Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 325(Pt A): 116474, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36274301

RESUMO

Bioenergy expansion is present in most climate change mitigation scenarios. The associated large land use changes have led to concerns on how bioenergy can be sustainably deployed. Promising win-win strategies include the production of perennial bioenergy crops on recently abandoned cropland or on cropland prone to land degradation, as perennial crops typically reduce soil erosion rates. Natural vegetation regrowth is an alternative nature-based solution that can also co-deliver negative emissions and other environmental benefits. In this study, we explore the potential to deploy bioenergy crops in Nordic countries (Norway, Sweden, Finland, and Denmark) on abandoned cropland and on cropland threatened by soil erosion and compare the achievable climate change mitigation benefits with natural regrowth. We found 186 thousand hectares (kha) of abandoned cropland and 995 kha of cropland threatened by soil erosion suitable for bioenergy crop cultivation. The primary bioenergy potential in the region is 151 PJ (PJ) per year, corresponding to 67-110 PJ per year of liquid biofuels depending on biorefinery technology. This has a climate change mitigation potential from -6.0 to -17 megatons of carbon dioxide equivalents (MtCO2eq) per year over the first 20 years (equivalent to 14-40% of annual road transport emissions), with high-end estimates relying on bioenergy coupled to carbon capture and storage (BECCS). On the same area, natural regrowth can deliver negative emissions of -10 MtCO2eq per year. Biofuel production outperforms natural regrowth on 46% of abandoned cropland with currently available biorefinery technologies, 83% with improved energy conversion efficiency, and nearly everywhere with BECCS. For willow windbreaks, improved biorefinery technology or BECCS is necessary to ensure the delivery of larger negative emissions than natural regrowth. Biofuel production is preferable to natural regrowth on 16% of croplands threatened by soil erosion with the current biorefinery technology and on 87% of the land area with BECCS. Without BECCS, liquid biofuels achieve larger climate benefits than natural regrowth only when bioenergy yields are high. Underutilized land and land affected by degradation processes are an opportunity for a gradual and more sustainable bioenergy deployment, and local considerations are needed to identify case-specific solutions that can co-deliver multiple environmental benefits.


Assuntos
Biocombustíveis , Mudança Climática , Produtos Agrícolas/metabolismo , Dióxido de Carbono/metabolismo , Países Escandinavos e Nórdicos
2.
Glob Chang Biol ; 26(9): 4691-4721, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32531815

RESUMO

Interlocked challenges of climate change, biodiversity loss, and land degradation require transformative interventions in the land management and food production sectors to reduce carbon emissions, strengthen adaptive capacity, and increase food security. However, deciding which interventions to pursue and understanding their relative co-benefits with and trade-offs against different social and environmental goals have been difficult without comparisons across a range of possible actions. This study examined 40 different options, implemented through land management, value chains, or risk management, for their relative impacts across 18 Nature's Contributions to People (NCPs) and the 17 Sustainable Development Goals (SDGs). We find that a relatively small number of interventions show positive synergies with both SDGs and NCPs with no significant adverse trade-offs; these include improved cropland management, improved grazing land management, improved livestock management, agroforestry, integrated water management, increased soil organic carbon content, reduced soil erosion, salinization, and compaction, fire management, reduced landslides and hazards, reduced pollution, reduced post-harvest losses, improved energy use in food systems, and disaster risk management. Several interventions show potentially significant negative impacts on both SDGs and NCPs; these include bioenergy and bioenergy with carbon capture and storage, afforestation, and some risk sharing measures, like commercial crop insurance. Our results demonstrate that a better understanding of co-benefits and trade-offs of different policy approaches can help decision-makers choose the more effective, or at the very minimum, more benign interventions for implementation.


Assuntos
Conservação dos Recursos Naturais , Desenvolvimento Sustentável , Agricultura , Animais , Carbono , Objetivos , Humanos , Solo , Nações Unidas
3.
Glob Chang Biol ; 26(3): 1532-1575, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31637793

RESUMO

There is a clear need for transformative change in the land management and food production sectors to address the global land challenges of climate change mitigation, climate change adaptation, combatting land degradation and desertification, and delivering food security (referred to hereafter as "land challenges"). We assess the potential for 40 practices to address these land challenges and find that: Nine options deliver medium to large benefits for all four land challenges. A further two options have no global estimates for adaptation, but have medium to large benefits for all other land challenges. Five options have large mitigation potential (>3 Gt CO2 eq/year) without adverse impacts on the other land challenges. Five options have moderate mitigation potential, with no adverse impacts on the other land challenges. Sixteen practices have large adaptation potential (>25 million people benefit), without adverse side effects on other land challenges. Most practices can be applied without competing for available land. However, seven options could result in competition for land. A large number of practices do not require dedicated land, including several land management options, all value chain options, and all risk management options. Four options could greatly increase competition for land if applied at a large scale, though the impact is scale and context specific, highlighting the need for safeguards to ensure that expansion of land for mitigation does not impact natural systems and food security. A number of practices, such as increased food productivity, dietary change and reduced food loss and waste, can reduce demand for land conversion, thereby potentially freeing-up land and creating opportunities for enhanced implementation of other practices, making them important components of portfolios of practices to address the combined land challenges.


Assuntos
Agricultura , Mudança Climática , Aclimatação , Conservação dos Recursos Naturais , Abastecimento de Alimentos
4.
J Environ Manage ; 184(Pt 3): 517-527, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27789091

RESUMO

This study assesses the environmental sustainability of electricity production through anaerobic co-digestion of sewage sludge and organic wastes. The analysis relies on primary data from a biogas plant, supplemented with data from the literature. The climate impact assessment includes emissions of near-term climate forcers (NTCFs) like ozone precursors and aerosols, which are frequently overlooked in Life Cycle Assessment (LCA), and the application of a suite of different emission metrics, based on either the Global Warming Potential (GWP) or the Global Temperature change Potential (GTP) with a time horizon (TH) of 20 or 100 years. The environmental performances of the biogas system are benchmarked against a conventional fossil fuel system. We also investigate the sensitivity of the system to critical parameters and provide five different scenarios in a sensitivity analysis. Hotspots are the management of the digestate (mainly due to the open storage) and methane (CH4) losses during the anaerobic co-digestion. Results are sensitive to the type of climate metric used. The impacts range from 52 up to 116 g CO2-eq./MJ electricity when using GTP100 and GWP20, respectively. This difference is mostly due to the varying contribution from CH4 emissions. The influence of NTCFs is about 6% for GWP100 (worst case), and grows up to 31% for GWP20 (best case). The biogas system has a lower performance than the fossil reference system for the acidification and particulate matter formation potentials. We argue for an active consideration of NTCFs in LCA and a critical reflection over the climate metrics to be used, as these aspects can significantly affect the final outcomes.


Assuntos
Biocombustíveis , Centrais Elétricas , Poluentes Atmosféricos/análise , Clima , Combustíveis Fósseis , Aquecimento Global , Metano/análise , Ozônio/análise , Esgotos
5.
Glob Chang Biol ; 21(9): 3246-66, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25914206

RESUMO

By altering fluxes of heat, momentum, and moisture exchanges between the land surface and atmosphere, forestry and other land-use activities affect climate. Although long recognized scientifically as being important, these so-called biogeophysical forcings are rarely included in climate policies for forestry and other land management projects due to the many challenges associated with their quantification. Here, we review the scientific literature in the fields of atmospheric science and terrestrial ecology in light of three main objectives: (i) to elucidate the challenges associated with quantifying biogeophysical climate forcings connected to land use and land management, with a focus on the forestry sector; (ii) to identify and describe scientific approaches and/or metrics facilitating the quantification and interpretation of direct biogeophysical climate forcings; and (iii) to identify and recommend research priorities that can help overcome the challenges of their attribution to specific land-use activities, bridging the knowledge gap between the climate modeling, forest ecology, and resource management communities. We find that ignoring surface biogeophysics may mislead climate mitigation policies, yet existing metrics are unlikely to be sufficient. Successful metrics ought to (i) include both radiative and nonradiative climate forcings; (ii) reconcile disparities between biogeophysical and biogeochemical forcings, and (iii) acknowledge trade-offs between global and local climate benefits. We call for more coordinated research among terrestrial ecologists, resource managers, and coupled climate modelers to harmonize datasets, refine analytical techniques, and corroborate and validate metrics that are more amenable to analyses at the scale of an individual site or region.


