Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biol Reprod ; 95(1): 16, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27281704

RESUMO

Reprogramming by nuclear transfer (NT) cloning forces cells to lose their lineage-specific epigenetic marks and reacquire totipotency. This process often produces molecular anomalies that compromise clone development. We hypothesized that quiescence alters the epigenetic status of somatic NT donor cells and elevates their reprogrammability. To test this idea, we compared chromatin composition and cloning efficiency of serum-starved quiescent (G0) fibroblasts versus nonstarved mitotically selected (G1) controls. We show that G0 chromatin contains reduced levels of Polycomb group proteins EED, SUZ12, PHC1, and RING2, as well as histone variant H2A.Z. Using quantitative confocal immunofluorescence microscopy and fluorometric enzyme-linked immunosorbent assay, we further show that G0 induced DNA and histone hypomethylation, specifically at H3K4me3, H3K9me2/3 and H3K27me3, but not H3K9me1. Collectively, these changes resulted in a more relaxed G0 chromatin state. Following NT, G0 donors developed into blastocysts that retained H3K9me3 hypomethylation, both in the inner cell mass and trophectoderm. G0 blastocysts from different cell types and cell lines developed significantly better into adult offspring. In conclusion, serum starvation induced epigenetic changes, specifically hypotrimethylation, that provide a mechanistic correlate for increased somatic cell reprogrammability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Reprogramação Celular/fisiologia , Epigênese Genética , Fibroblastos/citologia , Mitose/fisiologia , Animais , Bovinos , Proteínas de Ciclo Celular/genética , Fibroblastos/metabolismo , Histonas/metabolismo , Técnicas de Transferência Nuclear
2.
J Cutan Pathol ; 43(12): 1096-1101, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27509392

RESUMO

BACKGROUND: Recent description of hemangioblastic blood islands within pyogenic granuloma (PG) has led us to investigate the expression of embryonic stem cell (ESC) markers in this tumor. METHODS: In this study we examined the expression of ESC markers, OCT4, SOX2, STAT3 and NANOG in PG samples from 11 patients, by immunohistochemical (IHC) staining, NanoString analysis and in situ hybridization (ISH). RESULTS: IHC staining demonstrated the expression of pSTAT3, OCT4, SOX2 and NANOG by the endothelium of the microvessels in PG whilst pSTAT3, SOX2 and NANOG were also expressed by cells in the interstitium, outside of the microvessels. NanoString and ISH analysis showed mRNA expression for STAT3, OCT4 and NANOG in PG. CONCLUSIONS: The expression of the ESC markers, OCT4, SOX2, pSTAT3 and NANOG, suggests the endothelium of PG displays a primitive phenotype. Cells in the interstitium expressing pSTAT3, SOX2 and NANOG may represent a more downstream derivative of the primitive endothelium, or a separate population. The primitive nature of the endothelium and cells in the interstitium reveals novel insights into the biology of PG. To the best of our knowledge, this is the first demonstration of the expression of ESC markers in PG, implying the presence of a hematopoietic stem cell population.


Assuntos
Células-Tronco Embrionárias/patologia , Granuloma Piogênico/patologia , Dermatopatias/patologia , Biomarcadores/análise , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Hibridização In Situ , Transcriptoma
3.
J Clin Pathol ; 69(7): 643-6, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27030305

RESUMO

AIMS: To identify, characterise and localise the population of primitive cells in keloid scars (KS). METHODS: 5-µm-thick formalin-fixed paraffin-embedded sections of KS samples from 10 patients underwent immunohistochemical (IHC) staining for the embryonic stem cell (ESC) markers OCT4, SOX2, pSTAT3 and NANOG, and keloid-associated lymphoid tissue (KALT) markers CD4 and CD20. NanoString gene expression analysis and in situ hybridisation (ISH) were used to determine the abundance and localisation of the mRNA for these ESC markers. RESULTS: IHC staining revealed the expression of the ESC markers OCT4, SOX2, pSTAT3 and NANOG by a population of cells within KS tissue. These are localised to the endothelium of the microvessels within the KALTs. NanoString gene expression analysis confirmed the abundance of the transcriptional expression of the same ESC markers. ISH localised the expression of the ESC transcripts to the primitive endothelium in KS tissue. CONCLUSIONS: This report demonstrates the expression of ESC markers OCT4, SOX2, pSTAT3 and NANOG by the endothelium of the microvessels within the KALTs. These findings show a unique niche of primitive cells within KS, expressing ESC markers, revealing a potential therapeutic target in the treatment of KS.


Assuntos
Células-Tronco Embrionárias/metabolismo , Queloide/metabolismo , Tecido Linfoide/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Queloide/patologia , Tecido Linfoide/patologia , Masculino , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fosforilação , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição STAT3/metabolismo
4.
Plast Reconstr Surg Glob Open ; 4(11): e1064, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27975007

RESUMO

BACKGROUND: Recent research has identified mesenchymal stem cells (MSCs) within Dupuytren's disease (DD) tissue and they have been proposed to give rise to the myofibroblasts, implicated in the progression of this condition. The aim of this study was to identify and characterize the primitive population that might be upstream of the MSC population, within DD. METHODS: Formalin-fixed paraffin-embedded 4-µm-thick sections of DD cords and nodules obtained from 6 patients underwent 3,3-diaminobenzidine and immunofluorescent immunohistochemical staining for embryonic stem cell (ESC) markers OCT4, NANOG, SOX2, pSTAT3, and SALL4 and endothelial markers CD34 and ERG. NanoString gene expression analysis was performed to determine the transcriptional activation of these markers. RESULTS: Immunohistochemical staining demonstrated the expression of ESC markers OCT4, NANOG, SOX2, pSTAT3, and SALL4 on the endothelium of the microvessels expressing CD34 and ERG, particularly those surrounding the DD nodules. NanoString analysis confirmed the transcriptional activation of OCT4, NANOG, STAT3, and SALL4, but not SOX2. CONCLUSION: This article demonstrates the novel finding of an ESC-like population expressing ESC markers OCT4, NANOG, SOX2, pSTAT3, and SALL4, localized to the endothelium of the microvessels within DD tissue, suggesting a potential therapeutic target for this condition.

5.
Front Surg ; 3: 5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904545

RESUMO

AIMS: The embryonic-like stem cell origin of infantile hemangioma (IH) and the observed elevated serum levels of alpha-fetoprotein (AFP) in patients with hepatic IH led us to investigate if this tumor was the source of AFP. MATERIALS AND METHODS: We measured serial serum levels of AFP in patients with problematic proliferating IH treated with surgical excision or propranolol treatment. We also investigated the expression of AFP in extrahepatic IH samples using immunohistochemical staining, mass spectrometry, NanoString gene expression analysis, and in situ hybridization. RESULTS: Serum levels of AFP normalized following surgical excision or propranolol treatment. Multiple regression analysis for curve fittings revealed a different curve compared to reported normal values in the general populations. AFP was not detected in any of the IH samples examined at either the transcriptional or translational levels. CONCLUSION: This study demonstrates the association of proliferating IH with elevated serum levels of AFP, which normalized following surgical excision or propranolol treatment. We have shown that IH is not the direct source of AFP. An interaction between the primitive mesoderm-derived IH and the endogenous endodermal tissues, such as the liver, via an intermediary, may explain the elevated serum levels of AFP in infants with extrahepatic IH.

6.
Front Surg ; 3: 51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27730123

RESUMO

AIM: To investigate the expression of the renin-angiotensin system (RAS) in cancer stem cells (CSCs), we have previously characterized in glioblastoma multiforme (GBM). METHODS: 3,3-Diaminobenzidine (DAB) immunohistochemical (IHC) staining for the stem cell marker, SOX2, and components of the RAS: angiotensin converting enzyme (ACE), (pro)renin receptor (PRR), angiotensin II receptor 1 (ATIIR1), and angiotensin II receptor 2 (ATIIR2) on 4 µm-thick formalin-fixed paraffin-embedded sections of previously characterized GBM samples in six patients was undertaken. Immunofluorescent (IF) IHC staining was performed to demonstrate expression of GFAP, SOX2, PRR, ACE, ATIIR1, and ATIIR2. The protein expression and the transcriptional activities of the genes encoding for ACE, PRR, ATIIR1, and ATIIR2 were studied using Western blotting (WB) and NanoString gene expression analysis, respectively. RESULTS: DAB and IF IHC staining demonstrated the expression SOX2 on the GFAP+ GBM CSCs. Cytoplasmic expression of PRR by the GFAP+ CSCs and the endothelium of the microvessels was observed. ACE was expressed on the endothelium of the microvessels only, while nuclear and cytoplasmic expression of ATIIR1 and ATIIR2 was observed on the endothelium of the microvessels and the CSCs. ATIIR1 was expressed on the GFAP+ CSCs cells, and ATIIR2 was expressed by the SOX2+ CSCs. The expression of ACE, PRR, and ATIIR1, but not ATIIR2, was confirmed by WB. NanoString gene analysis demonstrated transcriptional activation of ACE, PRR, and ATIIR1, but not ATIIR2. CONCLUSION: This study demonstrated the expression of PRR, ATIIR1, and ATIIR2 by the SOX2 CSC population, and ACE on the endothelium of the microvessels, within GBM. ACE, PRR, and ATIIR1 were expressed at the protein and mRNA levels, with ATIIR2 detectable only by IHC staining. This novel finding suggests that the CSCs may be a novel therapeutic target for GBM by modulation of the RAS.

7.
Front Surg ; 3: 52, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27730124

RESUMO

AIM: We have recently identified and characterized cancer stem cell (CSC) subpopulations within moderately differentiated buccal mucosal squamous cell carcinoma (MDBMSCC). We hypothesized that these CSCs express components of the renin-angiotensin system (RAS). METHODS: 3,3'-Diaminobenzidine (DAB) immunohistochemical (IHC) staining was performed on formalin-fixed paraffin-embedded MDBMSCC samples to investigate the expression of the components of the RAS: (pro)renin receptor (PRR), angiotensin converting enzyme (ACE), angiotensin II receptor 1 (ATIIR1), and angiotensin II receptor 2 (ATIIR2). NanoString mRNA gene expression analysis and Western Blotting (WB) were performed on snap-frozen MDBMSCC samples to confirm gene expression and translation of these transcripts, respectively. Double immunofluorescent (IF) IHC staining of these components of the RAS with the embryonic stem cell markers OCT4 or SALL4 was performed to demonstrate their localization in relation to the CSC subpopulations within MDBMSCC. RESULTS: DAB IHC staining demonstrated expression of PRR, ACE, ATIIR1, and ATIIR2 in MDBMSCC. IF IHC staining showed that PRR was expressed by the CSC subpopulations within the tumor nests, the peri-tumoral stroma, and the endothelium of the microvessels within the peri-tumoral stroma. ATIIR1 and ATIIR2 were localized to the CSC subpopulations within the tumor nests and the peri-tumoral stroma, while ACE was localized to the endothelium of the microvessels within the peri-tumoral stroma. WB and NanoString analyses confirmed protein expression and transcription activation of PRR, ACE, and ATIIR1, but not of ATIIR2, respectively. CONCLUSION: Our novel findings of the presence and localization of PRR, ACE, ATIIR1, and potentially ATIIR2 to the CSC subpopulations within MDBMSCC suggest CSC as a therapeutic target by modulation of the RAS.

8.
Front Surg ; 3: 48, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27617262

RESUMO

AIM: To identify and characterize cancer stem cells (CSC) in glioblastoma multiforme (GBM). METHODS: Four-micrometer thick formalin-fixed paraffin-embedded GBM samples from six patients underwent 3,3-diaminobenzidine (DAB) and immunofluorescent (IF) immunohistochemical (IHC) staining for the embryonic stem cell (ESC) markers NANOG, OCT4, SALL4, SOX2, and pSTAT3. IF IHC staining was performed to demonstrate co-expression of these markers with GFAP. The protein expression and the transcriptional activities of the genes encoding NANOG, OCT4, SOX2, SALL4, and STAT3 were investigated using Western blotting (WB) and NanoString gene expression analysis, respectively. RESULTS: DAB and IF IHC staining demonstrated the presence of a CSC population expressing NANOG, OCT4, SOX2, SALL4, and pSTAT3 with the almost ubiquitous presence of SOX2 and a relatively low abundance of OCT4, within GBM. The expression of NANOG, SOX2 and, pSTAT3 but, not OCT and SALL4, was confirmed by WB. NanoString gene analysis demonstrated transcriptional activation of NANOG, OCT4, SALL4, STAT3, and SOX2 in GBM. CONCLUSION: This study demonstrated a population of CSCs within GBM characterized by the expression of the CSC markers NANOG, SALL4, SOX2, pSTAT3 and OCT4 at the protein and mRNA levels. The almost ubiquitous presence of SOX2 and a relatively low abundance of OCT4 would support the putative existence of a stem cell hierarchy within GBM.

9.
Front Surg ; 3: 46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27532037

RESUMO

AIM: To identify and characterize cancer stem cells (CSC) in moderately differentiated buccal mucosa squamous cell carcinoma (MDBMSCC). METHODS: Four micrometer-thick, formalin-fixed, paraffin-embedded MDBMSCC samples from six patients underwent 3,3-diaminobenzidine (DAB) immunohistochemical (IHC) staining for the embryonic stem cell (ESC) markers, NANOG, OCT4, SALL4, SOX2, and pSTAT3; cancer stem cell marker, CD44; squamous cell carcinoma (SCC) marker, EMA; and endothelial marker, CD34. The transcriptional activities of the genes encoding NANOG, OCT4, SOX2, SALL4, STAT3, and CD44 were studied using NanoString gene expression analysis and colorimetric in situ hybridization (CISH) for NANOG, OCT4, SOX2, SALL4, and STAT3. RESULTS: Diaminobenzidine and immunofluorescent (IF) IHC staining demonstrated the presence of (1) an EMA(+)/CD44(+)/SOX2(+)/SALL4(+)/OCT4(+)/pSTAT3(+)/NANOG(+) CSC subpopulation within the tumor nests; (2) an EMA(-)/CD44(-)/CD34(-)/SOX2(+)/OCT4(+)/pSTAT3(+)/NANOG(+) subpopulation within the stroma between the tumor nests; and (3) an EMA(-)/CD44(-)/CD34(+)/SOX2(+)/SALL4(+)/OCT4(+)/pSTAT3(+)/NANOG(+) subpopulation on the endothelium of the microvessels within the stroma. The expression of CD44, SOX2, SALL4, OCT4, pSTAT3, and NANOG was confirmed by the presence of mRNA transcripts, using NanoString analysis and NANOG, OCT4, SOX2, SALL4, and STAT3 by CISH staining. CONCLUSION: This study demonstrated a novel finding of three separate CSC subpopulations within MDBMSCC: (1) within the tumor nests expressing EMA, CD44, SOX2, SALL4, OCT4, pSTAT3, and NANOG; (2) within the stroma expressing SOX2, SALL4, OCT4, pSTAT3, and NANOG; and (3) on the endothelium of the microvessels within the stroma expressing CD34, SOX2, SALL4, OCT4, pSTAT3, and NANOG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA