Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 136, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965534

RESUMO

BACKGROUND: BRAF inhibitors are widely employed in the treatment of melanoma with the BRAF V600E mutation. However, the development of resistance compromises their therapeutic efficacy. Diverse genomic and transcriptomic alterations are found in BRAF inhibitor resistant melanoma, posing a pressing need for convergent, druggable target that reverse therapy resistant tumor with different resistance mechanisms. METHODS: CRISPR-Cas9 screens were performed to identify novel target gene whose inhibition selectively targets A375VR, a BRAF V600E mutant cell line with acquired resistance to vemurafenib. Various in vitro and in vivo assays, including cell competition assay, water soluble tetrazolium (WST) assay, live-dead assay and xenograft assay were performed to confirm synergistic cell death. Liquid Chromatography-Mass Spectrometry analyses quantified polyamine biosynthesis and changes in proteome in vemurafenib resistant melanoma. EIF5A hypusination dependent protein translation and subsequent changes in mitochondrial biogenesis and activity were assayed by O-propargyl-puromycin labeling assay, mitotracker, mitoSOX labeling and seahorse assay. Bioinformatics analyses were used to identify the association of polyamine biosynthesis with BRAF inhibitor resistance and poor prognosis in melanoma patient cohorts. RESULTS: We elucidate the role of polyamine biosynthesis and its regulatory mechanisms in promoting BRAF inhibitor resistance. Leveraging CRISPR-Cas9 screens, we identify AMD1 (S-adenosylmethionine decarboxylase 1), a critical enzyme for polyamine biosynthesis, as a druggable target whose inhibition reduces vemurafenib resistance. Metabolomic and proteomic analyses reveal that polyamine biosynthesis is upregulated in vemurafenib-resistant cancer, resulting in enhanced EIF5A hypusination, translation of mitochondrial proteins and oxidative phosphorylation. We also identify that sustained c-Myc levels in vemurafenib-resistant cancer are responsible for elevated polyamine biosynthesis. Inhibition of polyamine biosynthesis or c-Myc reversed vemurafenib resistance both in vitro cell line models and in vivo in a xenograft model. Polyamine biosynthesis signature is associated with poor prognosis and shorter progression free survival after BRAF/MAPK inhibitor treatment in melanoma cohorts, highlighting the clinical relevance of our findings. CONCLUSIONS: Our findings delineate the molecular mechanisms involving polyamine-EIF5A hypusination-mitochondrial respiration pathway conferring BRAF inhibitor resistance in melanoma. These targets will serve as effective therapeutic targets that can maximize the therapeutic efficacy of existing BRAF inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fator de Iniciação de Tradução Eucariótico 5A , Melanoma , Mutação , Fatores de Iniciação de Peptídeos , Poliaminas , Proteínas Proto-Oncogênicas B-raf , Proteínas de Ligação a RNA , Vemurafenib , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Poliaminas/metabolismo , Camundongos , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Vemurafenib/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Sistemas CRISPR-Cas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Lisina/análogos & derivados
2.
BMC Biol ; 21(1): 45, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829149

RESUMO

BACKGROUND: CRISPR-based screens are revolutionizing drug discovery as tools to identify genes whose ablation induces a phenotype of interest. For instance, CRISPR-Cas9 screening has been successfully used to identify novel therapeutic targets in cancer where disruption of genes leads to decreased viability of malignant cells. However, low-activity guide RNAs may give rise to variable changes in phenotype, preventing easy identification of hits and leading to false negative results. Therefore, correcting the effects of bias due to differences in guide RNA efficiency in CRISPR screening data can improve the efficiency of prioritizing hits for further validation. Here, we developed an approach to identify hits from negative CRISPR screens by correcting the fold changes (FC) in gRNA frequency by the actual, observed frequency of indel mutations generated by gRNA. RESULTS: Each gRNA was coupled with the "reporter sequence" that can be targeted by the same gRNA so that the frequency of mutations in the reporter sequence can be used as a proxy for the endogenous target gene. The measured gRNA activity was used to correct the FC. We identified indel generation efficiency as the dominant factor contributing significant bias to screening results, and our method significantly removed such bias and was better at identifying essential genes when compared to conventional fold change analysis. We successfully applied our gRNA activity data to previously published gRNA screening data, and identified novel genes whose ablation could synergize with vemurafenib in the A375 melanoma cell line. Our method identified nicotinamide N-methyltransferase, lactate dehydrogenase B, and polypyrimidine tract-binding protein 1 as synergistic targets whose ablation sensitized A375 cells to vemurafenib. CONCLUSIONS: We identified the variations in target cleavage efficiency, even in optimized sgRNA libraries, that pose a strong bias in phenotype and developed an analysis method that corrects phenotype score by the measured differences in the targeting efficiency among sgRNAs. Collectively, we expect that our new analysis method will more accurately identify genes that confer the phenotype of interest.


Assuntos
Sistemas CRISPR-Cas , RNA , Vemurafenib , Mutação , Linhagem Celular
3.
Bioorg Chem ; 131: 106274, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36434952

RESUMO

Disruption of protein-protein interaction between transcriptional enhancer factor (TEA)-domain (TEAD; a transcription factor) and its co-activator Yes-associated protein (YAP)/ transcriptional co-activator with PDZ-binding motif (TAZ) is a potential therapeutic strategy against various types of solid tumors. Based on hit compound 8 and 9a, hydrazone derivatives with dioxo-benzo[d]isothiazole (9b-n) and oxime ester (10a-s) or amide derivatives (11a-r) with dioxo-benzo[b]thiophene were designed and synthesized as novel TEAD-YAP interaction inhibitors. Amide derivative 11q exhibited a higher potency in inhibiting TEAD-YAP reporter expression activity (IC50 = 12.7 µM), endogenous target gene (e.g., CTGF and CYR61) expression, breast cancer cell growth (GI50 = 3.2 µM), and anchorage-independent growth in soft agar. Molecular docking analysis suggested that the newly synthesized compounds bound to interface 2 of TEAD had lower docking scores compared to the compounds that bind to interface 3; moreover, they were predicted to overlap with YAP. Therefore, we identified 11q as an attractive therapeutic agent for treating solid tumors overexpressing YAP/TAZ.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Simulação de Acoplamento Molecular , Fatores de Transcrição/metabolismo , Amidas
4.
Angew Chem Int Ed Engl ; 61(17): e202110832, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35142018

RESUMO

Despite extensive efforts to realize effective photodynamic therapy (PDT), there is still a lack of therapeutic approaches concisely structured to mitigate the major obstacles of PDT in clinical applications. Herein, we report a molecular strategy exploiting ascorbate chemistry to enhance the efficacy of PDT in cancer cells overexpressing glucose transporter 1 (GLUT1). AA-EtNBS, a 5-O-substituted ascorbate-photosensitizer (PS) conjugate, undergoes a reversible structural conversion of the ascorbate moiety in the presence of reactive oxygen species (ROS) and glutathione (GSH), thereby promoting its uptake in GLUT1-overexpressed KM12C colon cancer cells and perturbing tumor redox homeostasis, respectively. Due to the unique pro-oxidant role of ascorbate in tumor environments, AA-EtNBS effectively sensitized KM12C cancer cells prior to PS-mediated generation of superoxide radicals under near-infrared (NIR) illumination. AA-EtNBS successfully exhibited GLUT1-targeted synergistic therapeutic efficacy during PDT both in vitro and in vivo. Therefore, this study outlines a promising strategy employing ascorbate both as a targeting unit for GLUT1-overexpressed cancer cells and redox homeostasis destruction agent, thereby enhancing therapeutic responses towards anticancer treatment when used in conjunction with conventional PDT.


Assuntos
Neoplasias , Fotoquimioterapia , Ácido Ascórbico/farmacologia , Linhagem Celular Tumoral , Transportador de Glucose Tipo 1 , Glutationa/metabolismo , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
5.
BMC Cancer ; 21(1): 596, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34030642

RESUMO

BACKGROUND: Phosphorylation of NF-kappaB inhibitor alpha (IκBα) is key to regulation of NF-κB transcription factor activity in the cell. Several sites of IκBα phosphorylation by members of the IκB kinase family have been identified, but phosphorylation of the protein by other kinases remains poorly understood. We investigated a new phosphorylation site on IκBα and identified its biological function in breast cancer cells. METHODS: Previously, we observed that aurora kinase (AURK) binds IκBα in the cell. To identify the domains of IκBα essential for phosphorylation by AURK, we performed kinase assays with a series of IκBα truncation mutants. AURK significantly promoted activation of IκBα at serine 32 but not serine 36; by contrast, IκB kinase (IKK) family proteins activated both of these residues. We also confirmed phosphorylation of IκBα by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and nano-liquid chromatography hybrid quadrupole orbitrap mass spectrometer (nanoLC-MS/MS; Q-Exactive). RESULTS: We identified two novel sites of serine phosphorylation, S63 and S262. Alanine substitution of S63 and S262 (S63A and S262A) of IκBα inhibited proliferation and suppressed p65 transcription activity. In addition, S63A and/or S262A of IκBα regulated apoptotic and necroptotic effects in breast cancer cells. CONCLUSIONS: Phosphorylation of IκBα by AURK at novel sites is related to the apoptosis and necroptosis pathways in breast cancer cells.


Assuntos
Aurora Quinase C/metabolismo , Neoplasias da Mama/patologia , Inibidor de NF-kappaB alfa/metabolismo , Necroptose , Sítios de Ligação/genética , Feminino , Humanos , Células MCF-7 , Mutagênese Sítio-Dirigida , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/isolamento & purificação , NF-kappa B/metabolismo , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos
6.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576180

RESUMO

A variety of innate immune cells such as macrophages, dendritic cells, myeloid-derived suppressor cells, natural killer cells, and neutrophils in the tumor microenvironments, contribute to tumor progression. However, while several recent reports have studied the use of immune checkpoint-based cancer immunotherapy, little work has focused on modulating the innate immune cells. This review focuses on the recent studies and challenges of using nanoparticles to target innate immune cells. In particular, we also examine the immunosuppressive properties of certain innate immune cells that limit clinical benefits. Understanding the cross-talk between tumors and innate immune cells could contribute to the development of strategies for manipulating the nanoparticles targeting tumor microenvironments.


Assuntos
Microambiente Tumoral/fisiologia , Animais , Humanos , Imunidade Inata/genética , Imunidade Inata/fisiologia , Células Supressoras Mieloides/metabolismo , Nanopartículas/química , Microambiente Tumoral/genética
7.
Can J Physiol Pharmacol ; 98(6): 373-382, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31999472

RESUMO

Acute myocarditis is an unpredictable heart disease that is caused by inflammation-associated cell death. Although viral infection and drug exposure are known to induce acute myocarditis, the molecular basis for its development remains undefined. Using proteomics and molecular analyses in myosin-induced rat experimental autoimmune myocarditis (EAM), we identified that elevated expression of aldolase 1A, retrogene 1 (Aldoart1) is critical to induce mitochondrial dysfunction and acute myocarditis development. Here, we demonstrate that cardiac cell death is associated with increased expressions of proapoptotic genes in addition to high levels of glucose, lactate, and triglyceride in metabolite profiling. The functional protein association network analysis also suggests that Aldoart1 upregulation correlates with high levels of dihydroxyacetone kinase and triglyceride. In H9c2 cardiac cells, lipopolysaccharides (LPS) or high glucose exposure significantly increases the cytochrome c release and the conversion of pro-caspase 3 into the cleaved form of caspase 3. We also found that LPS- or glucose-induced toxicities are almost completely reversed by siRNA-mediated knockdown of Aldoartl, which consequently increases cell viability. Together, our study strongly suggests that Aldoart1 may be involved in inducing mitochondrial apoptotic processes and can be a novel therapeutic target to prevent the onset of acute myocarditis or cardiac apoptosis.


Assuntos
Apoptose/genética , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Frutose-Bifosfato Aldolase/genética , Miocardite/genética , Miocardite/patologia , Miócitos Cardíacos/patologia , Animais , Modelos Animais de Doenças , Expressão Gênica , Masculino , Ratos
8.
Proc Natl Acad Sci U S A ; 114(22): 5683-5688, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28507149

RESUMO

XIAP-associated factor 1 (XAF1) is a tumor suppressor that is commonly inactivated in multiple human neoplasms. However, the molecular mechanism underlying its proapoptotic function remains largely undefined. Here, we report that XAF1 induction by heavy metals triggers an apoptotic switch of stress response by destabilizing metallothionein 2A (MT2A). XAF1 directly interacts with MT2A and facilitates its lysosomal degradation, resulting in the elevation of the free intercellular zinc level and subsequent activation of p53 and inactivation of XIAP. Intriguingly, XAF1 is activated as a unique transcription target of metal-regulatory transcription factor-1 (MTF-1) in signaling apoptosis, and its protein is destabilized via the lysosomal pathway by MTF-1-induced MT2A under cytostatic stress conditions, indicating the presence of mutual antagonism between XAF1 and MT2A. The antagonistic interplay between XAF1 and MT2A acts as a key molecular switch in MTF-1-mediated cell-fate decisions and also plays an important role in cell response to various apoptotic and survival factors. Wild-type (WT) XAF1 but not MT2A binding-deficient mutant XAF1 increases the free intracellular zinc level and accelerates WT folding of p53 and degradation of XIAP. Consistently, XAF1 evokes a more drastic apoptotic effect in p53+/+ versus isogenic p53-/- cells. Clinically, expression levels of XAF1 and MT2A are inversely correlated in primary colon tumors and multiple cancer cell lines. XAF1-depleted xenograft tumors display an increased growth rate and a decreased apoptotic response to cytotoxic heavy metals with strong MT2A expression. Collectively, this study uncovers an important role for XAF1-MT2A antagonism as a linchpin to govern cell fate under various stressful conditions including heavy metal exposure.


Assuntos
Apoptose/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Metalotioneína/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/patologia , Estresse Fisiológico/fisiologia , Zinco/toxicidade , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células MCF-7 , Metalotioneína/genética , Metalotioneína/metabolismo , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Fator MTF-1 de Transcrição
9.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374978

RESUMO

Exosomes are cell-secreted nanovesicles that naturally contain biomolecular cargoes such as lipids, proteins, and nucleic acids. Exosomes mediate intercellular communication, enabling the transfer biological signals from the donor cells to the recipient cells. Recently, exosomes are emerging as promising drug delivery vehicles due to their strong stability in blood circulation, high biocompatibility, low immunogenicity, and natural targeting ability. In particular, exosomes derived from specific types of cells can carry endogenous signaling molecules with therapeutic potential for cancer treatment, thus presenting a significant impact on targeted drug delivery and therapy. Furthermore, exosomes can be engineered to display targeting moieties on their surface or to load additional therapeutic agents. Therefore, a comprehensive understanding of exosome biogenesis and the development of efficient exosome engineering techniques will provide new avenues to establish convincing clinical therapeutic strategies based on exosomes. This review focuses on the therapeutic applications of exosomes derived from various cells and the exosome engineering technologies that enable the accurate delivery of various types of cargoes to target cells for cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Micropartículas Derivadas de Células/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Exossomos/metabolismo , Nanopartículas/metabolismo , Neoplasias/tratamento farmacológico , Animais , Portadores de Fármacos/metabolismo , Humanos , Terapia de Alvo Molecular/métodos
10.
J Am Chem Soc ; 141(39): 15611-15618, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31509395

RESUMO

Reported here is a molecular construct (K1) designed to overcome hurdles associated with delivering active drugs to heterogeneous tumor environments. Construct K1 relies on two cancer environment triggers (GSH and H2O2) to induce prodrug activation. It releases an active drug form (SN-38) under conditions of both oxidative and reductive stress in vitro. Specific uptake of K1 in COX-2 positive aggressive colon cancer cells (SW620 and LoVo) was seen, along with enhanced anticancer activity compared with the control agent SN-38. These findings are attributed to environmentally triggered drug release, as well as simultaneous scavenging of species giving rise to intracellular redox stress. K1 serves to downregulate various cancer survival signaling pathways (AKT, p38, IL-6, VEGF, and TNF-α) and upregulate an anti-inflammatory response (IL-10). Compared with SN-38 and DMSO as controls, K1 also displayed an improved in vivo therapeutic efficacy in a xenograft tumor regrowth model with no noticeable systematic toxicity at the administrated dose. We believe that the strategy described here presents an attractive approach to addressing solid tumors characterized by intratumoral heterogeneity.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Pró-Fármacos/farmacologia , Animais , Linhagem Celular Tumoral , Neoplasias do Colo , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Irinotecano/química , Irinotecano/farmacologia , Camundongos , Camundongos Nus , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Gastroenterol Hepatol ; 34(5): 890-898, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30226276

RESUMO

BACKGROUND AND AIM: Despite the frequent loss of Ras association domain family 1 isoform A (RASSF1A) expression in various cancers, the precise mechanism underlying its tumor-suppressive effect is not fully understood. To elucidate the growth-inhibitory role for RASSF1A in colorectal tumorigenesis, this study investigated the RASSF1A regulation of the p53-p21WAF1 pathway. METHODS: Ras association domain family 1 isoform A effect on cellular growth was tested in three human colon cancer cell lines by flow cytometry, cell counting, and [3 H]-thymidine incorporation assay. HCT116 p53+/+ and p53-/- isogenic sublines were utilized to determine the p53 dependence of RASSF1A effect on p21WAF1 . Cycloheximide chase experiment and immunoprecipitation assay were carried out to define RASSF1A effect on p53 stability and mouse double minute 2 (MDM2) homolog ubiquitination. RESULTS: Ras association domain family 1 isoform A expression inhibits colonic cell proliferation by preventing the G1 to S phase transition of the cell cycle. The RASSF1A-induced G1 cell cycle arrest is accompanied by the increase in the level of p21WAF1 mRNA expression. The p21WAF -inducing activity of RASSF1A was substantially higher in HCT116 p53+/+ cell compared with isogenic p53-/- cells. The cycloheximide chase assay revealed that RASSF1A expression leads to p53 stabilization and MDM2 homolog degradation. Using p53-/- and p21WAF1-/- subline cells, this study finally validated a crucial role of the p53-p21WAF1 axis in RASSF1A-mediated growth inhibition. CONCLUSIONS: RASSF1A suppresses colonic tumor growth through the activation of the p53-p21WAF1 pathway. This finding supports that RASSF1A could be a valuable marker for the assessment of colorectal cancer development and progression.


Assuntos
Carcinogênese/genética , Carcinogênese/patologia , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Expressão Gênica/genética , Genes Supressores de Tumor/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Linhagem Celular Tumoral , Humanos , Interfase/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ubiquitinação/genética
12.
Sensors (Basel) ; 20(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861836

RESUMO

Human NAD(P)H:quinone oxidoreductase 1 (hNQO1) is overexpressed in cancer cells and associated with the drug resistance factor of cancer. The objective of this work is the development of fluorescent probes for the efficient detection of hNQO1 activity in cancer cells, which can be employed for the cancer diagnosis and therapeutic agent development. Herein, we report naphthalimide-based fluorescent probes 1 and 2 that can detect hNQO1. For hNQO1 activity, the probes showed a significant fluorescence increase at 540 nm. In addition, probe 1, the naphthalimide containing a triphenylphosphonium salt, showed an enhanced enzyme efficiency and rapid detection under a physiological condition. The detection ability of probe 1 was superior to that of other previously reported probes. Moreover, probe 1 was less cytotoxic during the cancer cell imaging and readily provided a strong fluorescence in hNQO1-overexpressed cancer cells (A549). We proposed that probe 1 can be used to detect hNQO1 expression in live cells and it will be applied to develop the diagnosis and customized treatment of hNQO1-related disease.


Assuntos
Materiais Biocompatíveis/metabolismo , Corantes Fluorescentes/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Naftalimidas/metabolismo , Células A549 , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Ensaios Enzimáticos/métodos , Corantes Fluorescentes/química , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , NAD/química , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/genética , Naftalimidas/química , Espectrometria de Fluorescência
13.
BMC Cancer ; 17(1): 766, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141593

RESUMO

BACKGROUND: Expression of caveolin-1 (Cav-1) is frequently altered in many human cancers and both tumor suppression and promotion functions of Cav-1 have been suggested based on its expression status. However, it remains unanswered how Cav-1 provokes opposite effects in different cancers or different phases of tumor progression. METHODS: To explore the implication of Cav-1 alteration in gastric tumorigenesis, the expression and mutational status of Cav-1 and its effects on tumor cell growth were characterized. RESULTS: A substantial fraction of primary tumors and cell lines displayed abnormally low or high Cav-1 mRNA expression, indicating the bidirectional alteration of Cav-1 in gastric cancers. While allelic imbalance and mutational alterations of the Cav-1 gene were rarely detected, aberrant promoter hyper- or hypo-methylation showed a tight correlation with bidirectional alteration of its expression. Abnormally low and high Cav-1 expression was more frequently observed in early and advanced cancers, respectively, suggesting the oncogenic switch of its function in tumor progression. Cell cycle progression, DNA synthesis, and colony forming ability were markedly decreased by Cav-1 transfection in low-expressing tumor cells but by its depletion in high-expressing cells. Interestingly, Cav-1 exerted opposite effects on MEK-ERK signaling in these two cell types through the reciprocal regulation of the RAF-ERK negative feedback loop. A feedback inhibition of RAF by ERK was stimulated by restoration of Cav-1 expression in low-expressing cells but by it depletion in high-expressing cells. As predicted, the opposite effects of Cav-1 on both tumor cell growth and inhibitory RAF phosphorylation were abolished if ERK is depleted. CONCLUSION: Bidirectional alteration of Cav-1 is linked to its opposite effects on gastric tumor cell growth, which stem from the reciprocal control on the RAF-ERK negative feedback loop.


Assuntos
Caveolina 1/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Caveolina 1/metabolismo , Metilação de DNA , Progressão da Doença , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Modelos Biológicos , Mutação , Polimorfismo Genético , Regiões Promotoras Genéticas , Neoplasias Gástricas/metabolismo , Quinases raf/genética , Quinases raf/metabolismo
14.
Proc Natl Acad Sci U S A ; 111(43): 15532-7, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25313037

RESUMO

X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is a tumor suppressor that is frequently inactivated in many human cancers. However, the molecular mechanism underlying its growth-inhibitory function remains largely unknown. Here, we report that XAF1 forms a positive feedback loop with p53 and acts as a molecular switch in p53-mediated cell-fate decisions favoring apoptosis over cell-cycle arrest. XAF1 binds directly to the N-terminal proline-rich domain of p53 and thus interferes with E3 ubiquitin ligase MDM2 binding and ubiquitination of p53. XAF1 stimulates homeodomain-interacting protein kinase 2 (HIPK2)-mediated Ser-46 phosphorylation of p53 by blocking E3 ubiquitin ligase Siah2 interaction with and ubiquitination of HIPK2. XAF1 also steps up the termination of p53-mediated cell-cycle arrest by activating zinc finger protein 313 (ZNF313), a p21(WAF1)-targeting ubiquitin E3 ligase. XAF1 interacts with p53, Siah2, and ZNF313 through the zinc finger domains 5, 6, and 7, respectively, and truncated XAF1 isoforms preferentially expressed in cancer cells fail to form a feedback loop with p53. Together, this study uncovers a novel role for XAF1 in p53 stress response, adding a new layer of complexity to the mechanisms by which p53 determines cell-fate decisions.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ativação Enzimática/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Células HCT116 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Modelos Biológicos , Proteínas de Neoplasias/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Ligação Proteica/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Indução de Remissão , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
16.
J Neurooncol ; 125(1): 55-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26297045

RESUMO

Glioblastoma is the most aggressive primary brain tumor with hypoxia-associated morphologic features including pseudopalisading necrosis and endothelial hyperplasia. It has been known that hypoxia can activate signal transducer and activator of transcription 3 (Stat3) and subsequently induce angiogenesis. However, the molecular mechanism underlying hypoxia-induced Stat3 activation has not been defined. In this study, we explored the possible implication of reactive oxygen species (ROS) in hypoxia-driven Stat3 activation in human glioblastoma. We found that hypoxic stress increased ROS production as well as Stat3 activation and that ROS inhibitors (diphenyleneiodonium, rotenone and myxothiazol) and an antioxidant (N-acetyl-L-cysteine) blocked Stat3 activation under hypoxic conditions. To determine a major route of ROS production, we tested whether nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) is involved in hypoxia-induced ROS production. Nox4 expression was found to be increased at both mRNA and protein levels in hypoxic glioblastoma cells. In addition, siRNA-mediated knockdown of Nox4 expression abolished hypoxia induced Stat3 activation and vascular endothelial growth factor expression, which is associated with tumor cells' ability to trigger tube formation of endothelial cells in vitro. Our findings indicate that elevated ROS production plays a crucial role for Stat3 activation and angiogenesis in hypoxic glioblastoma cells.


Assuntos
Hipóxia/metabolismo , Neovascularização Patológica/etiologia , Neovascularização Patológica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Acetilcisteína/farmacologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/patologia , Humanos , NADPH Oxidase 4 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
J Neurooncol ; 121(1): 73-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25193023

RESUMO

Romo1 is a mitochondrial protein whose elevated expression is commonly observed in various types of human cancers. However, the expression status of Romo1 and its implication in the pathogenesis of human glioblastoma (GBM) remain largely undefined. To understand the role of Romo1 in the progression of GBM, we explored its expression in a series of GBM tissues and cell lines and determined its effect on ROS production, cell proliferation, and tumor growth. Romo1 was frequently overexpressed at the mRNA level in both primary tumors and cell lines and its elevation was more commonly observed in high grade tumors versus low grade tumors. Romo1 expression was associated with ROS production and its knockdown led to a marked reduction of in vitro cellular growth and anchorage-independent growth of GBM. Consistently, Romo1 depletion induced a G2/M arrest of the cell cycle that was accompanied with accumulation of phospho-cdc2. Furthermore, a mouse xenograft assay revealed that Romo1 depletion significantly decreased tumor formation and growth. Therefore, our data demonstrate that Romo1 upregulation is a common event in human GBMs and contributes to the malignant tumor progression, suggesting that Romo1 could be a new therapeutic target for human GBM.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Proliferação de Células/fisiologia , Glioma/fisiopatologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Neoplasias Encefálicas/patologia , Carcinogênese/metabolismo , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glioma/patologia , Humanos , Proteínas de Membrana/genética , Camundongos , Proteínas Mitocondriais/genética , Gradação de Tumores , Transplante de Neoplasias , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA