Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 30(2): 753-766, 2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-31271200

RESUMO

Astrocytes play key roles in brain functions through dynamic interactions with neurons. One of their typical features is to express high levels of connexins (Cxs), Cx43 and Cx30, the gap junction (GJ)-forming proteins. Cx30 is involved in basic cognitive processes and shapes synaptic and network activities, as shown by recent studies in transgenic animals. Yet it remains unknown whether astroglial Cx30 expression, localization, and functions are endogenously and dynamically regulated by neuronal activity and could therefore play physiological roles in neurotransmission. We here show that neuronal activity increased hippocampal Cx30 protein levels via a posttranslational mechanism regulating lysosomal degradation. Neuronal activity also increased Cx30 protein levels at membranes and perisynaptic processes, as revealed by superresolution imaging. This translated at the functional level in the activation of Cx30 hemichannels and in Cx30-mediated remodeling of astrocyte morphology independently of GJ biochemical coupling. Altogether, these data show activity-dependent dynamics of Cx30 expression, perisynaptic localization, and functions.


Assuntos
Astrócitos/fisiologia , Conexina 30/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Animais , Astrócitos/citologia , Feminino , Hipocampo/citologia , Lisossomos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteólise
2.
J Neurochem ; 151(5): 570-583, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31479508

RESUMO

Activity-dependent bulk endocytosis generates synaptic vesicles (SVs) during intense neuronal activity via a two-step process. First, bulk endosomes are formed direct from the plasma membrane from which SVs are then generated. SV generation from bulk endosomes requires the efflux of previously accumulated calcium and activation of the protein phosphatase calcineurin. However, it is still unknown how calcineurin mediates SV generation. We addressed this question using a series of acute interventions that decoupled the generation of SVs from bulk endosomes in rat primary neuronal culture. This was achieved by either disruption of protein-protein interactions via delivery of competitive peptides, or inhibition of enzyme activity by known inhibitors. SV generation was monitored using either a morphological horseradish peroxidase assay or an optical assay that monitors the replenishment of the reserve SV pool. We found that SV generation was inhibited by, (i) peptides that disrupt calcineurin interactions, (ii) an inhibitor of dynamin I GTPase activity and (iii) peptides that disrupt the phosphorylation-dependent dynamin I-syndapin I interaction. Peptides that disrupted syndapin I interactions with eps15 homology domain-containing proteins had no effect. This revealed that (i) calcineurin must be localized at bulk endosomes to mediate its effect, (ii) dynamin I GTPase activity is essential for SV fission and (iii) the calcineurin-dependent interaction between dynamin I and syndapin I is essential for SV generation. We therefore propose that a calcineurin-dependent dephosphorylation cascade that requires both dynamin I GTPase and syndapin I lipid-deforming activity is essential for SV generation from bulk endosomes.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Dinaminas/metabolismo , Endossomos/metabolismo , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Calcineurina/metabolismo , Células Cultivadas , Endocitose/fisiologia , Fosforilação , Ratos , Ratos Sprague-Dawley
3.
Neural Plast ; 2015: 109106, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26346563

RESUMO

Recent evidence has shown that astrocytes play essential roles in synaptic transmission and plasticity. Nevertheless, how neuronal activity alters astroglial functional properties and whether such properties also display specific forms of plasticity still remain elusive. Here, we review research findings supporting this aspect of astrocytes, focusing on their roles in the clearance of extracellular potassium and glutamate, two neuroactive substances promptly released during excitatory synaptic transmission. Their subsequent removal, which is primarily carried out by glial potassium channels and glutamate transporters, is essential for proper functioning of the brain. Similar to neurons, different forms of short- and long-term plasticity in astroglial uptake have been reported. In addition, we also present novel findings showing robust potentiation of astrocytic inward currents in response to repetitive stimulations at mild frequencies, as low as 0.75 Hz, in acute hippocampal slices. Interestingly, neurotransmission was hardly affected at this frequency range, suggesting that astrocytes may be more sensitive to low frequency stimulation and may exhibit stronger plasticity than neurons to prevent hyperexcitability. Taken together, these important findings strongly indicate that astrocytes display both short- and long-term plasticity in their clearance of excess neuroactive substances from the extracellular space, thereby regulating neuronal activity and brain homeostasis.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Plasticidade Neuronal/fisiologia , Potássio/metabolismo , Animais , Humanos , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
4.
J Neurosci ; 33(8): 3370-9, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23426665

RESUMO

Activity-dependent bulk endocytosis (ADBE) is the dominant mode of synaptic vesicle (SV) endocytosis during high-frequency stimulation in central nerve terminals. ADBE generates endosomes direct from the plasma membrane, meaning that high concentrations of calcium will be present in their interior due to fluid phase uptake from the extracellular space. Morphological and fluorescent assays were used to track the generation of SVs from bulk endosomes in primary neuronal culture. This process was functionally uncoupled from both SV exocytosis and plasma membrane retrieval events by intervening only after SV fusion and endocytosis were completed. Either intracellular (BAPTA-AM) or intra-endosomal (Rhod-dextran) calcium chelation inhibited SV generation from bulk endosomes, indicating that calcium efflux from this compartment is critical for this process. The V-type ATPase antagonist bafilomycin A1 also arrested SV generation from bulk endosomes, indicating endosomal acidification may be required for calcium efflux. Finally, pharmacological inhibition of the calcium-dependent protein phosphatase calcineurin blocked endosomal SV generation, identifying it as a key downstream effector in this process. These results reveal a novel and key role for the fluid phase uptake of extracellular calcium and its subsequent efflux in the SV lifecycle.


Assuntos
Calcineurina/fisiologia , Cálcio/fisiologia , Endossomos/metabolismo , Potenciais Sinápticos/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Células Cultivadas , Endocitose/fisiologia , Endossomos/ultraestrutura , Exocitose/fisiologia , Neurônios/metabolismo , Neurônios/ultraestrutura , Ratos , Vesículas Sinápticas/ultraestrutura
5.
STAR Protoc ; 5(1): 102771, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070137

RESUMO

Mosaic analysis with double markers (MADM) technology enables the generation of genetic mosaic tissue in mice and high-resolution phenotyping at the individual cell level. Here, we present a protocol for isolating MADM-labeled cells with high yield for downstream molecular analyses using fluorescence-activated cell sorting (FACS). We describe steps for generating MADM-labeled mice, perfusion, single-cell suspension, and debris removal. We then detail procedures for cell sorting by FACS and downstream analysis. This protocol is suitable for embryonic to adult mice. For complete details on the use and execution of this protocol, please refer to Contreras et al. (2021).1.


Assuntos
Encéfalo , Animais , Camundongos , Citometria de Fluxo , Separação Celular , Movimento Celular , Perfusão
6.
STAR Protoc ; 5(3): 103157, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38935508

RESUMO

The generation of diverse cell types during development is fundamental to brain functions. We outline a protocol to quantitatively assess the clonal output of individual neural progenitors using mosaic analysis with double markers (MADM) in mice. We first describe steps to acquire and reconstruct adult MADM clones in the superior colliculus. Then we detail analysis pipelines to determine clonal composition and architecture. This protocol enables the buildup of quantitative frameworks of lineage progression with precise spatial resolution in the brain. For complete details on the use and execution of this protocol, please refer to Cheung et al.1.

7.
STAR Protoc ; 5(3): 103168, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38968076

RESUMO

The lineage relationship of clonally-related cells offers important insights into the ontogeny and cytoarchitecture of the brain in health and disease. Here, we provide a protocol to concurrently assess cell lineage relationship and cell-type identity among clonally-related cells in situ. We first describe the preparation and screening of acute brain slices containing clonally-related cells labeled using mosaic analysis with double markers (MADM). We then outline steps to collect RNA from individual cells for downstream applications and cell-type identification using RNA sequencing. For complete details on the use and execution of this protocol, please refer to Cheung et al.1.

8.
Neuron ; 112(2): 230-246.e11, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38096816

RESUMO

The superior colliculus (SC) in the mammalian midbrain is essential for multisensory integration and is composed of a rich diversity of excitatory and inhibitory neurons and glia. However, the developmental principles directing the generation of SC cell-type diversity are not understood. Here, we pursued systematic cell lineage tracing in silico and in vivo, preserving full spatial information, using genetic mosaic analysis with double markers (MADM)-based clonal analysis with single-cell sequencing (MADM-CloneSeq). The analysis of clonally related cell lineages revealed that radial glial progenitors (RGPs) in SC are exceptionally multipotent. Individual resident RGPs have the capacity to produce all excitatory and inhibitory SC neuron types, even at the stage of terminal division. While individual clonal units show no pre-defined cellular composition, the establishment of appropriate relative proportions of distinct neuronal types occurs in a PTEN-dependent manner. Collectively, our findings provide an inaugural framework at the single-RGP/-cell level of the mammalian SC ontogeny.


Assuntos
Células-Tronco Neurais , Colículos Superiores , Animais , Colículos Superiores/fisiologia , Neurônios/metabolismo , Neuroglia/metabolismo , Células-Tronco Neurais/metabolismo , Linhagem da Célula/fisiologia , Mamíferos
9.
J Neurosci ; 32(17): 6014-23, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22539861

RESUMO

Activity-dependent bulk endocytosis is the dominant synaptic vesicle retrieval mode during high intensity stimulation in central nerve terminals. A key event in this endocytosis mode is the generation of new vesicles from bulk endosomes, which replenish the reserve vesicle pool. We have identified an essential requirement for both adaptor protein complexes 1 and 3 in this process by employing morphological and optical tracking of bulk endosome-derived synaptic vesicles in rat primary neuronal cultures. We show that brefeldin A inhibits synaptic vesicle generation from bulk endosomes and that both brefeldin A knockdown and shRNA knockdown of either adaptor protein 1 or 3 subunits inhibit reserve pool replenishment from bulk endosomes. Conversely, no plasma membrane function was found for adaptor protein 1 or 3 in either bulk endosome formation or clathrin-mediated endocytosis. Simultaneous knockdown of both adaptor proteins 1 and 3 indicated that they generated the same population of synaptic vesicles. Thus, adaptor protein complexes 1 and 3 play an essential dual role in generation of synaptic vesicles during activity-dependent bulk endocytosis.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 3 de Proteínas Adaptadoras/metabolismo , Endossomos/fisiologia , Neurônios/citologia , Vesículas Sinápticas/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 3 de Proteínas Adaptadoras/genética , Animais , Animais Recém-Nascidos , Brefeldina A/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Cerebelo/citologia , Dextranos/metabolismo , Endossomos/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Exocitose/genética , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peroxidase do Rábano Silvestre/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Cloreto de Potássio/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , RNA Interferente Pequeno/metabolismo , Ratos , Rodaminas/metabolismo , Vesículas Sinápticas/efeitos dos fármacos , Transfecção/métodos
10.
Cells ; 12(8)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37190042

RESUMO

Connexin 43, an astroglial gap junction protein, is enriched in perisynaptic astroglial processes and plays major roles in synaptic transmission. We have previously found that astroglial Cx43 controls synaptic glutamate levels and allows for activity-dependent glutamine release to sustain physiological synaptic transmissions and cognitiogns. However, whether Cx43 is important for the release of synaptic vesicles, which is a critical component of synaptic efficacy, remains unanswered. Here, using transgenic mice with a glial conditional knockout of Cx43 (Cx43-/-), we investigate whether and how astrocytes regulate the release of synaptic vesicles from hippocampal synapses. We report that CA1 pyramidal neurons and their synapses develop normally in the absence of astroglial Cx43. However, a significant impairment in synaptic vesicle distribution and release dynamics were observed. In particular, the FM1-43 assays performed using two-photon live imaging and combined with multi-electrode array stimulation in acute hippocampal slices, revealed a slower rate of synaptic vesicle release in Cx43-/- mice. Furthermore, paired-pulse recordings showed that synaptic vesicle release probability was also reduced and is dependent on glutamine supply via Cx43 hemichannel (HC). Taken together, we have uncovered a role for Cx43 in regulating presynaptic functions by controlling the rate and probability of synaptic vesicle release. Our findings further highlight the significance of astroglial Cx43 in synaptic transmission and efficacy.


Assuntos
Conexina 43 , Vesículas Sinápticas , Camundongos , Animais , Conexina 43/metabolismo , Vesículas Sinápticas/metabolismo , Astrócitos/metabolismo , Glutamina/metabolismo , Sinapses/metabolismo , Hipocampo/metabolismo , Camundongos Transgênicos
11.
Nat Commun ; 13(1): 753, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136061

RESUMO

Presynaptic glutamate replenishment is fundamental to brain function. In high activity regimes, such as epileptic episodes, this process is thought to rely on the glutamate-glutamine cycle between neurons and astrocytes. However the presence of an astroglial glutamine supply, as well as its functional relevance in vivo in the healthy brain remain controversial, partly due to a lack of tools that can directly examine glutamine transfer. Here, we generated a fluorescent probe that tracks glutamine in live cells, which provides direct visual evidence of an activity-dependent glutamine supply from astroglial networks to presynaptic structures under physiological conditions. This mobilization is mediated by connexin43, an astroglial protein with both gap-junction and hemichannel functions, and is essential for synaptic transmission and object recognition memory. Our findings uncover an indispensable recruitment of astroglial glutamine in physiological synaptic activity and memory via an unconventional pathway, thus providing an astrocyte basis for cognitive processes.


Assuntos
Astrócitos/metabolismo , Glutamina/metabolismo , Hipocampo/fisiologia , Reconhecimento Psicológico , Transmissão Sináptica , Animais , Cognição , Corantes Fluorescentes/química , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Glutamina/química , Hipocampo/citologia , Microscopia Intravital , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Sondas Moleculares , Neurônios/metabolismo , Rodaminas/química , Técnicas Estereotáxicas
12.
J Neurosci ; 30(24): 8151-61, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20554865

RESUMO

Multiple synaptic vesicle (SV) retrieval modes exist in central nerve terminals to maintain a continual supply of SVs for neurotransmission. Two such modes are clathrin-mediated endocytosis (CME), which is dominant during mild neuronal activity, and activity-dependent bulk endocytosis (ADBE), which is dominant during intense neuronal activity. However, little is known about how activation of these SV retrieval modes impact the replenishment of the total SV recycling pool and the pools that reside within it, the readily releasable pool (RRP) and reserve pool. To address this question, we examined the replenishment of all three SV pools by triggering these SV retrieval modes during both high- and low-intensity stimulation of primary rat neuronal cultures. SVs generated by CME and ADBE were differentially labeled using the dyes FM1-43 and FM2-10, and their replenishment of specific SV pools was quantified using stimulation protocols that selectively depleted each pool. Our studies indicate that while the RRP was replenished by CME-generated SVs, ADBE provided additional SVs to increase the capacity of the reserve pool. Morphological analysis of the uptake of the fluid phase marker horseradish peroxidase corroborated these findings. The differential replenishment of specific SV pools by independent SV retrieval modes illustrates how previously experienced neuronal activity impacts the capability of central nerve terminals to respond to future stimuli.


Assuntos
Clatrina/farmacologia , Endocitose/efeitos dos fármacos , Terminações Nervosas/fisiologia , Neurônios/ultraestrutura , Vesículas Sinápticas/fisiologia , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Células Cultivadas , Cerebelo/citologia , Estimulação Elétrica/métodos , Feminino , Proteínas de Fluorescência Verde/genética , Peroxidase do Rábano Silvestre/metabolismo , Masculino , Microscopia Eletrônica de Transmissão/métodos , Terminações Nervosas/efeitos dos fármacos , Terminações Nervosas/ultraestrutura , Inibição Neural/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Ratos , Ratos Sprague-Dawley , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/ultraestrutura , Fatores de Tempo , Transfecção/métodos
13.
Stroke ; 41(12): 2944-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21051674

RESUMO

BACKGROUND AND PURPOSE: Although in vitro studies suggest that non-neurogenic regions of the adult central nervous system potentially contain multipotent parenchymal progenitors, neurons are clearly not replaced in most brain regions after injury. Here, in a well-established model of mild transient brain ischemia, we explored Olig2 antagonism and Pax6 overexpression as potential avenues to redirect endogenous progenitors proliferating in situ toward a neuronal fate. METHODS: Retroviral vectors containing either Pax6 or a strong activator form of the repressor Olig2 (Olig2VP16), ie, a functionally dominant negative form of Olig2, were stereotaxically injected into the lateral striatum at 48 hours after 30 minutes middle cerebral artery occlusion (MCAo)/reperfusion. RESULTS: Retroviral modulation of fate determinants resulted in a significant number of infected cells differentiating into Doublecortin (DCX)-expressing immature neurons that were not observed after injection of a control virus. Whole-cell patch-clamp recordings in acute brain slices showed that the percentage of virus-infected cells with Na(+) currents was increased by inhibition of the repressor function of Olig2 and by overexpression of Pax6. Furthermore, on retroviral transduction of fate determinants, we detected newly generated cells within the ischemic lesion that were capable of generating single action potentials and that received synaptic input. CONCLUSIONS: Taken together, these data show that resident glia in the striatum can be reprogrammed toward functional neuronal differentiation following brain injury.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Proteínas do Olho/biossíntese , Proteínas de Homeodomínio/biossíntese , Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/fisiopatologia , Proteínas do Tecido Nervoso/biossíntese , Neuroglia/metabolismo , Neurônios/fisiologia , Fatores de Transcrição Box Pareados/biossíntese , Proteínas Repressoras/biossíntese , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Fenômenos Eletrofisiológicos , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Expressão Gênica/genética , Expressão Gênica/fisiologia , Proteína Glial Fibrilar Ácida/biossíntese , Proteína Glial Fibrilar Ácida/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Processamento de Imagem Assistida por Computador , Potenciais da Membrana/fisiologia , Camundongos , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/fisiologia , Neuropeptídeos/biossíntese , Neuropeptídeos/genética , Fator de Transcrição 2 de Oligodendrócitos , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/fisiologia , Técnicas de Patch-Clamp , Fenótipo , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Retroviridae/genética , Canais de Sódio/fisiologia
14.
STAR Protoc ; 1(3): 100198, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377092

RESUMO

Translation of distally localized mRNAs is an evolutionary mechanism occurring in polarized cells. It has been observed in astrocytes, whose processes contact blood vessels and synapses. Here, we describe a protocol for the purification of the entire pool of ribosome-bound mRNAs in perisynaptic astrocytic processes (PAPs). Our procedure combines the preparation of synaptogliosomes with a refined translating ribosome affinity purification technique. This approach can be used in any brain region to probe the physiological relevance of local translation in PAPs. For complete details on the use and execution of this protocol, please refer to Mazaré et al. (2020).


Assuntos
Imunoprecipitação/métodos , RNA Mensageiro/isolamento & purificação , Animais , Astrócitos/patologia , Astrócitos/fisiologia , Fenômenos Biofísicos , Comunicação Celular , Hipocampo/fisiologia , Camundongos , Fagocitose , Ribossomos/genética , Ribossomos/metabolismo , Sinapses/fisiologia
15.
J Vis Exp ; (159)2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32449730

RESUMO

Beginning from a limited pool of progenitors, the mammalian cerebral cortex forms highly organized functional neural circuits. However, the underlying cellular and molecular mechanisms regulating lineage transitions of neural stem cells (NSCs) and eventual production of neurons and glia in the developing neuroepithelium remains unclear. Methods to trace NSC division patterns and map the lineage of clonally related cells have advanced dramatically. However, many contemporary lineage tracing techniques suffer from the lack of cellular resolution of progeny cell fate, which is essential for deciphering progenitor cell division patterns. Presented is a protocol using mosaic analysis with double markers (MADM) to perform in vivo clonal analysis. MADM concomitantly manipulates individual progenitor cells and visualizes precise division patterns and lineage progression at unprecedented single cell resolution. MADM-based interchromosomal recombination events during the G2-X phase of mitosis, together with temporally inducible CreERT2, provide exact information on the birth dates of clones and their division patterns. Thus, MADM lineage tracing provides unprecedented qualitative and quantitative optical readouts of the proliferation mode of stem cell progenitors at the single cell level. MADM also allows for examination of the mechanisms and functional requirements of candidate genes in NSC lineage progression. This method is unique in that comparative analysis of control and mutant subclones can be performed in the same tissue environment in vivo. Here, the protocol is described in detail, and experimental paradigms to employ MADM for clonal analysis and lineage tracing in the developing cerebral cortex are demonstrated. Importantly, this protocol can be adapted to perform MADM clonal analysis in any murine stem cell niche, as long as the CreERT2 driver is present.


Assuntos
Córtex Cerebral/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Diferenciação Celular , Camundongos , Células-Tronco Neurais/citologia
16.
Cell Rep ; 32(8): 108076, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32846133

RESUMO

Local translation is a conserved mechanism conferring cells the ability to quickly respond to local stimuli. In the brain, it has been recently reported in astrocytes, whose fine processes contact blood vessels and synapses. Yet the specificity and regulation of astrocyte local translation remain unknown. We study hippocampal perisynaptic astrocytic processes (PAPs) and show that they contain the machinery for translation. Using a refined immunoprecipitation technique, we characterize the entire pool of ribosome-bound mRNAs in PAPs and compare it with the one expressed in the whole astrocyte. We find that a specific pool of mRNAs is highly polarized at the synaptic interface. These transcripts encode an unexpected molecular repertoire, composed of proteins involved in iron homeostasis, translation, cell cycle, and cytoskeleton. Remarkably, we observe alterations in global RNA distribution and ribosome-bound status of some PAP-enriched transcripts after fear conditioning, indicating the role of astrocytic local translation in memory and learning.


Assuntos
Astrócitos/metabolismo , Medo/psicologia , Plasticidade Neuronal/fisiologia , Animais , Humanos , Camundongos
17.
J Physiol ; 587(Pt 4): 753-68, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19047202

RESUMO

Microglial cells (brain macrophages) invade the brain during embryonic and early postnatal development, migrate preferentially along fibre tracts to their final position and transform from an amoeboid to a ramified morphology. Signals by which the invading microglia communicate with other brain cells are largely unknown. Here, we studied amoeboid microglia in postnatal corpus callosum obtained from 6- to 8-day-old mice. These cells accumulated on the surface of acute brain slices. Whole-cell patch-clamp recordings revealed that the specific GABA(A) receptor agonist muscimol triggered a transient increase in conductance typical for inward rectifying potassium channels in microglia. This current increase was not mediated by microglial GABA(A) receptors since microglial cells removed from the slice surface no longer reacted and cultured microglia only responded when a brain slice was placed in their close vicinity. Muscimol triggered a transient increase in extracellular potassium concentration ([K(+)](o)) in brain slices and an experimental elevation of [K(+)](o) mimicked the muscimol response in microglial cells. Moreover, in adult brain slices, muscimol led only to a minute increase in [K(+)](o) and microglial cells failed to respond to muscimol. In turn, an increase in [K(+)](o) stimulated the release of chemokine macrophage inflammatory protein-1alpha (MIP1-alpha) from brain slices and from cultures of microglia but not astrocytes. Our observations indicate that invading microglia in early postnatal development sense GABAergic activities indirectly via sensing changes in [K(+)](o) which results in an increase in MIP1-alpha release.


Assuntos
Encéfalo/metabolismo , Proteínas Inflamatórias de Macrófagos/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Receptores de GABA-A/fisiologia , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Células Cultivadas , Agonistas de Receptores de GABA-A , Macrófagos/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Muscimol/farmacologia
18.
J Neurosci Res ; 87(3): 644-52, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18831010

RESUMO

Microglia, central nervous system (CNS) resident phagocytic cells, persistently police the integrity of CNS tissue and respond to any kind of damage or pathophysiological changes. These cells sense and rapidly respond to danger and inflammatory signals by changing their cell morphology; by release of cytokines, chemokines, or nitric oxide; and by changing their MHC expression profile. We have shown previously that microglial biosynthesis of the complement subcomponent C1q may serve as a reliable marker of microglial activation ranging from undetectable levels of C1q biosynthesis in resting microglia to abundant C1q expression in activated, nonramified microglia. In this study, we demonstrate that cultured microglial cells respond to extrinsic C1q with a marked intracellular Ca(2+) increase. A shift toward proinflammatory microglial activation is indicated by the release of interleukin-6, tumor necrosis factor-alpha, and nitric oxide and the oxidative burst in rat primary microglial cells, an activation and differentiation process similar to the proinflammatory response of microglia to exposure to lipopolysaccharide. Our findings indicate 1) that extrinsic plasma C1q is involved in the initiation of microglial activation in the course of CNS diseases with blood-brain barrier impairment and 2) that C1q synthesized and released by activated microglia is likely to contribute in an autocrine/paracrine way to maintain and balance microglial activation in the diseased CNS tissue.


Assuntos
Complemento C1q/farmacologia , Microglia/metabolismo , Animais , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Interleucina-6/metabolismo , Lectina de Ligação a Manose/farmacologia , Microglia/efeitos dos fármacos , Óxido Nítrico/metabolismo , Fagocitose/efeitos dos fármacos , Ratos , Ratos Wistar , Explosão Respiratória/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
19.
J Neurosci ; 27(48): 13065-73, 2007 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18045900

RESUMO

Bradykinin (BK) is produced and acts at the site of injury and inflammation. In the CNS, migration of microglia toward the lesion site plays an important role pathologically. In the present study, we investigated the effect of BK on microglial migration. Increased motility of cultured microglia was mimicked by B1 receptor agonists and markedly inhibited by a B1 antagonist but not by a B2 receptor antagonist. BK induced chemotaxis in microglia isolated from wild-type and B2-knock-out mice but not from B1-knock-out mice. BK-induced motility was not blocked by pertussis toxin but was blocked by chelating intracellular Ca2+ or by low extracellular Ca2+, implying that Ca2+ influx is prerequisite. Blocking the reverse mode of Na+/Ca2+ exchanger (NCX) completely inhibited BK-induced migration. The involvement of NCX was further confirmed by using NCX+/- mice; B1-agonist-induced motility and chemotaxis was decreased compared with that in NCX+/+ mice. Activation of NCX seemed to be dependent on protein kinase C and phosphoinositide 3-kinase, and resultant activation of intermediate-conductance (IK-type) Ca2+-dependent K+ currents (I(K(Ca))) was activated. Despite these effects, BK did not activate microglia, as judged from OX6 staining. Using in vivo lesion models and pharmacological injection to the brain, it was shown that microglial accumulation around the lesion was also dependent on B1 receptors and I(K(Ca)). These observations support the view that BK functions as a chemoattractant by using the distinct signal pathways in the brain and, thus, attracts microglia to the lesion site in vivo.


Assuntos
Bradicinina/farmacologia , Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Microglia/efeitos dos fármacos , Receptor B1 da Bradicinina/fisiologia , Trocador de Sódio e Cálcio/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Bradicinina/análogos & derivados , Antagonistas de Receptor B1 da Bradicinina , Antagonistas de Receptor B2 da Bradicinina , Células Cultivadas , Córtex Cerebelar/citologia , Quimiotaxia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos , Camundongos Knockout , Ratos , Ratos Wistar , Receptor B1 da Bradicinina/agonistas , Receptor B1 da Bradicinina/deficiência , Receptor B2 da Bradicinina/agonistas , Receptor B2 da Bradicinina/deficiência , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
20.
Glia ; 56(9): 925-34, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18442086

RESUMO

We studied the properties of GFAP-expressing cells in adult mouse striatum using acute brain slices from transgenic animals expressing EGFP under GFAP promoter. Under physiological conditions, two distinct populations of GFAP-EGFP cells could be identified: (1) brightly fluorescent cells had bushy processes, passive membrane properties, glutamate transporter activity, and high gap junction coupling rate typical for classical astrocytes; (2) weakly fluorescent cells were characterized by thin, clearly distinguishable processes, voltage-gated currents, complex responses to kainate, and low coupling rate reminiscent of an astrocyte subtype recently described in the hippocampus. Mild focal cerebral ischemia confers delayed neuronal cell death and astrogliosis in the striatum. Following middle cerebral artery occlusion and reperfusion, brightly fluorescent cells were the dominant GFAP-EGFP population observed within the ischemic lesion. Interestingly, the majority of these cells expressed voltage-gated channels, showed complex responses to kainate, and a high coupling rate exceeding that of brightly fluorescent control cells. A minority of cells had passive membrane properties and was coupled less compared with passive control cells. We conclude that, in the adult striatum, astrocytes undergo distinct pathophysiological changes after ischemic insults. The dominant population in the ischemic lesion constitutes a novel physiological phenotype unlike any normal astrocyte and generates a large syncytium which might be a neuroprotective response of reactive astrocytes.


Assuntos
Astrócitos/fisiologia , Isquemia Encefálica/fisiopatologia , Corpo Estriado/fisiologia , Animais , Astrócitos/citologia , Isquemia Encefálica/patologia , Corpo Estriado/citologia , Proteína Glial Fibrilar Ácida , Humanos , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA