RESUMO
We recorded spontaneous extracellular action potentials (eAPs) from rat chromaffin cells (CCs) at 37 °C using microelectrode arrays (MEAs) and compared them with intracellularly recorded APs (iAPs) through conventional patch clamp recordings at 22 °C. We show the existence of two distinct firing modes on MEAs: a ~ 4 Hz irregular continuous firing and a frequent intermittent firing mode where periods of high-intraburst frequency (~ 8 Hz) of ~ 7 s duration are interrupted by silent periods of ~ 12 s. eAPs occurred either as negative- or positive-going signals depending on the contact between cell and microelectrode: either predominantly controlled by junction-membrane ion channels (negative-going) or capacitive/ohmic coupling (positive-going). Negative-going eAPs were found to represent the trajectory of the Na+, Ca2+, and K+ currents passing through the cell area in tight contact with the microelectrode during an AP (point-contact junction). The inward Nav component of eAPs was blocked by TTX in a dose-dependent manner (IC50 ~ 10 nM) while the outward component was strongly attenuated by the BK channel blocker paxilline (200 nM) or TEA (5 mM). The SK channel blocker apamin (200 nM) had no effect on eAPs. Inward Nav and Cav currents were well-resolved after block of Kv and BK channels or in cells showing no evident outward K+ currents. Unexpectedly, on the same type of cells, we could also resolve inward L-type currents after adding nifedipine (3 µM). In conclusion, MEAs provide a direct way to record different firing modes of rat CCs and to estimate the Na+, Ca2+, and K+ currents that sustain cell firing and spontaneous catecholamines secretion.
Assuntos
Células Cromafins , Canais de Potássio Ativados por Cálcio de Condutância Alta , Ratos , Animais , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Microeletrodos , Células Cromafins/metabolismo , Potenciais de Ação/fisiologia , Canais Iônicos/metabolismoRESUMO
PURPOSE: RPH3A encodes a protein involved in the stabilization of GluN2A subunit of N-methyl-D-aspartate (NMDA)-type glutamate receptors at the cell surface, forming a complex essential for synaptic plasticity and cognition. We investigated the effect of variants in RPH3A in patients with neurodevelopmental disorders. METHODS: By using trio-based exome sequencing, GeneMatcher, and screening of 100,000 Genomes Project data, we identified 6 heterozygous variants in RPH3A. In silico and in vitro models, including rat hippocampal neuronal cultures, have been used to characterize the effect of the variants. RESULTS: Four cases had a neurodevelopmental disorder with untreatable epileptic seizures [p.(Gln73His)dn; p.(Arg209Lys); p.(Thr450Ser)dn; p.(Gln508His)], and 2 cases [p.(Arg235Ser); p.(Asn618Ser)dn] showed high-functioning autism spectrum disorder. Using neuronal cultures, we demonstrated that p.(Thr450Ser) and p.(Asn618Ser) reduce the synaptic localization of GluN2A; p.(Thr450Ser) also increased the surface levels of GluN2A. Electrophysiological recordings showed increased GluN2A-dependent NMDA ionotropic glutamate receptor currents for both variants and alteration of postsynaptic calcium levels. Finally, expression of the Rph3AThr450Ser variant in neurons affected dendritic spine morphology. CONCLUSION: Overall, we provide evidence that missense gain-of-function variants in RPH3A increase GluN2A-containing NMDA ionotropic glutamate receptors at extrasynaptic sites, altering synaptic function and leading to a clinically variable neurodevelopmental presentation ranging from untreatable epilepsy to autism spectrum disorder.
Assuntos
Transtorno do Espectro Autista , Epilepsia , Animais , Humanos , Ratos , Transtorno do Espectro Autista/genética , Epilepsia/genética , Mutação de Sentido Incorreto/genética , N-Metilaspartato/metabolismo , Neurônios/metabolismo , Rabfilina-3ARESUMO
The oligomeric form of the peptide amyloid beta 42 (Abeta42) contributes to the development of synaptic abnormalities and cognitive impairments associated with Alzheimer's disease (AD). To date, there is a gap in knowledge regarding how Abeta42 alters the elementary parameters of GABAergic synaptic function. Here we found that Abeta42 increased the frequency and amplitude of miniature GABAergic currents as well as the amplitude of evoked inhibitory postsynaptic currents. When we focused on paired pulse depression (PPD) to establish whether GABA release probability was affected by Abeta42, we did not observe any significant change. On the other hand, a more detailed investigation of the presynaptic effects induced by Abeta42 by means of multiple probability fluctuation analysis and cumulative amplitude analysis showed an increase in both the size of the readily releasable pool responsible for synchronous release and the number of release sites. We further explored whether ryanodine receptors (RyRs) contributed to exacerbating these changes by stabilizing the interaction between RyRs and the accessory protein calstabin. We observed that the RyR-calstabin interaction stabilizer S107 restored the synaptic parameters to values comparable to those measured in control conditions. In conclusion, our results clarify the mechanisms of potentiation of GABAergic synapses induced by Abeta42. We further suggest that RyRs are involved in the control of synaptic activity during the early stage of AD onset and that their stabilization could represent a new therapeutical approach for AD treatment. KEY POINTS: Accumulation of the peptide amyloid beta 42 (Abeta42) is a key characteristic of Alzheimer's disease (AD) and causes synaptic dysfunctions. To date, the effects of Abeta42 accumulation on GABAergic synapses are poorly understood. The findings reported here suggest that, similarly to what is observed on glutamatergic synapses, Abeta42 modifies GABAergic synapses by targeting ryanodine receptors and causing calcium dysregulation. The GABAergic impairments can be restored by the ryanodine receptor-calstabin interaction stabilizer S107. Based on this research, RyRs stabilization may represent a novel pharmaceutical strategy for preventing or delaying AD.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Rianodina/farmacologia , Doença de Alzheimer/metabolismo , Hipocampo/fisiologia , Neurônios/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologiaRESUMO
KEY POINTS: NMDA receptors (NMDARs) are key molecules for controlling neuronal plasticity, learning and memory processes. Their function is impaired during Alzheimer's disease (AD) but the exact consequence on synaptic function is not yet fully identified. An important hallmark of AD onset is represented by the neuronal accumulation of Amyloid Beta42 oligomers (Abeta42) that we have recently shown to be responsible for the increased intracellular Ca2+ concentration through ryanodine receptors (RyRs). Here we characterized the effects of Abeta42 on NMDA synapses showing specific pre- and post-synaptic functional changes that lead to a potentiation of basal and synchronous NMDA synaptic transmission. These overall effects can be abolished by decreasing Ca2+ release from RyRs with specific inhibitors that we propose as new pharmacological tools for AD treatment. ABSTRACT: We have recently shown that Amyloid Beta42 oligomers (Abeta42) cause calcium dysregulation in hippocampal neurons by stimulating Ca2+ release from ryanodine receptors (RyRs) and inhibiting Ca2+ entry through NMDA receptors (NMDARs). Here, we found that Abeta42 decrease the average NMDA-activated inward current and that Ca2+ entry through NMDARs is accompanied by Ca2+ release from the stores. The overall amount of intraellular Ca2+ concentration([Ca2+ ]i ) increase during NMDA application is 50% associated with RyR opening and 50% with NMDARs activation. Addition of Abeta42 does not change this proportion. We estimated the number of NMDARs expressed in hippocampal neurons and their unitary current. We found that Abeta42 decrease the number of NMDARs without altering their unitary current. Paradoxically, the oligomer increases the size of electrically evoked eEPSCs induced by NMDARs activation. We found that this is the consequence of the increased release probability (p) of glutamate and the number of release sites (N) of NMDA synapses, while the quantal size (q) is significantly decreased as expected from the decreased number of NMDARs. An increased number of release sites induced by Abeta42 is also supported by the increased size of the ready releasable pool (RRPsyn) and by the enhanced percentage of paired pulse depression (PPD). Interestingly, the RyRs inhibitor dantrolene prevents the increase of PPD induced by Abeta42 oligomers. In conclusion, Abeta42 up-regulates NMDA synaptic responses with a mechanism involving RyRs that occurs during the early stages of Alzheimer's disease (AD) onset. This suggests that new selective modulators of RyRs may be useful for designing effective therapies to treat AD patients.
Assuntos
Peptídeos beta-Amiloides , Receptores de N-Metil-D-Aspartato , Peptídeos beta-Amiloides/metabolismo , Humanos , Fragmentos de Peptídeos , Sinapses/metabolismoRESUMO
Cav1.2 L-type calcium channels play key roles in long-term synaptic plasticity, sensory transduction, muscle contraction, and hormone release. De novo mutations in the gene encoding Cav1.2 (CACNA1C) causes two forms of Timothy syndrome (TS1, TS2), characterized by a multisystem disorder inclusive of cardiac arrhythmias, long QT, autism, and adrenal gland dysfunction. In both TS1 and TS2, the missense mutation G406R is on the alternatively spliced exon 8 and 8A coding for the IS6-helix of Cav1.2 and is responsible for the penetrant form of autism in most TS individuals. The mutation causes specific gain-of-function changes to Cav1.2 channel gating: a "leftward shift" of voltage-dependent activation, reduced voltage-dependent inactivation, and a "leftward shift" of steady-state inactivation. How this occurs and how Cav1.2 gating changes alter neuronal firing and synaptic plasticity is still largely unexplained. Trying to better understanding the molecular basis of Cav1.2 gating dysfunctions leading to autism, here, we will present and discuss the properties of recently reported typical and atypical TS phenotypes and the effective gating changes exhibited by missense mutations associated with long QTs without extracardiac symptoms, unrelated to TS. We will also discuss new emerging views achieved from using iPSCs-derived neurons and the newly available autistic TS2-neo mouse model, both appearing promising for understanding neuronal mistuning in autistic TS patients. We will also analyze and describe recent proposals of molecular pathways that might explain mistuned Ca2+-mediated and Ca2+-independent excitation-transcription signals to the nucleus. Briefly, we will also discuss possible pharmacological approaches to treat autism associated with L-type channelopathies.
Assuntos
Transtorno Autístico/genética , Canais de Cálcio Tipo L/genética , Canalopatias/genética , Síndrome do QT Longo/genética , Sindactilia/genética , Animais , Humanos , Mutação de Sentido Incorreto/genéticaRESUMO
Glyphosate (Gly) is a broad-spectrum herbicide responsible for the inhibition of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase known to be expressed exclusively in plants and not in animals. For decades Gly has been thought to be ineffective in mammals, including humans, until it was demonstrated that rodents treated with the Gly-based herbicide Roundup showed reduced content of neurotransmitters (e.g., serotonin, dopamine, norepinephrine, and acetylcholine), increased oxidative stress in the brain associated with anxiety and depression-like behaviors and learning and memory deficits. Despite compelling evidence pointing to a neurotoxic effect of Gly, an in-depth functional description of its effects on synaptic transmission is still lacking. To investigate the synaptic alterations dependent on Gly administration we performed whole-cell patch-clamp recordings and immunocytochemistry on mouse primary cultured hippocampal neurons. Our findings reveal that 30 min incubation of Gly at the acceptable daily intake dose severely impaired inhibitory GABAergic synapses. Further analysis pointed out that Gly decreased the number of postsynaptic GABAA receptors and reduced the amplitude of evoked inhibitory postsynaptic currents, the readily releasable pool size available for synchronous release and the quantal size. Finally, a decreased number of release sites has been observed. Consistently, morphological analyses showed that the density of both pre- and post-synaptic inhibitory compartments decorating pyramidal cell dendrites was reduced by Gly. In conclusion, our experiments define for the first time the effects induced by Gly on GABAergic synapses, and reveal that Gly significantly impairs both pre- and postsynaptic mechanisms.
RESUMO
PURPOSE: In this study, it was aimed to determine the dose-dependent effects of hippocampal amyloid beta (Aß) on frontal EEG activity and to elucidate the possible non-invasive biomarkers by recording spontaneous EEG in free-moving rats. MATERIAL AND METHODS: Male albino Wistar rats aged 3 months were randomly divided into 4 groups (n â= â8 for each group), obtained by intrahippocampal injection of saline or different doses of Aß1-42 i.e. 0.01 âµg/µl, 0.1 âµg/µl, and 1 âµg/µl. After two weeks of recovery period, spontaneous EEG recordings were obtained from frontal regions and spectral power analyses were performed. RESULTS: We detected a general slowdown in the brain activity two weeks after Aß1-42 injection. We observed significant increases in frontal alpha power (p â= â0.0021) and significant decreases in frontal beta power (p â= â0.0003) between the Sh and Aß1-42-injected groups. More specifically, the ratio of the frontal EEG beta and alpha power (rFBA) was significantly affected by the intrahippocampal injection of Aß1-42 (p â< â0.0001). Also, we observed that rFBA was negatively and strongly correlated with hippocampal Aß1-42 peptide levels (r â= â-0.781, p â< â0.0001). CONCLUSION: Our findings indicate that spontaneous frontal EEG beta and alpha activity were significantly affected by the intrahippocampal injection of Aß1-42. However, the results suggest that the power ratios of these bands are more sensitive to the hippocampal amyloid pathology. As such, it is proposed that the rFBA may be a more effective biomarker for diagnosing hippocampal pathology induced by Aß1-42.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Ratos , Animais , Masculino , Fragmentos de Peptídeos , Hipocampo/metabolismo , Hipocampo/patologia , Ratos Wistar , Eletroencefalografia , Doença de Alzheimer/patologiaRESUMO
Research into the early impacts of Alzheimer's disease (AD) on synapse function is one of the most promising approaches to finding a treatment. In this context, we have recently demonstrated that the Abeta42 peptide, which builds up in the brain during the processing of the amyloid precursor protein (APP), targets the ryanodine receptors (RyRs) of mouse hippocampal neurons and potentiates calcium (Ca2+) release from the endoplasmic reticulum (ER). The uncontrolled increase in intracellular calcium concentration ([Ca2+]i), leading to the development of Ca2+ dysregulation events and related excitable and synaptic dysfunctions, is a consolidated hallmark of AD onset and possibly other neurodegenerative diseases. Since RyRs contribute to increasing [Ca2+]i and are thought to be a promising target for AD treatment, the goal of this review is to summarize the current level of knowledge regarding the involvement of RyRs in governing neuronal function both in physiological conditions and during the onset of AD.
Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cálcio/metabolismo , Neurônios/metabolismo , Precursor de Proteína beta-Amiloide/metabolismoRESUMO
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a devastating rare neurodevelopmental disease without a cure, caused by mutations of the serine/threonine kinase CDKL5 highly expressed in the forebrain. CDD is characterized by early-onset seizures, severe intellectual disabilities, autistic-like traits, sensorimotor and cortical visual impairments (CVI). The lack of an effective therapeutic strategy for CDD urgently demands the identification of novel druggable targets potentially relevant for CDD pathophysiology. To this aim, we studied Class I metabotropic glutamate receptors 5 (mGluR5) because of their important role in the neuropathological signs produced by the lack of CDKL5 in-vivo, such as defective synaptogenesis, dendritic spines formation/maturation, synaptic transmission and plasticity. Importantly, mGluR5 function strictly depends on the correct expression of the postsynaptic protein Homer1bc that we previously found atypical in the cerebral cortex of Cdkl5-/y mice. In this study, we reveal that CDKL5 loss tampers with (i) the binding strength of Homer1bc-mGluR5 complexes, (ii) the synaptic localization of mGluR5 and (iii) the mGluR5-mediated enhancement of NMDA-induced neuronal responses. Importantly, we showed that the stimulation of mGluR5 activity by administering in mice specific positive-allosteric-modulators (PAMs), i.e., 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) or RO6807794, corrected the synaptic, functional and behavioral defects shown by Cdkl5-/y mice. Notably, in the visual cortex of 2 CDD patients we found changes in synaptic organization that recapitulate those of mutant CDKL5 mice, including the reduced expression of mGluR5, suggesting that these receptors represent a promising therapeutic target for CDD.
Assuntos
Síndromes Epilépticas , Espasmos Infantis , Camundongos , Animais , Espasmos Infantis/tratamento farmacológico , Espasmos Infantis/genética , Espasmos Infantis/metabolismo , Síndromes Epilépticas/tratamento farmacológico , Síndromes Epilépticas/genética , Síndromes Epilépticas/metabolismo , Neurônios/metabolismo , Modelos Animais de Doenças , Córtex Cerebral/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/uso terapêuticoRESUMO
GTPases of the Rho family are components of signaling pathways linking extracellular signals to the control of cytoskeleton dynamics. Among these, RAC1 plays key roles during brain development, ranging from neuronal migration to neuritogenesis, synaptogenesis, and plasticity. RAC1 activity is positively and negatively controlled by guanine nucleotide exchange factors (GEFs), guanosine nucleotide dissociation inhibitors (GDIs), and GTPase-activating proteins (GAPs), but the specific role of each regulator in vivo is poorly known. ARHGAP15 is a RAC1-specific GAP expressed during development in a fraction of migrating cortical interneurons (CINs) and in the majority of adult CINs. During development, loss of ARHGAP15 causes altered directionality of the leading process of tangentially migrating CINs, along with altered morphology in vitro. Likewise, time-lapse imaging of embryonic CINs revealed a poorly coordinated directional control during radial migration, possibly due to a hyper-exploratory behavior. In the adult cortex, the observed defects lead to subtle alteration in the distribution of CALB2-, SST-, and VIP-positive interneurons. Adult Arhgap15-knock-out mice also show reduced CINs intrinsic excitability, spontaneous subclinical seizures, and increased susceptibility to the pro-epileptic drug pilocarpine. These results indicate that ARHGAP15 imposes a fine negative regulation on RAC1 that is required for morphological maturation and directional control during CIN migration, with consequences on their laminar distribution and inhibitory function.