Assuntos
Atmosfera , Clima , Conservação dos Recursos Naturais , Agricultura Florestal , Fenômenos Biofísicos , Mudança Climática , Modelos Teóricos
6.
Glob Chang Biol ; 20(2): 607-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24277242

RESUMO

Empirical models alongside remotely sensed and station measured meteorological observations are employed to investigate both the local and global direct climate change impacts of alternative forest management strategies within a boreal ecosystem of eastern Norway. Stand-level analysis is firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across conifer, deciduous, and clear-cut sites. Relative to a conifer site, a slight local cooling of −0.13 °C at a deciduous site and −0.25 °C at a clear-cut site were observed over a 6-year period, which were mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes ­ despite predicted long-term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies jointly promoted an enhanced material supply over business-as-usual levels. Expressed in terms of an equivalent CO2 emission pulse at the start of the simulation, the net climate response at the end of the 21st century spanned −8 to −159 Tg-CO2-eq., depending on whether near-term harvest levels increased or followed current trends, respectively. This magnitude equates to approximately −20 to −300% of Norway's annual domestic (production) emission impact. Our analysis supports the assertion that a carbon-only focus in the design and implementation of forest management policy in boreal and other climatically similar regions can be counterproductive ­ and at best ­ suboptimal if boreal forests are to be used as a tool to mitigate global warming.


Assuntos
Mudança Climática , Agricultura Florestal/métodos , Agricultura Florestal/economia , Modelos Biológicos , Modelos Teóricos , Noruega , Estações do Ano , Temperatura
7.
J Environ Manage ; 146: 346-354, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25194521

RESUMO

Depletion in oil resources and environmental concern related to the use of fossil fuels has increased the interest in using second generation biomass as alternative feedstock for fuels and materials. However, the land use and land use change for producing second generation (2G) biomass impacts the environment in various ways, of which not all are usually considered in life cycle assessment. This study assesses the biogenic CO2 fluxes, surface albedo changes and biodiversity impacts for 100 years after changing land use from forest or fallow land to miscanthus plantation in Wisconsin, US. Climate change impacts are addressed in terms of effective forcing, a mid-point indicator which can be used to compare impacts from biogenic CO2 fluxes and albedo changes. Biodiversity impacts are assessed through elaboration on two different existing approaches, to express the change in biodiversity impact from one human influenced state to another. Concerning the impacts from biogenic CO2 fluxes, in the case of conversion from a forest to a miscanthus plantation (case A) there is a contribution to global warming, whereas when a fallow land is converted (case B), there is a climate cooling. When the effects from albedo changes are included, both scenarios show a net cooling impact, which is more pronounced in case B. Both cases reduce biodiversity in the area where the miscanthus plantation is established, though most in case A. The results illustrate the relevance of these issues when considering environmental impacts of land use and land use change. The apparent trade-offs in terms of environmental impacts further highlight the importance of including these aspects in LCA of land use and land use changes, in order to enable informed decision making.


Assuntos
Biodiversidade , Dióxido de Carbono/análise , Mudança Climática , Produtos Agrícolas , Humanos , Estações do Ano , Wisconsin
8.
J Hazard Mater ; 470: 134242, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626686

RESUMO

The high moisture content and the potential presence of hazardous organic compounds (HOCs) and metals (HMs) in sewage sludge (SS) pose technical and regulatory challenges for its circular economy valorisation. Thermal treatments are expected to reduce the volume of SS while producing energy and eliminating HOCs. In this study, we integrate quantitative analysis of SS concentration of 12 HMs and 61 HOCs, including organophosphate flame retardants (OPFRs) and per- and poly-fluoroalkyl substances (PFAS), with life-cycle assessment to estimate removal efficiency of pollutants, climate change mitigation benefits and toxicological effects of existing and alternative SS treatments (involving pyrolysis, incineration, and/or anaerobic digestion). Conventional SS treatment leaves between 24 % and 40 % of OPFRs unabated, while almost no degradation occurs for PFAS. Thermal treatments can degrade more than 93% of target OPFRs and 95 % of target PFAS (with the rest released to effluents). The different treatments affect how HMs are emitted across environmental compartments. Conventional treatments also show higher climate change impacts than thermal treatments. Overall, thermal treatments can effectively reduce the HOCs emitted to the environment while delivering negative emissions (from about -56 to -111 kg CO2-eq per tonne of sludge, when pyrolysis is involved) and producing renewable energy from heat integration and valorization.

9.
J Environ Manage ; 129: 292-301, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23974446

RESUMO

Analyses of global warming impacts from forest bioenergy systems are usually conducted either at a single stand level or at a landscape level, yielding findings that are sometimes interpreted as contrasting. In this paper, we investigate and reconcile the scales at which environmental impact analyses of forest bioenergy systems are undertaken. Focusing on the changes caused in atmospheric CO2 concentration of forest bioenergy systems characterized by different initial states of the forest, we show the features of the analyses at different scales and depict the connections between them. Impacts on atmospheric CO2 concentration at a single stand level are computed through impulse response functions (IRF). Results at a landscape level are elaborated through direct application of IRFs to the emission profile, so to account for the fluxes from all the stands across time and space. Impacts from fossil CO2 emissions are used as a benchmark. At a landscape level, forest bioenergy causes an increase in atmospheric CO2 concentration for the first decades that is similar to the impact from fossil CO2, but then the dynamics clearly diverge because while the impact from fossil CO2 continues to rise that from bioenergy stabilizes at a certain level. These results perfectly align with those obtained at a single stand for which characterization factors have been developed. In the hypothetical case of a sudden cessation of emissions, the change caused in atmospheric CO2 concentration from biogenic CO2 emissions reverses within a couple of decades, while that caused by fossil CO2 emissions remains considerably higher for centuries. When counterfactual aspects like the additional sequestration that would have occurred in the forest if not harvested and the theoretical displacement of fossil CO2 are included in the analysis, results can widely differ, as the CO2 debt at a landscape level ranges from a few years to several centuries (depending on the underlying assumptions considered).


Assuntos
Dióxido de Carbono/metabolismo , Mudança Climática , Ecossistema , Agricultura Florestal , Ciclo do Carbono , Modelos Biológicos , Noruega
10.
Natl Sci Rev ; 10(7): nwad076, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37266560

RESUMO

Agriculture is responsible for about one third of global greenhouse gas emissions and it is the primary driver of habitat destruction. A paradigm shift embracing changes in lifestyles, agricultural practices, and policies is required to realize a sustainable transition in the agri-food sector.

11.
Sci Data ; 10(1): 824, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001318

RESUMO

Droughts cause multiple ecological and social damages. Drought indices are key tools to quantify drought severity, but they are mainly limited to timescales of monthly or longer. However, shorter-timescale (e.g., daily) drought indices enable more accurate identification of drought characteristics (e.g., onset and cessation time) and help timely potential mitigation of adverse effects. Here, we propose a dataset of a daily drought index named daily evapotranspiration deficit index (DEDI), which is produced for global land areas from 1979 to 2022 using actual and potential evapotranspiration data. Validation efforts show that the DEDI dataset can well identify dry and wet variations in terms of spatial patterns and temporal evolutions when compared with other available drought indices on a daily scale. The dataset also has the capability to capture recent drying trends and to detect ecology- or agriculture-related droughts. Overall, the DEDI dataset is a step forward in facilitating drought monitoring and early warning at higher temporal resolution than other compared existing products.

12.
Sci Total Environ ; 873: 162345, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36813192

RESUMO

Protected areas (PAs) are considered essential for maintaining biodiversity. Several governments would like to strengthen the management levels of their PAs (as shorthand for a hierarchy in PA administrative governance) to consolidate their conservation effectiveness. This upgrade (e.g., from provincial- to national-level PAs) means stricter protection and increased funds for PA management. However, confirming whether such an upgrade can produce the expected positive outcomes is key given limited conservation funds. Here, we used the Propensity Score Matching (PSM) method to quantify the impacts of upgrading PAs (i.e., from provincial to national) on vegetation growth on the Tibetan Plateau (TP). We found that the impacts of PA's upgrading can be divided into two impact types: 1) curbed or reversed declines in conservation effectiveness and 2) rapidly increased conservation effectiveness before the upgrade. These results indicate that the PA's upgrading process (including the pre-upgrade operations) can improve PA effectiveness. Nevertheless, the gains did not always occur after the official upgrade. This study demonstrated that in comparison to other PAs, those with more resources or stronger management policies were more effective.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Tibet , Biodiversidade , China
13.
Sci Rep ; 12(1): 8924, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624302

RESUMO

The implementation of oxyfuel carbon capture and storage technologies in combination with use of alternative fuels comprising high biogenic shares is promoted as an attractive climate change mitigation option for the cement sector to achieve low or even negative carbon emissions. Here, we perform a prospective life cycle assessment of two state-of-the art cement plants, one in Sweden and one in Germany, under conventional and retrofitted oxyfuel conditions considering alternative fuel mixes with increasing bio-based fractions of forest residues or dedicated bioenergy crops. The analysis also considers effects of the projected changes in the electricity systems up to 2050. Retrofitting the cement plants to oxyfuel reduces climate change impacts between 74 and 91%, while with additional use of biomass as alternative fuel the cement plants reach negative emission between - 24 and - 169 gCO2eq. kgclinker-1, depending on operational condition, location, and biomass type. Additional emission reduction of - 10 (Sweden) and - 128 gCO2eq. kgclinker-1 (Germany) are expected from the decarbonization of the future electricity systems. Retrofitting the cement plants to oxyfuel conditions shows trade-offs with other environmental impacts (e.g., human toxicity, water and energy depletion), which are partially offset with projected changes in electricity systems. Our results illustrate the large climate change mitigation potential in the cement sector that can be achieved by the implementation of oxyfuel carbon capture and storage and biomass use as alternative fuel.


Assuntos
Carbono , Mudança Climática , Biomassa , Eletricidade , Humanos , Estudos Prospectivos
14.
Humanit Soc Sci Commun ; 9(1): 258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967482

RESUMO

The COVID-19 pandemic continues to pose substantial challenges to achieving the Sustainable Development Goals (SDGs). Exploring systematic SDG strategies is urgently needed to aid recovery from the pandemic and reinvigorate global SDG actions. Based on available data and comprehensive analysis of the literature, this paper highlights ongoing challenges facing the SDGs, identifies the effects of COVID-19 on SDG progress, and proposes a systematic framework for promoting the achievement of SDGs in the post-pandemic era. Progress towards attaining the SDGs was already lagging behind even before the onset of the COVID-19 pandemic. Inequitable distribution of food-energy-water resources and environmental crises clearly threaten SDG implementation. Evidently, there are gaps between the vision for SDG realization and actual capacity that constrain national efforts. The turbulent geopolitical environment, spatial inequities, and trade-offs limit the effectiveness of SDG implementation. The global public health crisis and socio-economic downturn under COVID-19 have further impeded progress toward attaining the SDGs. Not only has the pandemic delayed SDG advancement in general, but it has also amplified spatial imbalances in achieving progress, undermined connectivity, and accentuated anti-globalization sentiment under lockdowns and geopolitical conflicts. Nevertheless, positive developments in technology and improvement in environmental conditions have also occurred. In reflecting on the overall situation globally, it is recommended that post-pandemic SDG actions adopt a "Classification-Coordination-Collaboration" framework. Classification facilitates both identification of the current development status and the urgency of SDG achievement aligned with national conditions. Coordination promotes domestic/international and inter-departmental synergy for short-term recovery as well as long-term development. Cooperation is key to strengthening economic exchanges, promoting technological innovation, and building a global culture of sustainable development that is essential if the endeavor of achieving the SDGs is to be successful. Systematic actions are urgently needed to get the SDG process back on track.

16.
Bioresour Technol ; 328: 124833, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33611017

RESUMO

Variations in lignocellulosic feedstock composition can influence conversion performance of bioethanol production, but such effects are overlooked in several studies that rely on standard conversion factors. This study investigates the effects of seven lignocellulosic feedstocks (belonging to the categories energy crops, forest and agricultural residues) on mass, carbon, water and energy balances for biochemical bioethanol production, including a comparison of individual process step yields. We find that overall bioethanol yields vary considerably, ranging between 19.0 and 29.0%, 27.3 and 46.2%, and 19.0 and 31.0%, for energy and carbon efficiency, respectively. The highest yields are found for switchgrass, which has the largest carbohydrate content, and the lowest for forest residues (spruce). Feedstock composition also affects water and carbon balances. Overall, the type of biomass influences conversion performances, thereby calling for explicit representation of the effects of biomass types in technical, economic and environmental assessment studies of bioethanol production.


Assuntos
Biocombustíveis , Etanol , Biomassa , Lignina
17.
Landsc Ecol ; 36(12): 3451-3471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456507

RESUMO

CONTEXT: Climate change has imposed tremendous impacts on ecosystem services. Recent attempts to quantify such impacts mainly focused on a basin or larger scale, or used limited time periods that largely ignore observations of long-term trends at a fine resolution, thereby affecting the recognition of climate change's effect on ecosystem services. OBJECTIVES: This study conducts a detailed and spatially explicit recognition of climate change's effect on ecosystem services and provides an intuitive map for decision-making and climate change adaptation planning. METHODS: We used long-term time series of ecosystem service assessments and various future climate scenarios to quantify the sensitivity and future exposure of ecosystem services to climate change on the Tibetan Plateau. RESULTS: Carbon sequestration (CS) and habitat quality experience significant growth, while water retention did not show any trend. Sensitivity patterns of these ecosystem services vary largely. For CS, more than half of the pixels showed a positive sensitivity to climate change, even though the degree of sensitivity is not high. There is substantial spatial heterogeneity in the exposure of ecosystem services to future climate changes, and high levels of future climate change increase the intensity of exposure. CONCLUSIONS: This study illustrates the complex spatial association between ecosystem services and climatic drivers, and these findings can help optimize local response strategies in the context of global warming. For example, the existing protected areas have notable conservation gaps for disturbance of future climate change on ecosystem services, especially in the southeastern part of the study area. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10980-021-01320-9.

18.
Environ Pollut ; 283: 117393, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34034021

RESUMO

The sorption behavior of phthalate additives in plastic and microplastic litter is an important process controlling the exposure, net health risk and ecotoxicity of these co-occurring pollutants. Plastic crystallinity and particle morphology are hypothesized to be important variables for microplastics sorption behavior, but to date there have been few direct studies to explicitly test for the influence of these parameters. To address this, in this study we explored the sorption of dibutyl phthalate (DBP) as a probe molecule to diverse polyethylene microplastics including irregularly-shaped pure polyethylene microplastics (IPPM), black plastic film microplastics (BPFM), white plastic film microplastics (WPFM), and commercial microspheres (CM), which had crystallinities ranging from 17 to 99%. Sorption kinetics for all materials could be well represented with both a pseudo-first-order (R2 = 0.87-0.93) and pseudo-second-order model (R2 = 0.87-0.93). Further, sorption was highly linear in the concentration range of 0.5-10 mg L-1, with no greater performance from a linear sorption model (R2 = 0.96-0.99) than the non-linear Freundlich or Temkin sorption models. The partition coefficient (Kd) of DBP sorption onto IPPM, BPFM, WPFM and CMs were 1974.55 L kg-1, 1483.85 L kg-1, 1477.45 L kg-1 and 509.37 L kg-1, respectively, showing a significant decrease with increasing crystallinity (r2 = 0.98). The particle size of microplastics (27-1000 µm) is, however, an indecisive factor affecting their sorption behavior for DBP in this study. This study provides new insight that crystallinity plays a governing role on the sorption of phthalate from microplastic. This should be considered in future exposure studies and assessments of phthalates from plastics and microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Dibutilftalato , Ácidos Ftálicos , Plásticos , Polietileno
20.
Nat Commun ; 11(1): 1066, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103013

RESUMO

Around 70 Mha of land cover changes (LCCs) occurred in Europe from 1992 to 2015. Despite LCCs being an important driver of regional climate variations, their temperature effects at a continental scale have not yet been assessed. Here, we integrate maps of historical LCCs with a regional climate model to investigate air temperature and humidity effects. We find an average temperature change of -0.12 ± 0.20 °C, with widespread cooling (up to -1.0 °C) in western and central Europe in summer and spring. At continental scale, the mean cooling is mainly correlated with agriculture abandonment (cropland-to-forest transitions), but a new approach based on ridge-regression decomposing the temperature change to the individual land transitions shows opposite responses to cropland losses and gains between western and eastern Europe. Effects of historical LCCs on European climate are non-negligible and region-specific, and ignoring land-climate biophysical interactions may lead to sub-optimal climate change mitigation and adaptation strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA