Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834521

RESUMO

Osteoarthritis (OA) is described as a chronic degenerative disease characterized by the loss of articular cartilage. Senescence is a natural cellular response to stressors. Beneficial in certain conditions, the accumulation of senescent cells has been implicated in the pathophysiology of many diseases associated with aging. Recently, it has been demonstrated that mesenchymal stem/stromal cells isolated from OA patients contain many senescent cells that inhibit cartilage regeneration. However, the link between cellular senescence in MSCs and OA progression is still debated. In this study, we aim to characterize and compare synovial fluid MSCs (sf-MSCs), isolated from OA joints, with healthy sf-MSCs, investigating the senescence hallmarks and how this state could affect cartilage repair. Sf-MSCs were isolated from tibiotarsal joints of healthy and diseased horses with an established diagnosis of OA with an age ranging from 8 to 14 years. Cells were cultured in vitro and characterized for cell proliferation assay, cell cycle analysis, ROS detection assay, ultrastructure analysis, and the expression of senescent markers. To evaluate the influence of senescence on chondrogenic differentiation, OA sf-MSCs were stimulated in vitro for up to 21 days with chondrogenic factors, and the expression of chondrogenic markers was compared with healthy sf-MSCs. Our findings demonstrated the presence of senescent sf-MSCs in OA joints with impaired chondrogenic differentiation abilities, which could have a potential influence on OA progression.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite , Cavalos , Animais , Líquido Sinovial , Células Cultivadas , Osteoartrite/metabolismo , Senescência Celular/fisiologia , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Condrogênese
2.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769284

RESUMO

The Hedgehog (HH) signaling network is one of the main regulators of invertebrate and vertebrate embryonic development. Along with other networks, such as NOTCH and WNT, HH signaling specifies both the early patterning and the polarity events as well as the subsequent organ formation via the temporal and spatial regulation of cell proliferation and differentiation. However, aberrant activation of HH signaling has been identified in a broad range of malignant disorders, where it positively influences proliferation, survival, and therapeutic resistance of neoplastic cells. Inhibitors targeting the HH pathway have been tested in preclinical cancer models. The HH pathway is also overactive in other blood malignancies, including T-cell acute lymphoblastic leukemia (T-ALL). This review is intended to summarize our knowledge of the biological roles and pathophysiology of the HH pathway during normal T-cell lymphopoiesis and in T-ALL. In addition, we will discuss potential therapeutic strategies that might expand the clinical usefulness of drugs targeting the HH pathway in T-ALL.


Assuntos
Proteínas Hedgehog , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Proteínas Hedgehog/metabolismo , Linfopoese , Linfócitos T/metabolismo , Transdução de Sinais/fisiologia
3.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835166

RESUMO

Clear cell sarcoma of the kidney (CCSK) is a rare pediatric renal tumor with a worse prognosis than Wilms' tumor. Although recently, BCOR internal tandem duplication (ITD) has been found as a driver mutation in more than 80% of cases, a deep molecular characterization of this tumor is still lacking, as well as its correlation with the clinical course. The aim of this study was to investigate the differential molecular signature between metastatic and localized BCOR-ITD-positive CCSK at diagnosis. Whole-exome sequencing (WES) and whole-transcriptome sequencing (WTS) were performed on six localized and three metastatic BCOR-ITD-positive CCSKs, confirming that this tumor carries a low mutational burden. No significant recurrences of somatic or germline mutations other than BCOR-ITD were identified among the evaluated samples. Supervised analysis of gene expression data showed enrichment of hundreds of genes, with a significant overrepresentation of the MAPK signaling pathway in metastatic cases (p < 0.0001). Within the molecular signature of metastatic CCSK, five genes were highly and significantly over-expressed: FGF3, VEGFA, SPP1, ADM, and JUND. The role of FGF3 in the acquisition of a more aggressive phenotype was investigated in a cell model system obtained by introducing the ITD into the last exon of BCOR by Crispr/Cas9 gene editing of the HEK-293 cell line. Treatment with FGF3 of BCOR-ITD HEK-293 cell line induced a significant increase in cell migration versus both untreated and scramble cell clone. The identification of over-expressed genes in metastatic CCSKs, with a particular focus on FGF3, could offer new prognostic and therapeutic targets in more aggressive cases.


Assuntos
Neoplasias Renais , Sarcoma de Células Claras , Tumor de Wilms , Humanos , Sarcoma de Células Claras/genética , Sarcoma de Células Claras/patologia , Células HEK293 , Proteínas Repressoras/genética , Neoplasias Renais/patologia , Rim/metabolismo
4.
J Cell Physiol ; 235(6): 5413-5428, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31904116

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disorder that results from the clonal transformation of T-cell precursors. Phosphatidylinositol 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) and canonical Wnt/ß-catenin signaling pathways play a crucial role in T-cell development and in self-renewal of healthy and leukemic stem cells. Notably, ß-catenin is a transcriptional regulator of several genes involved in cancer cell proliferation and survival. In this way, aberrations of components belonging to the aforementioned networks contribute to T-ALL pathogenesis. For this reason, inhibition of both pathways could represent an innovative strategy in this hematological malignancy. Here, we show that combined targeting of Wnt/ß-catenin pathway through ICG-001, a CBP/ß-catenin transcription inhibitor, and of the PI3K/Akt/mTOR axis through ZSTK-474, a PI3K inhibitor, downregulated proliferation, survival, and clonogenic activity of T-ALL cells. ICG-001 and ZSTK-474 displayed cytotoxic effects, and, when combined together, induced a significant increase in apoptotic cells. This induction of apoptosis was associated with the downregulation of Wnt/ß-catenin and PI3K/Akt/mTOR pathways. All these findings were confirmed under hypoxic conditions that mimic the bone marrow niche where leukemic stem cells are believed to reside. Taken together, our findings highlight potentially promising treatment consisting of cotargeting Wnt/ß-catenin and PI3K/Akt/mTOR pathways in T-ALL settings.


Assuntos
Proliferação de Células/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , beta Catenina/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Pirimidinonas/farmacologia , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/genética , Triazinas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , beta Catenina/antagonistas & inibidores
5.
Int J Mol Sci ; 21(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046053

RESUMO

Acute lymphoblastic leukemia (ALL) is an aggressive hematologic neoplastic disorder that arises from the clonal expansion of transformed T-cell or B-cell precursors. Thanks to progress in chemotherapy protocols, ALL outcome has significantly improved. However, drug-resistance remains an unresolved issue in the treatment of ALL and toxic effects limit dose escalation of current chemotherapeutics. Therefore, the identification of novel targeted therapies to support conventional chemotherapy is required. The Wnt/ß-catenin pathway is a conserved signaling axis involved in several physiological processes such as development, differentiation, and adult tissue homeostasis. As a result, deregulation of this cascade is closely related to initiation and progression of various types of cancers, including hematological malignancies. In particular, deregulation of this signaling network is involved in the transformation of healthy HSCs in leukemic stem cells (LSCs), as well as cancer cell multi-drug-resistance. This review highlights the recent findings on the role of Wnt/ß-catenin in hematopoietic malignancies and provides information on the current status of Wnt/ß-catenin inhibitors with respect to their therapeutic potential in the treatment of ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Via de Sinalização Wnt , Animais , Hematopoese , Humanos , Terapia de Alvo Molecular/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
6.
Int J Mol Sci ; 20(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781376

RESUMO

The mechanistic target of rapamycin (mTOR) is a ubiquitous serine/threonine kinase that regulates anabolic and catabolic processes, in response to environmental inputs. The existence of mTOR in numerous cell compartments explains its specific ability to sense stress, execute growth signals, and regulate autophagy. mTOR signaling deregulation is closely related to aging and age-related disorders, among which progeroid laminopathies represent genetically characterized clinical entities with well-defined phenotypes. These diseases are caused by LMNA mutations and feature altered bone turnover, metabolic dysregulation, and mild to severe segmental progeria. Different LMNA mutations cause muscular, adipose tissue and nerve pathologies in the absence of major systemic involvement. This review explores recent advances on mTOR involvement in progeroid and tissue-specific laminopathies. Indeed, hyper-activation of protein kinase B (AKT)/mTOR signaling has been demonstrated in muscular laminopathies, and rescue of mTOR-regulated pathways increases lifespan in animal models of Emery-Dreifuss muscular dystrophy. Further, rapamycin, the best known mTOR inhibitor, has been used to elicit autophagy and degradation of mutated lamin A or progerin in progeroid cells. This review focuses on mTOR-dependent pathogenetic events identified in Emery-Dreifuss muscular dystrophy, LMNA-related cardiomyopathies, Hutchinson-Gilford Progeria, mandibuloacral dysplasia, and type 2 familial partial lipodystrophy. Pharmacological application of mTOR inhibitors in view of therapeutic strategies is also discussed.


Assuntos
Laminas/metabolismo , Distrofias Musculares/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Humanos , Modelos Biológicos
7.
J Cell Physiol ; 233(3): 1796-1811, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28777460

RESUMO

Despite remarkable progress in polychemotherapy protocols, pediatric B-cell acute lymphoblastic leukemia (B-ALL) remains fatal in around 20% of cases. Hence, novel targeted therapies are needed for patients with poor prognosis. Glucocorticoids (GCs) are drugs commonly administrated for B-ALL treatment. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin signaling pathway is frequently observed in B-ALL and contributes to GC-resistance. Here, we analyzed for the first time to our knowledge, the therapeutic potential of pan and isoform-selective PI3K p110 inhibitors, alone or combined with dexamethasone (DEX), in B-ALL leukemia cell lines and patient samples. We found that a pan PI3K p110 inhibitor displayed the most powerful cytotoxic effects in B-ALL cells, by inducing cell cycle arrest and apoptosis. Both a pan PI3K p110 inhibitor and a dual γ/δ PI3K p110 inhibitor sensitized B-ALL cells to DEX by restoring nuclear translocation of the GC receptor and counteracted stroma-induced DEX-resistance. Finally, gene expression analysis documented that, on one hand the combination consisting of a pan PI3K p110 inhibitor and DEX strengthened the DEX-induced up- or down-regulation of several genes involved in apoptosis, while on the other, it rescued the effects of genes that might be involved in GC-resistance. Overall, our findings strongly suggest that PI3K p110 inhibition could be a promising strategy for treating B-ALL patients by improving GC therapeutic effects and/or overcoming GC-resistance.


Assuntos
Antineoplásicos/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linfócitos B/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Criança , Pré-Escolar , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Isoquinolinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Purinas/farmacologia , Quinazolinonas/farmacologia , Quinoxalinas/farmacologia , Tiazolidinedionas/farmacologia , Triazinas/farmacologia
8.
Int J Mol Sci ; 19(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949919

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood malignancy that arises from the clonal expansion of transformed T-cell precursors. Although T-ALL prognosis has significantly improved due to the development of intensive chemotherapeutic protocols, primary drug-resistant and relapsed patients still display a dismal outcome. In addition, lifelong irreversible late effects from conventional therapy are a growing problem for leukemia survivors. Therefore, novel targeted therapies are required to improve the prognosis of high-risk patients. The mechanistic target of rapamycin (mTOR) is the kinase subunit of two structurally and functionally distinct multiprotein complexes, which are referred to as mTOR complex 1 (mTORC1) and mTORC2. These two complexes regulate a variety of physiological cellular processes including protein, lipid, and nucleotide synthesis, as well as autophagy in response to external cues. However, mTOR activity is frequently deregulated in cancer, where it plays a key oncogenetic role driving tumor cell proliferation, survival, metabolic transformation, and metastatic potential. Promising preclinical studies using mTOR inhibitors have demonstrated efficacy in many human cancer types, including T-ALL. Here, we highlight our current knowledge of mTOR signaling and inhibitors in T-ALL, with an emphasis on emerging evidence of the superior efficacy of combinations consisting of mTOR inhibitors and either traditional or targeted therapeutics.


Assuntos
Terapia de Alvo Molecular , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Ensaios Clínicos como Assunto , Humanos , Modelos Biológicos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/química , Serina-Treonina Quinases TOR/metabolismo
9.
Biochim Biophys Acta ; 1863(3): 449-463, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26334291

RESUMO

The bone marrow (BM) microenvironment regulates the properties of healthy hematopoietic stem cells (HSCs) localized in specific niches. Two distinct microenvironmental niches have been identified in the BM, the "osteoblastic (endosteal)" and "vascular" niches. Nevertheless, these niches provide sanctuaries where subsets of leukemic cells escape chemotherapy-induced death and acquire a drug-resistant phenotype. Moreover, it is emerging that leukemia cells are able to remodel the BM niches into malignant niches which better support neoplastic cell survival and proliferation. This review focuses on the cellular and molecular biology of microenvironment/leukemia interactions in acute lymphoblastic leukemia (ALL) of both B- and T-cell lineage. We shall also highlight the emerging role of exosomes/microvesicles as efficient messengers for cell-to-cell communication in leukemia settings. Studies on the interactions between the BM microenvironment and ALL cells have led to the discovery of potential therapeutic targets which include cytokines/chemokines and their receptors, adhesion molecules, signal transduction pathways, and hypoxia-related proteins. The complex interplays between leukemic cells and BM microenvironment components provide a rationale for innovative, molecularly targeted therapies, designed to improve ALL patient outcome. A better understanding of the contribution of the BM microenvironment to the process of leukemogenesis and leukemia persistence after initial remission, may provide new targets that will allow destruction of leukemia cells without adversely affecting healthy HSCs. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis,Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.


Assuntos
Medula Óssea/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Nicho de Células-Tronco , Microambiente Tumoral , Antineoplásicos/uso terapêutico , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Moléculas de Adesão Celular/metabolismo , Quimiocinas/metabolismo , Humanos , Modelos Biológicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Biochim Biophys Acta ; 1853(1): 14-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25284725

RESUMO

Macroautophagy, usually referred to as autophagy, is a degradative pathway wherein cytoplasmatic components such as aggregated/misfolded proteins and organelles are engulfed within double-membrane vesicles (autophagosomes) and then delivered to lysosomes for degradation. Autophagy plays an important role in the regulation of numerous physiological functions, including hematopoiesis, through elimination of aggregated/misfolded proteins, and damaged/superfluous organelles. The catabolic products of autophagy (amino acids, fatty acids, nucleotides) are released into the cytosol from autophagolysosomes and recycled into bio-energetic pathways. Therefore, autophagy allows cells to survive starvation and other unfavorable conditions, including hypoxia, heat shock, and microbial pathogens. Nevertheless, depending upon the cell context and functional status, autophagy can also serve as a death mechanism. The cohort of proteins that constitute the autophagy machinery function in a complex, multistep biochemical pathway which has been partially identified over the past decade. Dysregulation of autophagy may contribute to the development of several disorders, including acute leukemias. In this kind of hematologic malignancies, autophagy can either act as a chemo-resistance mechanism or have tumor suppressive functions, depending on the context. Therefore, strategies exploiting autophagy, either for activating or inhibiting it, could find a broad application for innovative treatment of acute leukemias and could significantly contribute to improved clinical outcomes. These aspects are discussed here after a brief introduction to the autophagic molecular machinery and its roles in hematopoiesis.


Assuntos
Autofagia , Leucemia/patologia , Doença Aguda , Autofagia/fisiologia , Hematopoese , Humanos , Leucemia/terapia , Leucemia Mieloide Aguda/patologia , Leucemia Promielocítica Aguda/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia
11.
J Cell Physiol ; 230(3): 587-94, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25160985

RESUMO

Here we report that both PLCß1a and PLCß1b are relevant regulators of erythropoiesis in that kinamycin F, a potent inducer of γ-globin production in K562 cells, caused a selectively reduction of both PLCß1 isozymes even though the results point out that the effect of the drug is mainly directed toward the expression of the PLCß1a isoform. We have identified a different role for the two isozymes as regulators of K562 differentiation process induced by kinamycin F. The overexpression of PLCß1b induced an increase in γ-globin expression even in the absence of kinamycin F. Moreover during K562 differentiation, cyclin D3 level is regulated by PLCß1 signaling pathway. Namely the amplification of the expression of the PLCß1a, but not of PLCß1b, is able to maintain high levels of expression of cyclin D3 even after treatment with kinamycin F. This could be due to their different distribution in the cell compartments since the amount of PLCß1b is mainly present in the nucleus in respect to PLCß1a. Our data indicate that the amplification of PLCß1a expression, following treatment with kinamycin F, confers a real advantage to K562 cells viability and protects cells themselves from apoptosis.


Assuntos
Ciclina D3/genética , Fosfolipase C beta/biossíntese , Isoformas de Proteínas/biossíntese , gama-Globinas/biossíntese , Apoptose , Diferenciação Celular/genética , Linhagem Celular , Ciclina D3/biossíntese , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Isoformas de Proteínas/genética , Quinonas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos
12.
Cancers (Basel) ; 15(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36765949

RESUMO

Small-cell lung cancer (SCLC) is the most aggressive lung cancer type, and is associated with smoking, low survival rate due to high vascularization, metastasis and drug resistance. Alterations in MYC family members are biomarkers of poor prognosis for a large number of SCLC. In particular, MYCN alterations define SCLC cases with immunotherapy failure. MYCN has a highly restricted pattern of expression in normal cells and is an ideal target for cancer therapy but is undruggable by traditional approaches. We propose an innovative approach to MYCN inhibition by an MYCN-specific antigene-PNA oligonucleotide (BGA002)-as a new precision medicine for MYCN-related SCLC. We found that BGA002 profoundly and specifically inhibited MYCN expression in SCLC cells, leading to cell-growth inhibition and apoptosis, while also overcoming multidrug resistance. These effects are driven by mTOR pathway block in concomitance with autophagy reactivation, thus avoiding the side effects of targeting mTOR in healthy cells. Moreover, we identified an MYCN-related SCLC gene signature comprehending CNTFR, DLX5 and TNFAIP3, that was reverted by BGA002. Finally, systemic treatment with BGA002 significantly increased survival in MYCN-amplified SCLC mouse models, including in a multidrug-resistant model in which tumor vascularization was also eliminated. These findings warrant the clinical testing of BGA002 in MYCN-related SCLC.

13.
Br J Haematol ; 156(2): 205-12, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22082314

RESUMO

The mammalian target of rapamycin (mTOR) signalling pathway has emerged as an important therapeutic target for acute myeloid leukaemia (AML). This study assessed the combination of temsirolimus, an mTOR inhibitor, and lower-dose clofarabine as salvage therapy in older patients with AML. Induction consisted of clofarabine 20mg/m(2) on days 1-5 and temsirolimus 25mg (flat dose) on days 1, 8 and 15. Patients achieving complete remission with (CR) or without (CRi) full haematological recovery could receive monthly temsirolimus maintenance. In 53 evaluable patients, the overall remission rate (ORR) was 21% (8% CR, 13% CRi). Median disease-free survival was 3·5months, and median overall survival was 4months (9·1months for responders). The most common non-haematological severe adverse events included infection (48%), febrile neutropenia (34%) and transaminitis (11%). The 30-d all-cause induction mortality was 13%. Laboratory data from 25 patients demonstrated that a >50%in vivo inhibition of S6 ribosomal protein phosphorylation was highly correlated with response rate (75% with inhibition versus 0% without inhibition; P=0·0001), suggesting that targeting the mTOR pathway is clinically relevant. The acceptable safety profile and the predictive value of target inhibition encourage further investigation of this novel regimen.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Terapia de Salvação/métodos , Nucleotídeos de Adenina/administração & dosagem , Nucleotídeos de Adenina/efeitos adversos , Fatores Etários , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Arabinonucleosídeos/administração & dosagem , Arabinonucleosídeos/efeitos adversos , Clofarabina , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sirolimo/administração & dosagem , Sirolimo/efeitos adversos , Sirolimo/análogos & derivados , Serina-Treonina Quinases TOR/antagonistas & inibidores
14.
Proc Natl Acad Sci U S A ; 106(39): 16811-6, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19805378

RESUMO

Lipid signaling pathways are involved in cell growth, differentiation, and apoptosis, and could have a role in the progression of myelodysplastic syndromes (MDS) into acute myeloid leukemia (AML). Indeed, recent studies showed that phosphoinositide-phospholipase (PI-PL)Cbeta1 mono-allelic deletion correlates with a higher risk of AML evolution. Also, a single patient treated with azacitidine, a DNA methyltransferase inhibitor currently used in MDS, displayed a direct correlation between PI-PLCbeta1 gene expression and drug responsiveness. Consequently, we hypothesized that PI-PLCbeta1 could be a target for demethylating therapy. First, we analyzed the structure of PI-PLCbeta1 gene promoter, then quantified the degree of PI-PLCbeta1 promoter methylation and gene expression in MDS patients at baseline and during azacitidine administration. Indeed, PI-PLCbeta1 mRNA increased in responder patients, along with a reduction of PI-PLCbeta1 promoter methylation. Also, the molecular response correlated to and anticipated the clinical outcome, thus suggesting that PI-PLCbeta1 gene reactivation could predict azacitidine responsiveness. Our results demonstrate not only that PI-PLCbeta1 promoter is hypermethylated in high-risk MDS patients, but also that the amount of PI-PLCbeta1 mRNA could predict the clinical response to azacitidine, therefore indicating a promising new therapeutic approach.


Assuntos
Azacitidina/farmacologia , Inibidores Enzimáticos/farmacologia , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/enzimologia , Fosfoinositídeo Fosfolipase C/metabolismo , Fosfolipase C beta/metabolismo , Idoso , Idoso de 80 Anos ou mais , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Pessoa de Meia-Idade , Fosfoinositídeo Fosfolipase C/genética , Fosfolipase C beta/genética , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo
15.
Cells ; 11(11)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35681507

RESUMO

Glycogen synthase kinase-3 (GSK-3) is an evolutionarily conserved, ubiquitously expressed, multifunctional serine/threonine protein kinase involved in the regulation of a variety of physiological processes. GSK-3 comprises two isoforms (α and ß) which were originally discovered in 1980 as enzymes involved in glucose metabolism via inhibitory phosphorylation of glycogen synthase. Differently from other proteins kinases, GSK-3 isoforms are constitutively active in resting cells, and their modulation mainly involves inhibition through upstream regulatory networks. In the early 1990s, GSK-3 isoforms were implicated as key players in cancer cell pathobiology. Active GSK-3 facilitates the destruction of multiple oncogenic proteins which include ß-catenin and Master regulator of cell cycle entry and proliferative metabolism (c-Myc). Therefore, GSK-3 was initially considered to be a tumor suppressor. Consistently, GSK-3 is often inactivated in cancer cells through dysregulated upstream signaling pathways. However, over the past 10-15 years, a growing number of studies highlighted that in some cancer settings GSK-3 isoforms inhibit tumor suppressing pathways and therefore act as tumor promoters. In this article, we will discuss the multiple and often enigmatic roles played by GSK-3 isoforms in some chronic hematological malignancies (chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B-cell non-Hodgkin's lymphomas) which are among the most common blood cancer cell types. We will also summarize possible novel strategies targeting GSK-3 for innovative therapies of these disorders.


Assuntos
Quinase 3 da Glicogênio Sintase , Neoplasias Hematológicas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases
16.
Insects ; 13(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35621751

RESUMO

The Western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, has been a serious quarantine pest to maize in Europe since the mid-1990s. The integrated pest management of WCR requires an accurate knowledge of the factors that contribute most to risks of crop damage, as well as knowledge of effective area-wide strategies based on agronomic measures, such as crop rotation. In Italy and Croatia, agronomic and cultural factors in fields damaged by WCR were evaluated through a long-term survey. Based on the survey results, high-WCR densities contribute most to risks of damage to maize. Extensive field research in north-eastern Italy compared large areas of continuous maize production with areas under different crop rotation systems (i.e., a structural one with one-time maize planting in a three-year rotation and a flexible one with continuous maize planting interrupted when beetle populations exceed the threshold). The objective was to evaluate the effectiveness of different rotation regimes as possible best practices for WCR management. Captures of beetles in yellow sticky traps, root damage, larval densities, and damage to maize plants (e.g., lodging) were assessed at the center of each area. The results demonstrated the both structural and flexible crop rotation systems were effective strategies for maintaining WCR below damage threshold densities without the need for insecticides.

17.
Cell Death Dis ; 13(4): 346, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422060

RESUMO

Lamin A, a main constituent of the nuclear lamina, is involved in mechanosignaling and cell migration through dynamic interactions with the LINC complex, formed by the nuclear envelope proteins SUN1, SUN2 and the nesprins. Here, we investigated lamin A role in Ewing Sarcoma (EWS), an aggressive bone tumor affecting children and young adults. In patients affected by EWS, we found a significant inverse correlation between LMNA gene expression and tumor aggressiveness. Accordingly, in experimental in vitro models, low lamin A expression correlated with enhanced cell migration and invasiveness and, in vivo, with an increased metastatic load. At the molecular level, this condition was linked to altered expression and anchorage of nuclear envelope proteins and increased nuclear retention of YAP/TAZ, a mechanosignaling effector. Conversely, overexpression of lamin A rescued LINC complex organization, thus reducing YAP/TAZ nuclear recruitment and preventing cell invasiveness. These effects were also obtained through modulation of lamin A maturation by a statin-based pharmacological treatment that further elicited a more differentiated phenotype in EWS cells. These results demonstrate that drugs inducing nuclear envelope remodeling could be exploited to improve therapeutic strategies for EWS.


Assuntos
Membrana Nuclear , Sarcoma de Ewing , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo
18.
Biochim Biophys Acta ; 1803(9): 991-1002, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20399811

RESUMO

The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway mediates diverse and important physiological cell functions which include proliferation, differentiation, survival, motility, autophagy, and metabolism. However, dysregulated PI3K/Akt/mTOR signaling has been documented in a wide range of neoplasias, including malignant hematological disorders. It is now emerging that this signaling network plays a key role during normal hematopoiesis, a tightly regulated process resulting in the formation of all blood lineages. Blood cell development encompasses a complex series of events which are mainly regulated by actions of cytokines, a family of extracellular ligands which stimulate many biological responses in a wide array of cell types. Hematopoiesis is strictly dependent on the correct function of the bone marrow microenvironment (BMM), as BMM cells secrete most of the cytokines. Several of these cytokines activate the PI3K/Akt/mTOR signaling network and regulate proliferation, survival, and differentiation events during hematopoiesis. Here, we review the evidence that links the signals emanating from the PI3K/Akt/mTOR cascade with the functions of hematopoietic stem cells and the process of myelopoiesis, including lineage commitment. We then highlight the emerging role played by aberrant PI3K/Akt/mTOR signaling during leukemogenesis.


Assuntos
Leucemia/genética , Mielopoese/genética , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Leucemia/patologia , Mamíferos/genética , Mamíferos/metabolismo , Modelos Biológicos , Mielopoese/fisiologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR
19.
J Cell Physiol ; 226(3): 822-31, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20857426

RESUMO

Over the past 20 years, survival rates of T-cell acute lymphoblastic leukemia (T-ALL) patients have improved, mainly because of advances in polychemotherapy protocols. Despite these improvements, we still need novel and less toxic treatment strategies targeting aberrantly activated signaling networks which increase proliferation, survival, and drug resistance of T-ALL cells. One such network is represented by the phosphatidylinositol 3-kinase (PI3K)/Akt axis. PI3K inhibitors have displayed some promising effects in preclinical models of T-ALL. Here, we have analyzed the therapeutic potential of the Akt inhibitor, triciribine, in T-ALL cell lines. Triciribine caused cell cycle arrest and caspase-dependent apoptosis. Western blots demonstrated a dose-dependent dephosphorylation of Akt1/Akt2, and of mammalian target of rapamycin complex 1 downstream targets in response to triciribine. Triciribine induced autophagy, which could be interpreted as a defensive mechanism, because an autophagy inhibitor (chloroquine) increased triciribine-induced apoptosis. Triciribine synergized with vincristine, a chemotherapeutic drug employed for treating T-ALL patients, and targeted the side population of T-ALL cell lines, which might correspond to leukemia initiating cells. Our findings indicate that Akt inhibition, either alone or in combination with chemotherapeutic drugs, may serve as an efficient treatment towards T-ALL cells requiring upregulation of this signaling pathway for their proliferation and survival.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ribonucleosídeos/farmacologia , Autofagia/efeitos dos fármacos , Caspase 9/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Microscopia Eletrônica de Transmissão , Complexos Multiproteicos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células da Side Population/citologia , Células da Side Population/efeitos dos fármacos , Células da Side Population/enzimologia , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismo , Vincristina/farmacologia
20.
Insects ; 12(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668906

RESUMO

Western corn rootworm (WCR), or Diabrotica virgifera virgifera LeConte, became a very serious quarantine maize pest in Europe in the mid-1990s. Between 1995 and 2010, European countries were involved in international projects to share information and plan common research for integrated pest management (IPM) implementation. Since 2011, however, common efforts have declined, and an overview of WCR population spread, density, and research is in serious need of update. Therefore, we retained that it was necessary to (1) summarize the research activities carried out in the last 12 years in various countries and the research topics addressed, and analyze how these activities have contributed to IPM for WCR and (2) present the current distribution of WCR in the EU and analyze the current population levels in different European countries, focusing on different management strategies. A review of scientific papers published from 2008 to 2020, in addition to direct interviews with experts in charge of WCR management in a range of European countries, was conducted. Over the past 12 years, scientists in Europe have continued their research activities to investigate various aspects of WCR management by implementing several approaches to WCR control. A considerable amount of new knowledge has been produced, contributing to the development of pest management strategies applicable in EU farming systems. Among the 10 EU countries analyzed, there is no country reporting economic damage on a large scale. Thanks to intensive research leading to specific agricultural practices and the EU Common Agricultural Policy, there are crop-rotation-based solutions that can adequately control this pest avoiding insecticide use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA