Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(6): 5579-5588, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38284318

RESUMO

Circular dichroism (CD) in terahertz (THz) regions has been widely used in biomonitoring, analytical chemistry, communication sensing, and other fields. Herein, we present a simple design for a dual-band THz chiral metasurface absorber (CMA) with a stronger CD effect based on temperature-tunable InSb for enhanced sensing applications. The proposed dual-band CMA consisted of a periodic array of the evolved C-shaped InSb adhered to a copper substrate. The designed CMA at 305 K achieved a right-handed circular polarization (RCP)-selective absorbance of 98.86% and 97.43% at 1.65 THz and 1.89 THz, respectively, and left-handed circular polarization (LCP) absorbance of 9.98% and 22.46%, respectively, and exhibited stronger CD values of 0.89 and 0.75. In addition, the CD properties of the designed CMA can be adjusted by changing the geometrical parameters of the unit-cell structure. The simulated electric field and power follow distributions indicate that this dual-band chiral-selective absorption of the designed CMA is due to the different plasma resonance mode excitations for the incident circular polarization (CP) wave. In addition, the CD properties of the designed CMA can be adjusted by changing the geometrical parameters of the unit-cell structure. Furthermore, CD spectra can be dynamically adjusted by varying the outside temperature and refraction index (RI) of the filled analytes. The designed dual-band CMA can function as a high-performance temperature sensor with sensitivities of 4.68 GHz K-1 and 5.52 GHz K-1 and also as an RI sensor with sensitivities of 1080 GHz RIU-1 and 860 GHz RIU-1, respectively. Our proposed tunable dual-band CMA with its exquisite performance has the potential to be widely applied in diverse areas such as detection, sensing, and other related optoelectronic fields.

2.
Nano Lett ; 23(23): 10991-10997, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38018700

RESUMO

Imaging polarimeters find many critical applications in applications ranging from remote sensing to biological detection. Metasurfaces have been proposed as a compact approach for imaging polarimeters, but prior strategies suffer from low imaging resolution. Here, we propose an interleaved metalens configuration for polarization imaging where three-row metasurface units within a group individually interact with three pairs of orthogonal polarization channels. The optical paths between the object and adjacent three-row metasurfaces are nearly equal, allowing the construction of a metalens polarimeter with an unlimited numerical aperture (NA), which is beneficial for high-resolution polarization imaging. The metalens polarimeter fabricated by crystalline silicon nanostructures has a NA of 0.51 at 632.8 nm and achieves an imaging resolution of up to a 1.2-fold wavelength. Polarimetric microscopy experiments demonstrate that metalens polarimeters can realize high-resolution polarization imaging for various microscopic samples. This study offers a promising solution for high-resolution metasurface polarization imaging, with the potential for widespread applications.

3.
Appl Opt ; 61(16): 4833-4842, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255967

RESUMO

In this paper, an all-metal metasurface (MS), which can achieve high-efficient reflective circular-polarization conversion and multifunctional terahertz (THz) wavefront manipulation in an ultra-broadband frequency range, is proposed and investigated theoretically. The proposed all-metal MS consists of the periodic array of a gold vertical-split-ring (VSR) structure adhered on gold substrate. Numerical simulation results indicate that the proposed MS structure can convert the incident circular-polarization (CP) wave into its orthogonal component after reflection with a conversion coefficient over 95% from 0.8 to 1.65 THz (relative bandwidth of 68.3%). The full 2π phase shift of the proposed MS in this frequency range can be obtained by changing the rotation angle of the VSR structure along the wave propagation direction. As proof of concept for the multifunctional wavefront manipulation, anomalous reflection, reflective planar focusing, and vortex beam generation are numerically demonstrated based on the Pancharatnam-Berry (PB) phase principle. Our work can provide an effective method of enhancing the performance of reflective-type all-metal MS and show endless potential in wavefront manipulation and communication applications in THz and even optical region.

4.
Molecules ; 26(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34641555

RESUMO

Folate is a vitamin beneficial for humans that plays an important role in metabolism, but it cannot be well supplemented by food; it is necessary to supplement it in other ways. Based on this consideration, a novel crystal form C of 6S-5-methyltetrahydrofolate calcium salt (MTHF CAC) was obtained. To explore the difference between MTHF CAC and the crystal form Ⅰ of 6S-5-methyltetrahydrofolate calcium salt (MTHF CA) as well as an amorphous product of 6S-5-methyltetrahydrofolate glucosamine salt (MTHF GA), their stability and pharmacokinetic behaviours were compared. The results of high-performance liquid chromatography coupled with ultraviolet detection analysis indicated that MTHF CAC showed a better stability than MTHF CA and MTHF GA. After oral administration of MTHF CAC, MTHF CA, and MTHF GA to male rats, the MTHF concentrations were analysed using a validated liquid chromatography-tandem mass spectrometry, and the pharmacokinetic parameters were compared. The mean residence times (0-t) of MTHF CAC, MTHF CA, and MTHF GA were 3.7 ± 1.9 h, 1.0 ± 0.2 h (p < 0.01), and 1.5 ± 0.3 h (p < 0.05), respectively. The relative bioavailability of MTHF CAC was calculated to be 351% and 218% compared with MTHF CA and MTHF GA, respectively, which suggests that MTHF CAC can be better absorbed and utilized for a longer period of time.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Tetra-Hidrofolatos/química , Tetra-Hidrofolatos/farmacocinética , Animais , Cristalização , Estabilidade de Medicamentos , Masculino , Ratos , Ratos Sprague-Dawley
5.
Opt Lett ; 45(5): 1196-1199, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108804

RESUMO

Far-infrared absorbers exhibiting wideband performance are in great demand in numerous applications, including imaging, detection, and wireless communications. Here, a nonresonant far-infrared absorber with ultra-wideband operation is proposed. This absorber is in the form of inverted pyramidal cavities etched into moderately doped silicon. By means of a wet-etching technique, the crystallinity of silicon restricts the formation of the cavities to a particular shape in an angle that favors impedance matching between lossy silicon and free space. Far-infrared waves incident on this absorber experience multiple reflections on the slanted lossy silicon side walls, being dissipated towards the cavity bottom. The simulation and measurement results confirm that an absorption beyond 90% can be sustained from 1.25 to 5.00 THz. Furthermore, the experiment results suggest that the absorber can operate up to at least 21.00 THz with a specular reflection less than 10% and negligible transmission.

6.
Langmuir ; 36(2): 600-608, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31885276

RESUMO

Because of the unique optical properties of gold nanomaterials, the preparation of gold nanomaterials with excellent chirality has received extensive attention. In order to develop a simple fabrication method for three-dimensional chiral Au nanostructures with a size of several hundred nanometers, chiral gold nanoparticles were developed to transfer chirality of a peptide to gold nanoparticles. In this study, the controlled synthesis of asymmetric gold nanopolyhedrons was achieved. The asymmetric gold nanopolyhedrons prepared via peptide-directed growth can exhibit strong circular dichroism (∼±50 mdeg) couplets in the visible range (500-600 nm). Also, the morphology of chiral Au nanododecahedrons-peptide particles showed distorted and asymmetric properties. In order to prove that the size and spatial structure of gold nanopolyhedrons have an influence on their chiral optical properties, Au nanotrioctahedron-peptide particles were prepared by using Au nanotrioctahedrons with different morphologies. Au nanotrioctahedron-peptide particles also exhibited circular dichromatic couplets in the visible region.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Peptídeos/síntese química , Fenômenos Ópticos , Tamanho da Partícula , Peptídeos/química , Propriedades de Superfície
7.
Opt Lett ; 43(21): 5323-5326, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382997

RESUMO

Herein, a novel design concept of a surface graphical photonic crystal (SGPC) has been proposed as an effective strategy to achieve angle-insensitive visible-infrared compatible camouflage. The SGPC, designed as a quasi-periodic Ge/ZnS photonic crystal following an arithmetic sequence in the physical thickness for each period, possesses a functionalized ZnS surface consisting of lithography-fabricated mosaic patterns with various etching depths. Our experiment data demonstrate the excellent infrared camouflage capability of the SGPC with a high average reflectance of 92.7% (surface emissivity ϵ=0.07) in 8-14 µm, and related simulations further reveal the satisfying angle-insensitive reflection characteristic with a maximum effective relative photonic bandgap δBW=91.3% in 0°≤θ≤60°. Besides, the irregular mosaic patterns with various etching depths constitute a colorful digital camouflage on the surface of the SGPC, realizing an outstanding optical camouflage capacity without distinct angle dependency (dominant wavelength shift δλd=|λθ-λ0|/λ0≤2.33%).

8.
J Opt Soc Am A Opt Image Sci Vis ; 35(11): 1832-1838, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30461841

RESUMO

We propose a novel heterostructure based on 2D photonic crystals as broadband selective absorbers/emitters for solar thermophotovoltaics. Alternating hafnium oxide (HfO2) and titanium oxide (TiO2) filled cylinder cavities with tetragonal lattices are embedded into antireflection-coated tungsten (W) film. The simulated results show that the designed structures can obtain high solar collection efficiency ηc of 87.9% as an absorber and great spectral emission efficiency ηe of 81.6% as an emitter. Meanwhile, high average absorptivity of 84.5% under 45° oblique incidence exhibits good performance of wide-angle absorption. This study provides a new way to acquire broadband spectral selective absorbers/emitters.

9.
Appl Opt ; 53(25): 5763-8, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25321375

RESUMO

A near-perfect dual-band circular polarizer based on bilayer twisted, single split-ring resonator structure asymmetric chiral metamaterial was proposed and investigated. The simple bilayer structure with a 90° twisted angle allows for equalizing the orthogonal components of the electric field at the output interface with a 90° phase difference for a y-polarized wave propagating along the backward (-z) direction. It is found that right- and left-hand circular polarization are realized in transmissions at 7.8 and 10.1 GHz, respectively. Experiments agree well with numerical simulations, which exhibit that the polarization extinction ratio is more than 30 dB at the resonant frequencies. Further, the simple design also can be operated at the terahertz range by scaling down the geometrical parameters of the unit cell.

10.
Mol Neurobiol ; 61(1): 434-449, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37624487

RESUMO

Ischemic stroke is a heterogeneous brain injury with complex pathophysiology and it is also a time sensitive neurological injury disease. At present, the treatment options for ischemic stroke are still limited. 6S-5-methyltetrahydrofolate-calcium (MTHF-Ca) is the calcium salt of the predominant form of dietary folate in circulation. MTHF-Ca has potential neuroprotective effect on neurocytes, but whether it can be used for ischemic stroke treatment remains unknown. We established zebrafish ischemic stroke model through photothrombotic method to evaluate the protective effect of MTHF-Ca on the ischemic brain injury of zebrafish. We demonstrated that MTHF-Ca reduced the brain damage by reducing motor dysfunction and neurobehavioral defects of zebrafish with telencephalon infarction injury. MTHF-Ca counteracted oxidative damages after Tel injury by increasing the activities of GSH-Px and SOD and decreasing the content of MDA. RNA-seq and RT-qPCR results showed that MTHF-Ca played a neuroprotective role by alleviating neuroinflammation, inhibiting blood coagulation, and neuronal apoptosis processes. Overall, we have demonstrated that MTHF-Ca has neuroprotective effect in ischemic stroke and can be used as a potential treatment for ischemic stroke.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Tetra-Hidrofolatos , Animais , Peixe-Zebra , Cálcio , Infarto , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico
11.
Opt Express ; 21(5): 5239-46, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23482095

RESUMO

The three-dimensional (3D) and two-dimensional (2D) chiral metamaterials (CMMs) have been proved to exhibit circular dichroism and circular conversion dichroism, respectively. The layer-by-layer chiral metamaterials, as a category of 3D CMMs, are expected to show the same properties as bulk 3D structures (e.g. helices). However, in this paper, we demonstrated that the layer-by-layer CMMs exhibit circular dichroism and circular conversion dichroism simultaneously by using both theoretical and experimental methods. This work showed that asymmetric transmissions of circular polarizations can also be observed in layer-by-layer CMMs. Moreover, we provided some necessary requirements for the existing of asymmetric transmissions in layer-by-layer CMMs.

12.
J Opt Soc Am A Opt Image Sci Vis ; 30(4): 677-81, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23595328

RESUMO

We fabricated three-dimensional metallic helix arrays with single-, double-, and triple-helical structures. The transmission performances with the normal incident angle were measured in the microwave frequency of 12-18 GHz. For the single- and double-helical structures, giant circular dichroism with fairly wide bands is observed in the transmission spectra. However, the triple-helical structure does not exhibit circular dichroism. Based on the phenomenon of circular dichroism, the single- and double-helical structures can be used as broadband circular polarizers in the microwave region, but triple-helical ones cannot. The experiments have a good agreement with our simulation results, which were studied by the finite-difference time domain method.

13.
Nanomaterials (Basel) ; 13(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37368276

RESUMO

In this paper, a photo-excited metasurface (MS) based on hybrid patterned photoconductive silicon (Si) structures was proposed in the terahertz (THz) region, which can realize the tunable reflective circular polarization (CP) conversion and beam deflection effect at two frequencies independently. The unit cell of the proposed MS consists of a metal circular-ring (CR), Si ellipse-shaped-patch (ESP) and circular-double-split-ring (CDSR) structure, a middle dielectric substrate, and a bottom metal ground plane. By altering the external infrared-beam pumping power, it is possible to modify the electric conductivity of both the Si ESP and CDSR components. By varying the conductivity of the Si array in this manner, the proposed MS can achieve a reflective CP conversion efficiency that ranges from 0% to 96.6% at a lower frequency of 0.65 THz, and from 0% to 89.3% at a higher frequency of 1.37 THz. Furthermore, the corresponding modulation depth of this MS is as high as 96.6% and 89.3% at two distinct and independent frequencies, respectively. Moreover, at the lower and higher frequencies, the 2π phase shift can also be achieved by respectively rotating the oriented angle (αi) of the Si ESP and CDSR structures. Finally, an MS supercell is constructed for the reflective CP beam deflection, and the efficiency is dynamically tuned from 0% to 99% at the two independent frequencies. Due to its excellent photo-excited response, the proposed MS may find potential applications in active functional THz wavefront devices, such as modulators, switches, and deflectors.

14.
Life Sci ; 327: 121839, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290666

RESUMO

AIM: 6S-5-methyltetrahydrofolate is the predominant form of dietary folate in circulation and is used as a crystalline form of calcium salt (MTHF-Ca). Reports revealed that MTHF-Ca was more safe than folic acid, a synthetic and highly stable version of folate. Folic acid has been reported to have anti-inflammatory effects. The study's objective was to assess the anti-inflammatory effect of MTHF-Ca in vitro and in vivo. MAIN METHODS: In vitro, the ROS production was assessed by H2DCFDA, and nuclear translocation of NF-κB were evaluated by the NF-κB nuclear translocation assay kit. Interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-alpha (TNF-α) were assessed using ELISA. In vivo, ROS production was assessed by H2DCFDA, neutrophils and macrophages recruitment were evaluated in tail transection-induced and CuSO4-induced zebrafish inflammation models. Expression of inflammation related genes were also investigated based on CuSO4-induced zebrafish inflammation model. KEY FINDINGS: MTHF-Ca treatment decreased LPS-induced ROS production, inhibited nuclear translocation of NF-κB and decreased the levels of IL-6, IL-1ß and TNF-α in RAW264.7 cells. In addition, MTHF-Ca treatment inhibited ROS production, suppressed the recruitment of neutrophils and macrophages, and reduced the expression of inflammation related genes, including jnk, erk, nf-κb, myd88, p65, tnf-α, and il-1b in zebrafish larvae. SIGNIFICANCE: MTHF-Ca may play an anti-inflammatory role by reducing the recruitment of neutrophils and macrophages and keeping the low levels of proinflammatory mediators and cytokines. MTHF-Ca may have a potential role in the treatment of inflammatory diseases.


Assuntos
NF-kappa B , Peixe-Zebra , Camundongos , Animais , Peixe-Zebra/metabolismo , NF-kappa B/metabolismo , Cálcio , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Espécies Reativas de Oxigênio , Anti-Inflamatórios/uso terapêutico , Inflamação/metabolismo , Células RAW 264.7 , Cálcio da Dieta , Ácido Fólico , Lipopolissacarídeos/farmacologia
15.
Sci Rep ; 13(1): 7202, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138046

RESUMO

In this study, we numerically demonstrate how the response of recently reported circuit-based metasurfaces is characterized by their circuit parameters. These metasurfaces, which include a set of four diodes as a full wave rectifier, are capable of sensing different waves even at the same frequency in response to the incident waveform, or more specifically the pulse width. This study reveals the relationship between the electromagnetic response of such waveform-selective metasurfaces and the SPICE parameters of the diodes used. In particular, we draw conclusions about how the SPICE parameters are related to (1) the high-frequency operation, (2) input power requirement and (3) dynamic range of waveform-selective metasurfaces with supporting simulation results. First, we show that reducing a parasitic capacitive component of the diodes is important for realization of the waveform-selective metasurfaces in a higher frequency regime. Second, we report that the operating power level is closely related to the saturation current and the breakdown voltage of the diodes. Moreover, the operating power range is found to be broadened by introducing an additional resistor into the inside of the diode bridge. Our study is expected to provide design guidelines for circuit-based waveform-selective metasurfaces to select/fabricate optimal diodes and enhance the waveform-selective performance at the target frequency and power level. Our results are usefully exploited to ensure the selectivity based on the pulse duration of the incident wave in a range of potential applications including electromagnetic interference, wireless power transfer, antenna design, wireless communications, and sensing.

16.
J Colloid Interface Sci ; 622: 181-191, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35490621

RESUMO

High-performance microwave absorbing materials (MAMs) play a vital role in electromagnetic (EM) pollution protection. Multi-interfacial heterogeneous structure design has become a mainstream direction for designing and fabricating excellent MAMs. Herein, multi-interfacial hollow core-shelled yttrium aluminum garnet@nitrogen-doped carbon (YAG@NC) composites were synthesized by coprecipitation, thermal treatment, self-polymerization and carbonization processes. Thermal treatment temperatures were used to regulate the defect level and interfaces in carbon materials. Defects of NC and multiple interfaces favor dielectric polarization, and the hollow cavity endows the MAMs with lightweight characteristics and ideal impedance matching. The results indicated that YAG@NC composites possess excellent microwave absorption properties with an effective absorption bandwidth (EAB) of 5.5 GHz at an absorber thickness of only 1.95 mm. The radar cross section (RCS) reduction of YAG@NC composites was verified by CST simulation in the far field, and the strongest RCS reduction value was up to 32.64 dBm2 with a scattering angle of 0°. This work paves the way for designing multicomponent microstructure dielectric loss absorbers with broadband and strong microwave absorption.

17.
ACS Appl Mater Interfaces ; 14(2): 3084-3094, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34994534

RESUMO

Microwave-absorbing materials have attracted enormous attention for electromagnetic (EM) pollution. Herein, hollow beaded Fe3C/N-doped carbon fibers (Fe3C/NCFs) were synthesized through convenient electrospinning and subsequent thermal treatment. The special hollow morphology of the samples is conducive to achieve lightweight and broadband microwave absorption properties. The thermal treatment temperatures exhibit a significant impact on conductivity and EM properties. The broadest effective absorption bandwidth (EAB) is 5.28 GHz at 2.16 mm when the thermal treatment temperature is 700 °C, and the EAB can cover 13.13 GHz with a tunable absorber thickness from 1.0 to 3.5 mm when the thermal treatment temperature is 750 °C. The excellent microwave absorption properties of the samples are due to the synergistic effect of impedance matching and strong EM energy attenuation abilities. Hence, the magnetic hollow beaded Fe3C/NCFs are expected to be an attractive candidate material as a lightweight and efficient microwave absorber in the future.

18.
Cells ; 11(24)2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552710

RESUMO

Folic acid (FA) is a synthetic and highly stable version of folate, while 6S-5-methyltetrahydrofolate is the predominant form of dietary folate in circulation and is used as a crystalline form of calcium salt (MTHF-Ca). The current study aims to evaluate the toxicity and safety of FA and MTHF-Ca on embryonic development, with a focus on cardiovascular defects. We began to analyze the toxicity of FA and MTHF-Ca in zebrafish from four to seventy-two hours postfertilization and assessed the efficacy of FA and MTHF-Ca in a zebrafish angiogenesis model. We then analyzed the differently expressed genes in in vitro fertilized murine blastocysts cultured with FA and MTHF-Ca. By using gene-expression profiling, we identified a novel gene in mice that encodes an essential eukaryotic translation initiation factor (Eif1ad7). We further applied the morpholino-mediated gene-knockdown approach to explore whether the FA inhibition of this gene (eif1axb in zebrafish) caused cardiac development disorders, which we confirmed with qRT-PCR. We found that FA, but not MTHF-Ca, could inhibit angiogenesis in zebrafish and result in abnormal cardiovascular development, leading to embryonic death owing to the downregulation of eif1axb. MTHF-Ca, however, had no such cardiotoxicity, unlike FA. The current study thereby provides experimental evidence that FA, rather than MTHF-Ca, has cardiovascular toxicity in early embryonic development and suggests that excessive supplementation of FA in perinatal women may be related to the potential risk of cardiovascular disorders, such as congenital heart disease.


Assuntos
Ácido Fólico , Cardiopatias Congênitas , Animais , Feminino , Camundongos , Gravidez , Cálcio , Desenvolvimento Embrionário/efeitos dos fármacos , Ácido Fólico/efeitos adversos , Coração , Peixe-Zebra/genética , Cardiopatias Congênitas/induzido quimicamente , Cardiopatias Congênitas/etiologia
19.
Nanoscale Res Lett ; 16(1): 12, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33443620

RESUMO

In this paper, we present a plasmonic chiral metasurface absorber (CMSA), which can achieve high selective absorption for right-handed and left-handed circular polarization (RCP, "+", and LCP, "-") lights at optical frequency. The CMSA is composed of a dielectric substrate sandwiched with bi-layer fourfold twisted semicircle metal nanostructure. The proposed CMSA has a strong selective absorption band, where absorption peaks for LCP and RCP lights occur at different resonance frequencies, reflecting the existence of a significant circular dichroism (CD) effect. It is shown that the absorbance of the CMSA can reach to 93.2% for LCP light and 91.6% for RCP light, and the maximum CD magnitude is up to 0.85 and 0.91 around 288.5 THz and 404 THz, respectively. The mechanism of the strong chiroptical response of the CMSA is illustrated by electric fields distributions of the unit-cell nanostructure. Furthermore, the influence of the geometry of the proposed CMSA on the circular polarization selective absorption characterization is studied systematically.

20.
Nanoscale Res Lett ; 15(1): 103, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32394043

RESUMO

A simple design of triple-band perfect light absorber (PLA) based on hybrid metasurface in visible region has been presented in this work, which turns out to be applicable for refractive index (RI) sensing. Distinct from previous designs, the proposed hybrid metasurface for visible PLA is only consisted of periodic silicon cross nanostructure arrays and gold substrate. The periodic silicon cross arrays deposited on the gold substrate contribute to excite the guided modes under the normal incident light illumination. According to the simulation results, it can be found that three perfect absorption peaks of 98.1%, 98.7%, and 99.6% which are located at 402.5 THz, 429.5 THz, and 471.5 THz, respectively, have been clearly observed in PLA. This triple-band perfect absorption effect could be attributed to the intrinsic loss of silicon material originated from the guided mode excitations caused by the standing waves of different orders. It has been confirmed that the perfect absorption properties of the PLA can be easily regulated by changing the geometric parameters of the unit-cell nanostructure. Furthermore, the designed PLA served as a RI sensor can achieve sensitivity of about 25.3, 41.3, and 31.9 THz /refractive index unit (RIU). It can be believed that the proposed design of PLA for RI sensing would provide great potential applications in sensing, detecting, the enhanced visible spectroscopy, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA