Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharmacol ; 95(3): 269-285, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30567956

RESUMO

Quinone reductase 2 (QR2, E.C. 1.10.5.1) is an enzyme with a feature that has attracted attention for several decades: in standard conditions, instead of recognizing NAD(P)H as an electron donor, it recognizes putative metabolites of NADH, such as N-methyl- and N-ribosyl-dihydronicotinamide. QR2 has been particularly associated with reactive oxygen species and memory, strongly suggesting a link among QR2 (as a possible key element in pro-oxidation), autophagy, and neurodegeneration. In molecular and cellular pharmacology, understanding physiopathological associations can be difficult because of a lack of specific and powerful tools. Here, we present a thorough description of the potent, nanomolar inhibitor [2-(2-methoxy-5H-1,4b,9-triaza(indeno[2,1-a]inden-10-yl)ethyl]-2-furamide (S29434 or NMDPEF; IC50 = 5-16 nM) of QR2 at different organizational levels. We provide full detailed syntheses, describe its cocrystallization with and behavior at QR2 on a millisecond timeline, show that it penetrates cell membranes and inhibits QR2-mediated reactive oxygen species (ROS) production within the 100 nM range, and describe its actions in several in vivo models and lack of actions in various ROS-producing systems. The inhibitor is fairly stable in vivo, penetrates cells, specifically inhibits QR2, and shows activities that suggest a key role for this enzyme in different pathologic conditions, including neurodegenerative diseases.


Assuntos
Piridinas/farmacologia , Alcaloides de Pirrolizidina/farmacologia , Quinona Redutases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Hep G2 , Humanos , Masculino , Camundongos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
2.
Molecules ; 24(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618826

RESUMO

Dunnione, a natural product isolated from the leaves of Streptocarpus dunnii (Gesneriaceae), acts as a substrate for quinone-reductases that may be associated with its antimalarial properties. Following our exploration of reactive oxygen species-producing compounds such as indolones, as possible new approaches for the research of new ways to treat this parasitosis, we explored derivatives of this natural product and their possible antiplasmodial and antimalarial properties, in vitro and in vivo, respectively. Apart from one compound, all the products tested had weak to moderate antiplasmodial activities, the best IC50 value being equal to 0.58 µM. In vivo activities in the murine model were moderate (at a dose of 50 mg/kg/mice, five times higher than the dose of chloroquine). These results encourage further pharmacomodulation steps to improve the targeting of the parasitized red blood cells and antimalarial activities.


Assuntos
Antimaláricos/química , Naftoquinonas/química , Quinona Redutases/química , Animais , Antimaláricos/farmacologia , Modelos Animais de Doenças , Células HeLa , Humanos , Camundongos , Estrutura Molecular , Naftoquinonas/farmacologia , Quinona Redutases/metabolismo , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
3.
Front Pharmacol ; 12: 660641, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040527

RESUMO

The balance between detoxification and toxicity is linked to enzymes of the drug metabolism Phase I (cytochrome P450 or oxidoreductases) and phase II conjugating enzymes (such as the UGTs). After the reduction of quinones, the product of the reaction, the quinols-if not conjugated-re-oxidizes spontaneously to form the substrate quinone with the concomitant production of the toxic reactive oxygen species (ROS). Herein, we documented the modulation of the toxicity of the quinone menadione on a genetically modified neuroblastoma model cell line that expresses both the quinone oxidoreductase 2 (NQO2, E.C. 1.10.5.1) alone or together with the conjugation enzyme UDP-glucuronosyltransferase (UGT1A6, E.C. 2.4.1.17), one of the two UGT isoenzymes capable to conjugate menadione. As previously shown, NQO2 enzymatic activity is concomitant to massive ROS production, as previously shown. The quantification of ROS produced by the menadione metabolism was probed by electron-paramagnetic resonance (EPR) on cell homogenates, while the production of superoxide was measured by liquid chromatography coupled to mass spectrometry (LC-MS) on intact cells. In addition, the dysregulation of the redox homeostasis upon the cell exposure to menadione was studied by fluorescence measurements. Both EPR and LCMS studies confirmed a significant increase in the ROS production in the NQO2 overexpressing cells due to the fast reduction of quinone into quinol that can re-oxidize to form superoxide radicals. However, the effect of NQO2 inhibition was drastically different between cells overexpressing only NQO2 vs. both NQO2 and UGT. Whereas NQO2 inhibition decreases the amount of superoxide in the first case by decreasing the amount of quinol formed, it increased the toxicity of menadione in the cells co-expressing both enzymes. Moreover, for the cells co-expressing QR2 and UGT the homeostasis dysregulation was lower in presence of menadione than for the its counterpart expressing only QR2. Those results confirmed that the cooperation of the two enzymes plays a fundamental role during the cells' detoxification process. The fluorescence measurements of the variation of redox homeostasis of each cell line and the detection of a glucuronide form of menadiol in the cells co-expressing NQO2 and UGT1A6 enzymes further confirmed our findings.

4.
Free Radic Biol Med ; 120: 56-61, 2018 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29526807

RESUMO

There is increasing evidence that oxidative stress is involved in the etiology and pathogenesis of neurodegenerative disorders. Overproduction of reactive oxygen species (ROS) is due in part to the reactivity of catecholamines, such as dopamine, adrenaline, and noradrenaline. These molecules are rapidly converted, chemically or enzymatically, into catechol-quinone and then into highly deleterious semiquinone radicals after 1-electron reduction in cells. Notably, the overexpression of dihydronicotinamide riboside:quinone oxidoreductase (QR2) in Chinese hamster ovary (CHO) cells increases the production of ROS, mainly superoxide radicals, when it is exposed to exogenous catechol-quinones (e.g. dopachrome, aminochrome, and adrenochrome). Here we used electron paramagnetic resonance analysis to demonstrate that the phenomenon observed in CHO cells is also seen in human leukemic cells (K562 cells) that naturally express QR2. Moreover, by manipulating the level of QR2 in neuronal cells, including immortalized neuroblast cells and ex vivo neurons isolated from QR2 knockout animals, we showed that there is a direct relationship between QR2-mediated quinone reduction and ROS overproduction. Supporting this result, the withdraw of the QR2 co-factor (BNAH) or the addition of the specific QR2 inhibitor S29434 suppressed oxidative stress. Taken together, these data suggest that the overexpression of QR2 in brain cells in the presence of catechol quinones might lead to ROS-induced cell death via the rapid conversion of superoxide radicals into hydrogen peroxide and then into highly reactive hydroxyl radicals. Thus, QR2 may be implicated in the early stages of neurodegenerative disorders.


Assuntos
NAD(P)H Desidrogenase (Quinona)/metabolismo , Degeneração Neural/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Adrenocromo/metabolismo , Animais , Humanos , Indolquinonas/metabolismo , Células K562 , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA