Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
BMC Microbiol ; 23(1): 29, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703110

RESUMO

BACKGROUND: Trametes gibbosa, which is a white-rot fungus of the Polyporaceae family found in the cold temperate zone, causes spongy white rot on wood. Laccase can oxidize benzene homologs and is one of the important oxidases for white rot fungi to degrade wood. However, the pathway of laccase synthesis in white rot fungi is unknown. RESULTS: The peak value of laccase activity reached 135.75 U/min/L on the 9th day. For laccase activity and RNA-seq data, gene expression was segmented into 24 modules. Turquoise and blue modules had greater associations with laccase activity (positively 0.94 and negatively -0.86, respectively). For biology function, these genes were concentrated on the cell cycle, citrate cycle, nicotinate, and nicotinamide metabolism, succinate dehydrogenase activity, flavin adenine dinucleotide binding, and oxidoreductase activity which are highly related to the laccase synthetic pathway. Among them, gene_8826 (MW199767), gene_7458 (MW199766), gene_61 (MW199765), gene_1741 (MH257605), and gene_11087 (MK805159) were identified as central genes. CONCLUSION: Laccase activity steadily increased in wood degradation. Laccase oxidation consumes oxygen to produce hydrogen ions and water during the degradation of wood. Some of the hydrogen ions produced can be combined by Flavin adenine dinucleotide (FAD) to form reduced Flavin dinucleotide (FADH2), which can be transmitted. Also, the fungus was starved of oxygen throughout fermentation, and the NADH and FADH2 are unable to transfer hydrogen under hypoxia, resulting in the inability of NAD and FAD to regenerate and inhibit the tricarboxylic acid cycle of cells. These key hub genes related to laccase activity play important roles in the molecular mechanisms of laccase synthesis for exploring industrial excellent strains.


Assuntos
Lacase , Polyporaceae , Lacase/genética , Lacase/metabolismo , Trametes/genética , Trametes/metabolismo , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Transcriptoma , Prótons , Polyporaceae/metabolismo , Oxigênio
2.
BMC Biotechnol ; 21(1): 64, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740358

RESUMO

BACKGROUND: Alizarin red (AR) is a typical anthraquinone dye, and the resulting wastewater is toxic and difficult to remove. A study showed that the white rot fungus Trametes gibbosa (T. gibbosa) can degrade dye wastewater by decolorization and has its own enzyme-producing traits. METHODS: In this study, transcriptome sequencing was performed after alizarin red treatment for 0, 3, 7, 10, and 14 h. The key pathways and key enzymes involved in alizarin red degradation were found to be through the analysis of KEGG and GO. The Glutathione S-transferase (GST), manganese peroxidase (MnP) and laccase activities of T. gibbosa treated with alizarin red for 0-14 h were detected. LC-MS and GC-MS analyses of alizarin red decomposition products after 7 h and 14 h were performed. RESULTS: The glutathione metabolic pathway ko00480, and the key enzymes GST, MnP, laccase and CYP450 were selected. Most of the genes encoding these enzymes were upregulated under alizarin red conditions. The GST activity increased 1.8 times from 117.55 U/mg prot at 0 h to 217.03 U/mg prot at 14 h. The MnP activity increased 2.9 times from 6.45 to 18.55 U/L. The laccase activity increased 3.7 times from 7.22 to 27.28 U/L. Analysis of the alizarin red decolourization rate showed that the decolourization rate at 14 h reached 20.21%. The main degradation intermediates were found to be 1,4-butene diacid, phthalic acid, 1,1-diphenylethylene, 9,10-dihydroanthracene, 1,2-naphthalene dicarboxylic acid, bisphenol, benzophenol-5,2-butene, acrylaldehyde, and 1-butylene, and the degradation process of AR was inferred. Overall, 1,4-butene diacid is the most important intermediate product produced by AR degradation. CONCLUSIONS: The glutathione metabolic pathway was the key pathway for AR degradation. GST, MnP, laccase and CYP450 were the key enzymes for AR degradation. 1,4-butene diacid is the most important intermediate product. This study explored the process of AR biodegradation at the molecular and biochemical levels and provided a theoretical basis for its application in practical production.


Assuntos
Polyporaceae , Trametes , Antraquinonas , Biodegradação Ambiental , Lacase/genética , Peroxidases , Trametes/genética
3.
Int J Mol Sci ; 22(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205577

RESUMO

Mechanistic Monte Carlo (MC) simulation of radiation interaction with water and DNA is important for the understanding of biological responses induced by ionizing radiation. In our previous work, we employed the Graphical Processing Unit (GPU)-based parallel computing technique to develop a novel, highly efficient, and open-source MC simulation tool, gMicroMC, for simulating electron-induced DNA damages. In this work, we reported two new developments in gMicroMC: the transport simulation of protons and heavy ions and the concurrent transport of radicals in the presence of DNA. We modeled these transports based on electromagnetic interactions between charged particles and water molecules and the chemical reactions between radicals and DNA molecules. Various physical properties, such as Linear Energy Transfer (LET) and particle range, from our simulation agreed with data published by NIST or simulation results from other CPU-based MC packages. The simulation results of DNA damage under the concurrent transport of radicals and DNA agreed with those from nBio-Topas simulation in a comprehensive testing case. GPU parallel computing enabled high computational efficiency. It took 41 s to simultaneously transport 100 protons with an initial kinetic energy of 10 MeV in water and 470 s to transport 105 radicals up to 1 µs in the presence of DNA.


Assuntos
Dano ao DNA , Íons Pesados , Modelos Químicos , Prótons , Radiação Ionizante , Método de Monte Carlo
4.
J Sci Food Agric ; 101(2): 433-440, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32648587

RESUMO

BACKGROUND: Dry heat processing remains the most promising and simple approach for achieving better gelling properties of spray-dried egg white powder (EWP). Water mobility and intermolecular interactions in gels derived from EWP were investigated after subjecting EWP to various dry heating times (0-21 days). RESULTS: The gel hardness and water-holding capacity significantly increased with an increase in dry heating time (P < 0.05), and both parameters were positively correlated with gel transparency. In contrast to the coarser structure of untreated EWP gel, the gel of EWP corresponding to 15 days of dry heating time had a fine-stranded and orderly network structure with smaller pores. An increase in the binding force between the gel and water was observed with an increase in dry heating time due to the formation of more 'protein-water' hydrogen bonds. Increasing the dry heating time resulted in an increase in the contribution of disulfide bonds, which in turn made a significant contribution to the rigidity of the EWP gels. By contrast, a decrease in the contribution of ionic bonds and hydrophobic interactions upon increasing the dry heating time promoted the formation of orderly networks. CONCLUSIONS: Overall, gel corresponding to EWP dry heating for 15 days had better gel properties, the highest transparency and water-holding capacity, as well as a fine-stranded and orderly network structure. These results provide more information on improvement of the gel properties of EWP through dry heat treatment. © 2020 Society of Chemical Industry.


Assuntos
Culinária/métodos , Clara de Ovo/química , Animais , Galinhas , Culinária/instrumentação , Ovos/análise , Ovos/parasitologia , Géis/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Pós/química , Solubilidade
5.
J Sci Food Agric ; 101(10): 4173-4182, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33420726

RESUMO

BACKGROUND: α-lactalbumin (α-La) is of great interest to the industry as a result of its excellent functional properties and nutritional value. Aqueous two-phase flotation (ATPF) of thermo-sensitive polymer poly (ethylene glycol-ran-propylene glycol) monobutyl ether (UCON) and KH2 PO4 was applied to directly separate and purify α-La from milk whey, which was purposed to simplify the production process and reduced cost of production. RESULTS: The effect of ATPF composition and operating parameters on the flotation efficiency (E) and purity of α-La were investigated. The optimal conditions included 2 min of premixing time, 30 mL min-1 flow velocity and 20 min of flotation time, whereas the composition conditions comprised 35.0 mL 0.18 g mL-1 phosphate solution (containing 10% (cow milk whey/salt solution, v/v) cow milk whey, 50 ppm defoamer and 2 g NaCl) and 5.0 mL of 40% (w/w) UCON solution. Under the optimal conditions, E of α-La was 95.67 ± 1.04% and purity of α-La was 98.78 ± 1.19%. UCON was recovered by a thermally-induced phase separation and reused in next ATPF process without reducing E of α-La. Purified α-La was characterized by several key technologies. The results indicated that α-La in cow milk whey could be directly separated and purified by the ATPF and the purity was satisfactory. Moreover, it was suggested there was no obvious structure difference between the α-La separated by ATPF and the α-La standard. CONCLUSION: The present study enabled the recycling of UCON, providing an effective, economically viable and environmentally friendly approach for the separation and purification of protein. © 2021 Society of Chemical Industry.


Assuntos
Fracionamento Químico/métodos , Lactalbumina/isolamento & purificação , Soro do Leite/química , Animais , Bovinos , Fracionamento Químico/instrumentação , Temperatura Alta , Concentração de Íons de Hidrogênio , Lactalbumina/análise , Fosfatos/química , Polímeros/química
6.
J Food Sci Technol ; 54(3): 669-678, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28298680

RESUMO

Effects of enzymatic hydrolysis on the physicochemical and functional properties of egg yolk were investigated in this study. Alcalase, neutrase and flavourzyme were used to hydrolyze egg yolk. Solubility, foaming properties, emulsifying and microstructure properties of egg yolk were determined after enzymatic hydrolysis. Results showed that alcalase had better efficiency of hydrolysis than neutrase and flavourzyme. Enzymatic hydrolysis caused a marked changes in protein solubility, surface hydrophobicity, molecular weight distributions, microstructure and other functional properties. It was observed that egg yolk and its hydrolysates exhibited a relatively smooth curve over the entire pH range; egg yolk hydrolysates with high DH had higher solubility than those having lower DH. Foam capacity and stability generally increased with increasing DH although foam stability showed a decrease at 15% DH. Hydrolysates of egg yolk showed scattered and fewer aggregated particles. This study demonstrated that egg yolk hydrolysates could be an excellent emulsifying agent for food and other applications.

7.
Curr Microbiol ; 73(2): 214-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27139252

RESUMO

Angiotensin-converting enzyme (ACE) inhibitory activity of fermented soybean milk (FSM) by Lactobacillus casei strains in vitro was investigated in this study. Effects of fermented soybean milk administration by gavage on systolic blood pressure and diastolic blood pressure was also evaluated in spontaneously hypertensive rats (SHR) rats and Wistar-Kyoto (WKY) rats. Results showed that, CICC 20280 and CICC 23184 FSM showed high ACE inhibitory activity in vitro test and ACE inhibitory activity of CICC 23184 FSM was higher than CICC 20280 FSM. The bioactive substances of FSM were peptide and γ-aminobutyric acid (GABA). Their contents in CICC 20280 FSM and CICC 23184 FSM were 3.97 ± 0.67 mg/ml (peptide), 1.71 ± 0.36 mg/ml (GABA) and 5.17 ± 0.22 mg/ml (peptide), 1.57 ± 0.21 mg/ml (GABA), respectively. Moreover, CICC 20280 and CICC 23184 FSM administration by gavage could effectively lower the blood pressure of SHR to a normal level, while there was no effect on blood pressure of WKY rats. This result indicated that the bioactive substances could play an antihypertensive role when the blood pressure was not within the normal levels (high levels).


Assuntos
Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Glycine max/microbiologia , Hipertensão/tratamento farmacológico , Lacticaseibacillus casei/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/metabolismo , Leite de Soja/química , Animais , Pressão Sanguínea/efeitos dos fármacos , Feminino , Fermentação , Humanos , Hipertensão/fisiopatologia , Masculino , Peptidil Dipeptidase A/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Glycine max/metabolismo
8.
Biotechnol Lett ; 36(1): 39-45, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24078122

RESUMO

A cDNA encoding for a laccase was isolated from the white-rot fungus Lenzites gibbosa by RT-PCR and expressed in the Pichia pastoris. The laccase native signal peptide efficiently directed the secretion of the recombinant laccase in an active form. Factors influencing laccase expression, such as pH, cultivation temperature, copper concentration and methanol concentration, were optimized. The recombinant enzyme was purified to electrophoretic homogeneity, and was estimated to have a MW of ~61.5 kDa. The purified enzyme behaved similarly to the native laccase produced by L. gibbosa and efficiently decolorized Alizarin Red, Neutral Red, Congo Red and Crystal Violet, without the addition of redox mediators. The decolorization capacity of this recombinant enzyme suggests that it could be a useful biocatalyst for the treatment of dye-containing effluents. This study is the first report on the synthetic dye decolorization by a recombinant L. gibbosa laccase.


Assuntos
Antraquinonas/análise , Corantes/análise , Lacase/metabolismo , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Antraquinonas/química , Antraquinonas/metabolismo , Biodegradação Ambiental , Corantes/química , Corantes/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Lacase/genética , Lacase/isolamento & purificação , Polyporaceae/enzimologia , Polyporaceae/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
9.
Int J Biol Macromol ; 254(Pt 1): 127272, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37804885

RESUMO

The heat sensitivity of egg yolk limits its application, and xylitol can improve its thermal stability. The soluble and insoluble components of egg yolk and egg yolk containing xylitol treated at different temperatures were explored from the aspects of thermal instability behavior characterization and structure property. Magnetic resonance imaging and low field nuclear magnetic resonance showed that increased temperature induced liberation and transfer of hydrogen protons. Meanwhile, the apparent viscosity of soluble components increased, while that of insoluble components decreased. Microstructure showed that heat treatment induced aggregation and lipid transfer. SDS-PAGE showed that heat treatment induced aggregation and transformation of γ-livetin and apo-LDL. The change in crystal structure, Raman spectroscopy, and 3D fluorescence spectra showed that heat treatment resulted in the unfolding of yolk proteins, especially plasma proteins. Xylitol could alleviate transformation of components by stabilizing protein structure, alleviating the damage in protein integrity and elevation in aggregation size.


Assuntos
Temperatura Alta , Xilitol , Gema de Ovo/química , Viscosidade
10.
Food Res Int ; 176: 113825, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163687

RESUMO

This paper investigates the freeze-thaw stability of oil-in-water emulsions stabilized by high-temperature wet heating glycosylation products. Glucose (Glu), D-fructose (Fru), xylose (Xyl), maltodextrin (MD), oligofructose (FO), and oligomeric isomaltulose (IMO) were chosen as sugar sources for the glycosylation reaction with egg white proteins (EWPs) at 120 °C to prepare the GEWPs. The study reveals that the type of sugar significantly influences the Maillard reactions with EWPs. The degree of glycosylation was highest in the Xyl group with the greatest reducing capacity and lowest in the MD, FO, and IMO groups. High-temperature wet glycosylation treatment induced changes in the secondary and tertiary structures of EWP. Elevated temperature exposed hydrophobic groups within the protein, while covalent binding of hydrophilic carbohydrates via the Maillard reaction decreased the protein's H0 value. Improved foaming and emulsifying properties were attributed to the increase in α-helix content, disulfide bond formation, and reduced surface tension. Emulsions prepared from GEWPs exhibited higher apparent viscosity and G' compared to those from natural EWPs, with the GEWP/Xyl group showing the highest values. After freeze-thaw treatment, the GEWP/Fru and GEWP/FO groups demonstrated superior stability and reduced freezing point, along with minimal microstructural alterations. These findings underscore the importance of sugar type in the stability of high internal phase emulsions (HIPEs) stabilized by GEWPs, indicating that a tailored Maillard reaction can yield stabilizers with exceptional freeze-thaw stability for emulsions.


Assuntos
Carboidratos , Proteínas do Ovo , Emulsões/química , Glicosilação , Temperatura , Proteínas do Ovo/química , Açúcares , Conformação Molecular
11.
Foods ; 13(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611411

RESUMO

The potential of potassium chloride (KCl) to be used as a substitute for sodium chloride (NaCl) was studied by monitoring the effects of salt treatment on thermal behavior, aggregation kinetics, rheological properties, and protein conformational changes. The results show that the addition of KCl can improve solubility, reduce turbidity and particle size, and positively influence rheological parameters such as apparent viscosity, consistency coefficient (K value), and fluidity index (n). These changes indicate delayed thermal denaturation. In addition, KCl decreased the content of ß-sheet and random coil structures and increased the content of α-helix and ß-turn structures. The optimal results were obtained with 2% KCl addition, leading to an increase in Tp up to 85.09 °C. The correlation results showed that Tp was positively correlated with solubility, α-helix and ß-turn but negatively correlated with ΔH, turbidity, ß-sheet and random coil. Overall, compared to NaCl, 2% KCl is more effective in delaying the thermal aggregation of LWE, and these findings lay a solid theoretical foundation for the study of sodium substitutes in heat-resistant liquid egg products.

12.
Foods ; 13(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275687

RESUMO

With the purpose of developing an alternative set yogurt with high consumer acceptability, liquid whole egg (LWE), at levels that varied from 0 to 30%, was incorporated into set yogurt, and the effects on the physicochemical, quality, fermentation, and sensory characteristics of yogurt were evaluated. The fat content was lower in egg yogurt than in control yogurt. All color variables were significantly affected by LWE amount. The amount of bacteria in the egg yogurt was greater than in the control yogurt. Sensory analysis data suggested that color, odor, and texture consistently impacted the overall acceptability of the egg yogurt. The addition of 5% whole egg, which resulted in an increase of 6.28-fold in hardness, increase of 6.1-fold in viscosity, decrease in pH values, and a 5.6% decline in water-holding capacity (WHC). The aroma and flavor of the set yogurt was improved as well. LWE addition significantly increased the protein content and dynamic rheology. More importantly, the addition of LWE increased the protein content of the set yogurt. This investigation demonstrated the feasibility of fabricating LWE-enriched set yogurt and its superior quality compared with the corresponding normal product. It also emphasized the reconstruction of LWE with enhanced properties.

13.
Food Chem ; 460(Pt 1): 140602, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39067387

RESUMO

Whole egg powder (WEP), predominantly utilized as an ingredient in ready-to-eat foods such as bakery items, puffed snacks and other products, necessitates the consideration of appropriate packaging materials to preserve its quality properties during processing and transportation. The quality changes of WEP were evaluated in PA, C-PA and PE-PP-Al packaging for 35 days at 60 °C in accelerated storage. The results indicate that among the three packaging materials, PE-PP-Al exhibits the highest barrier properties, effectively inhibiting moisture loss, caking, reduced solubility, oxidative deterioration, and decreased thermal stability in WEP. The Multivariate Accelerated Shelf-Life Test (MASLT) was carried out using water content, moisture activity, color value, lipid oxidation (PV, TBA, AV) and organoleptic attributes in different packaging methods, and the predicted shelf-life of WEP at room temperature was 421, 470 and 549 days with RMSE (0.171-0.893) using principal component analysis coupled with kinetic modeling.

14.
Food Chem ; 444: 138674, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38335687

RESUMO

To develop rapid detection techniques for liquid eggs' adulteration, three types of adulterations were considered: water dilution, manipulation of yolk ratio in whole egg, and blending different varieties of egg white or yolk. Objective: Establish detection techniques utilizing colorimetry, electrochemistry, and interfacial fingerprinting for these adulterations, respectively. Results: Colorimetry allows for detection (1 min·sample-1) of water dilution through linear (R2 ≥ 0.984) and exponential fitting (R2 ≥ 0.992); Electrochemistry enables detection (6 min·sample-1, R2 ≥ 0.979) of the adulteration of yolk ratio in whole egg; Interfacial fingerprinting technique effectively detects (detection duration: 10 min·sample-1, detection limit: 1.0-10.0 wt%) the adulteration of different varieties of egg white. Subsequently, through 3D-fluorescence microscopy (interface height variation: 22.49-573.45 µm), interfacial tension variation (65.54-35.48 mN·m-1), contact angle variation (89.7°-32.9°), particle size range (free water: 0.94-14.29 µm; protein aggregation: 6.57-10.76 µm), and etc., interfacial fingerprinting mechanism was elucidated. This research contributes novel insights into the detection of adulteration in liquid eggs.


Assuntos
Galinhas , Colorimetria , Animais , Eletroquímica , Ovos/análise , Água , Gema de Ovo
15.
Poult Sci ; 103(8): 103876, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833746

RESUMO

The aim of this study was to elucidate the different effects and difference mechanism of gelling properties among egg white (EW) treated with different heating intensities and the composite addition of rhamnolipid and soybean lecithin. Particle size analyzer, potentiometric analyzer, surface hydrophobicity method, and Fourier transform infrared spectroscopy techniques were used to determine the physicochemical properties and molecular structure, respectively. Low-field nuclear magnetic resonance, magnetic resonance imaging, texture profile analysis, and scanning electron microscopy techniques were used to analyze the gelling properties and gel structure, respectively. And we illuminate the different mechanisms in the gelling properties of the EW with various treatments and key internal factors that play important roles in improving gelling properties by establishing the link between the gelling properties and relevant characteristics by mixed effects model and visual network analysis. The results indicate raising the content of rhamnolipid decreased the migration of immobilized water in the EW gel and the free water content. At the heating intensities of 55 °C/3.5, 65 °C/2.5, and 67 °C/1.5 min, with an increase in rhamnolipid, the gel's cohesiveness, gumminess, and chewiness gradually increased. The mixed effects model indicated that heating intensities and composite ratios have a 2-way interaction on zeta potential, the relaxation time of bound water (T21), the content of bound water (P21), the content of immobilized water (P22), and fractal dimension (df) attributes (P < 0.05). The visual network analysis showed that the protein solubility, the relaxation time of immobilized water (T22), surface hydrophobicity, zeta potential, average particle size (d43) and the relaxation time of free water (T23) are critical contributors to the different gelling properties of EW subjected to various treatments and the improvement of gelling properties. This study will provide theoretical guidance for the development of egg white products and the expansion of egg white's application scope in the egg product processing industry.


Assuntos
Galinhas , Clara de Ovo , Géis , Lecitinas , Tensoativos , Clara de Ovo/química , Tensoativos/química , Animais , Lecitinas/química , Géis/química , Temperatura Alta , Glicolipídeos/química , Manipulação de Alimentos/métodos , Glycine max/química
16.
Poult Sci ; 103(6): 103657, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552569

RESUMO

Monitoring and controlling the freezing process and thermal properties of foods is an important means to understand and maintain product quality. Saccharides were used in this study to regulate the gelation of liquid egg yolks induced by freeze‒thawing; the selected saccharides included sucrose, L-arabinose, xylitol, trehalose, D-cellobiose, and xylooligosaccharides. The regulatory effects of saccharides on frozen egg yolks were investigated by characterizing their thermal and rheological properties and structural changes. The results showed that L-arabinose and xylitol were effective gelation regulators. After freeze‒thawing, the sugared egg yolks exhibited a lower consistency index and fewer rheological units than those without saccharides, indicating controlled gelation. Weaker aggregation of egg yolk proteins was confirmed by smaller aggregates observed by confocal laser scanning microscopy and smaller particle sizes. Saccharides alleviated the freeze-induced conversion of α-helices to ß-sheets in egg yolk proteins, exposing fewer Trp residues. Overall, L-arabinose showed the greatest improvement in regulating the gelation of egg yolks, followed by xylitol, which is correlated with its low molecular weight.


Assuntos
Galinhas , Gema de Ovo , Congelamento , Reologia , Gema de Ovo/química , Animais , Proteínas do Ovo/química , Géis/química
17.
Front Plant Sci ; 15: 1341996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567137

RESUMO

Introduction: The rhizomes of Coptis plants have been used in traditional Chinese medicine over 2000 years. Due to increasing market demand, the overexploitation of wild populations, habitat degradation and indiscriminate artificial cultivation of Coptis species have severely damaged the native germplasms of species in China. Methods: Genome-wide simple-sequence repeat (SSR) markers were developed using the genomic data of C. chinensis. Population genetic diversity and structure of 345 Coptis accessions collected from 32 different populations were performed based on these SSRs. The distribution of suitable areas for three taxa in China was predicted and the effects of environmental variables on genetic diversity in relation to different population distributions were further analyzed. Results: 22 primer pairs were selected as clear, stable, and polymorphic SSR markers. These had an average of 16.41 alleles and an average polymorphism information content (PIC) value of 0.664. In the neighbor-joining (N-J) clustering analysis, the 345 individuals clustered into three groups, with C. chinensis, C. chinensis var. brevisepala and C. teeta being clearly separated. All C. chinensis accessions were further divided into four subgroups in the population structure analysis. The predicted distributions of suitable areas and the environmental variables shaping these distributions varied considerably among the three species. Discussion: Overall, the amount of solar radiation, precipitation and altitude were the most important environmental variables influencing the distribution and genetic variation of three species. The findings will provide key information to guide the conservation of genetic resources and construction of a core reserve for species.

18.
Foods ; 12(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37048294

RESUMO

Liquid whole egg (LWE) products have many advantages such as convenient transportation, easy production and are safe. However, LWE has a short shelf life and high thermal sensitivity, so suitable heating treatment is the key to the production of LWE products. The aim of this study is to investigate the effects of heating treatments conditions (at 55-67 °C for 0-10 min) on the emulsification, foaming activity and rheological properties of LWE. The results indicated that the emulsifying activity of LWE had no significant change after 55-64 °C heating treatment, while it decreased significantly after heating treatment at 67 °C. The foaming property of LWE increased significantly after 55 °C to the 64 °C heating treatment; while the foaming property showed a downward trend with the increase in heat treatment temperature, it can significantly improve the foam stability of LWE. The heating treatment thoroughly changed the molecular weight distribution of LWE protein, thus promoted the protein surface hydrophobicity, hydrophobicity activity and rheological properties. The heating treatment at 61 °C for 6 min had a better effect on the functional properties than that of the other heating groups. In addition, the results of this study provide the change in rules of LWE under different heating treatment conditions and provide theoretical guidance for the production and processing of LWE.

19.
Int J Biol Macromol ; 248: 125851, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467832

RESUMO

The knowledge of fundamental rheological concepts is essential to understand the gelling process of egg white proteins (EWP), which can be used to further manipulate the gel performance with desired sensorial attributes. In this study, the rheological and gel properties of EWP as influenced by heating in the dry state were investigated. The structural changes in dry heated EWP (DEWP) were also characterized in terms of morphology, protein stability, and protein microenvironment. The results showed that moderate dry heating induced linear aggregation of DEWP and decreased the denaturation temperature (Td) and enthalpy of denaturation (ΔH). Furthermore, the cross-linking on protein surface led to nonpolar microenvironment of hydrophobic groups, which lays the foundation of improved gel properties. The specific outcomes include the increase in the G'max and the G''max values, k'/k'' values of DEWP dispersions, gel hardness and gumminess of DEWP gels and a decrease in gelation temperature of DEWP dispersions. However, few changes were found in the springiness and cohesiveness of the DEWP gels with increasing dry heating time. Notably, gels prepared with DEWP also had better digestibility. Overall, these results can provide theoretical basis for quality control and sensory evaluation of DEWP in the food industry.


Assuntos
Proteínas do Ovo , Proteínas do Ovo/química , Géis/química , Interações Hidrofóbicas e Hidrofílicas , Reologia , Temperatura
20.
J Food Sci ; 88(12): 5108-5121, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37889108

RESUMO

In this study, the influence of compound sugar (glucose, sucrose, trehalose, and arabinose) and compound sugar and salt (glucose, sucrose, trehalose, arabinose, and NaCl) on the thermal stability of heat-treated liquid egg yolk was explored. The results showed that the addition of 4% compound sugar or 4% compound sugar salt could significantly enhance the heat resistance of liquid egg yolk and increase the denaturation temperature of liquid egg yolk to above 77°C. Moreover, the addition of sugar and salt could improve the functional properties of liquid egg yolk to varying degrees, allowing it to maintain excellent emulsification and soluble protein content after heat treatment. Further analysis using Fourier transform infrared spectroscopy showed that the increase in α-helix content in liquid egg yolk treated with sugar salt also contributes to improving the thermal stability of egg yolk. The method of inhibiting egg yolk aggregation caused by heat treatment provided in this study provides a selective method and theoretical basis for the commercial production of heat-resistant liquid egg yolk.


Assuntos
Gema de Ovo , Cloreto de Sódio , Gema de Ovo/química , Cloreto de Sódio/análise , Açúcares/análise , Arabinose/análise , Trealose , Cloreto de Sódio na Dieta/análise , Sacarose/análise , Glucose/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA