rapeseed, the most important crop for producing vegetable oil worldwide. Under our experimental conditions, 2 mg/L NH3·BH3-prepared HRW could confer 3-day-old hydroponic seedlings tolerance against 150 mM sodium chloride (NaCl), 20% polyethylene glycol (PEG; w/v), or 100 µM CdCl2 stress, and intensify endogenous nitric oxide (NO) accumulation under above stresses. The alleviation of seedlings growth stunt was confirmed by reducing cell death and reestablishing redox homeostasis. Reconstructing ion homeostasis, increasing proline content, and reducing Cd accumulation were accordingly observed. Above responses were sensitive to the removal of endogenous NO with its scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-1-oxyl-3-oxide (cPTIO; 100 µM), reflecting the requirement of NO functioning in the regulation of plant physiology achieved by NH3·BH3-prepared HRW. The application of 1 mM tungstate, an inhibitor of nitrate reductase (NR; an important NO synthetic enzyme), showed the similar blocking responses in the phenotype, suggesting that NR might be the major source of NO involved in above H2 actions. Together, these results revealed that HRW prepared by NH3·BH3 could enhance rapeseed seedlings tolerance against abiotic stress, thus opening a new window for the application of H2 in agricultural production.

17.
Ann Plast Surg ; 86(5): 582-587, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32756256

RESUMO

BACKGROUND: Random skin flap ischemic necrosis is a serious challenge in reconstructive surgery. Photobiomodulation is a noninvasive effective technique to improve microcirculation and neovascularization. Photobiomodulation with red or blue light has been separately proven to partially prevent skin flap necrosis, but the synergistic effect of red and blue light not been elucidated. Our experiment evaluated the impact of postconditioning with red-blue light therapy on the viability of random flaps. METHODS: Thirty Sprague-Dawley male rats (male, 12 weeks) with a cranially based random pattern skin flap (3 × 8 cm) were divided into 3 groups: control group, red light group, and red-blue light group. On postoperative day 7, flap survival was observed and recorded using transparent graph paper, flaps were obtained and stained with hematoxylin and eosin, and microvessel density was measured. Micro-computed tomography was used to measure vascular volume and vascular length. On days 0, 3, and 7 after surgery, blood flow was measured by laser Doppler. To investigate the underlying mechanisms, the amount of nitric oxide (NO) metabolites in the flap tissue was assessed on days 3, 5, and 7 after surgery. RESULTS: The mean percentage of skin flap survival was 59 ± 10% for the control group, 69 ± 7% for the red light group, and 79 ± 9% for the red-blue light group (P < 0.01). The microvessel density was 12.3 ± 1.2/mm2 for the control group, 31.3 ± 1.3/mm2 for the red light group, and 36.5 ± 1.4/mm2 for the red-blue light group (P < 0.01). Both vascular volume and total length in the red-blue light group showed significantly increased compared with the red light and control group (P < 0.01). Blood flow in the red-blue light treated flap showed significantly increased at postsurgery days 3 and 7 compared with the red light and control group (P < 0.01). The level of the NO metabolites was significantly increased in flap tissues belonging to the red-blue light group compared with the other 2 groups (P < 0.01). CONCLUSIONS: This study showed that postconditioning with red-blue light therapy can enhance the survival of random skin flap by improving angiogenesis and NO releasing.


Assuntos
Sobrevivência de Enxerto , Pele , Animais , Masculino , Necrose , Fototerapia , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X
18.
Molecules ; 27(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35011277

RESUMO

Phytohormones are a class of small organic molecules that are widely used in higher plants and microalgae as chemical messengers. Phytohormones play a regulatory role in the physiological metabolism of cells, including promoting cell division, increasing stress tolerance, and improving photosynthetic efficiency, and thereby increasing biomass, oil, chlorophyll, and protein content. However, traditional abiotic stress methods for inducing the accumulation of energy storage substances in microalgae, such as high light intensity, high salinity, and heavy metals, will affect the growth of microalgae and will ultimately limit the efficient accumulation of energy storage substances. Therefore, the addition of phytohormones not only helps to reduce production costs but also improves the efficiency of biofuel utilization. However, accurate and sensitive phytohormones determination and analytical methods are the basis for plant hormone research. In this study, the characteristics of phytohormones in microalgae and research progress for regulating the accumulation of energy storage substances in microalgae by exogenous phytohormones, combined with abiotic stress conditions at home and abroad, are summarized. The possible metabolic mechanism of phytohormones in microalgae is discussed, and possible future research directions are put forward, which provide a theoretical basis for the application of phytohormones in microalgae.


Assuntos
Microalgas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Biomarcadores , Biomassa , Vias Biossintéticas , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Técnicas Eletroquímicas , Microalgas/química , Estresse Oxidativo , Fotossíntese , Reguladores de Crescimento de Plantas/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico
19.
Eur J Cancer Care (Engl) ; 29(5): e13266, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32452121

RESUMO

OBJECTIVE: In this meta-analysis, we aimed to investigate the effects of art therapy on anxiety and depression in patients with breast cancer. METHODS: Electronic databases were searched for relevant studies through December 2019. Standardised mean differences (SMDs) were calculated as the effects of art therapy on improvement of anxiety and depression in women with breast cancer. The meta-analysis included nine studies involving a total of 446 participants. RESULTS: The summary SMD of art therapy for anxiety was -1.02 (95% confidence interval (CI), -2.08 to 0.04; p = .06). The pooled SMD of art therapy for depression was -0.73 (95% CI, -1.45 to -0.01; p = .046). In the age subgroup analysis, the summary SMD of art therapy for anxiety was -1.30 (95% CI, -2.45 to -0.14; p = .03) for a mean age of more than 55 years. The summary SMD of art therapy for depression was -1.01 (95% CI, -1.95 to -0.05; p = .04) for a mean age of less than 55 years. CONCLUSION: This meta-analysis revealed that art therapy demonstrates positive effects on depression but not anxiety in patients with breast cancer. There appears to be a critical age period for art therapy to alleviate anxiety or depression in these patients.


Assuntos
Arteterapia , Neoplasias da Mama , Ansiedade/terapia , Neoplasias da Mama/terapia , Depressão/terapia , Feminino , Humanos , Recém-Nascido , Qualidade de Vida
20.
Int J Phytoremediation ; 22(3): 241-250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31475567

RESUMO

Microalgae have been widely used for treatment of swine wastewater. However, the research on combined treatment of refractory pollutants ammonia nitrogen, Cu (II) and antibiotics from swine wastewater was still scattered. This study, the growth and removal efficiency of NH4Cl, CuSO4, tetracycline, norfloxacin and sulfadimidine with selected Scenedsmus sp. was investigated by biofilm attached culture. The results showed that low concentration of ammonia nitrogen had little effect on algae growth. The highest biomass productivity was 6.2 g/(m2d) at the concentration of NH4Cl of 50.0 mg/L, which was similar to that of a standard growth medium BG 11. Cu (II) concentration of 1.0 mg/L could accelerate the growth of Scenedsmus sp., and the highest biomass was 57.2 g/m2 in 8 days. Moreover, the highest biomass mean values was 59.5 g/m2, 57.1 g/m2, and 58.1 g/m2, respectively, when tetracycline concentration was 20.0 mg/L, norfloxacin concentration was 100.0 mg/L and sulfadimidine concentration was 10.0 mg/L. The removal efficiency of ammonia nitrogen, copper, tetracycline, norfloxacin and sulfadimidine with Scenedsmus sp. at their optimal initial concentration by biofilm attached culture was 85.2%, 64.6%, 74.6%,71.2%, and 62.3%, respectively. This study provides a theoretical basis for the purification of refractory substances from swine wastewater.


Assuntos
Poluentes Ambientais , Microalgas , Scenedesmus , Animais , Biodegradação Ambiental , Biofilmes , Biomassa , Nitrogênio , Fósforo , Suínos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA