Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Br J Nutr ; 130(1): 56-64, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-36259139

RESUMO

Growth patterns of breastfed infants show substantial inter-individual differences, partly influenced by breast milk (BM) nutritional composition. However, BM nutritional composition does not accurately indicate BM nutrient intakes. This study aimed to examine the associations between both BM intake volumes and macronutrient intakes with infant growth. Mother-infant dyads (n 94) were recruited into the Cambridge Baby Growth and Breastfeeding Study (CBGS-BF) from a single maternity hospital at birth; all infants received exclusive breast-feeding (EBF) for at least 6 weeks. Infant weight, length and skinfolds thicknesses (adiposity) were repeatedly measured from birth to 12 months. Post-feed BM samples were collected at 6 weeks to measure TAG (fat), lactose (carbohydrate) (both by 1H-NMR) and protein concentrations (Dumas method). BM intake volume was estimated from seventy infants between 4 and 6 weeks using dose-to-the-mother deuterium oxide (2H2O) turnover. In the full cohort and among sixty infants who received EBF for 3+ months, higher BM intake at 6 weeks was associated with initial faster growth between 0 and 6 weeks (ß + se 3·58 + 0·47 for weight and 4·53 + 0·6 for adiposity gains, both P < 0·0001) but subsequent slower growth between 3 and 12 months (ß + se - 2·27 + 0·7 for weight and -2·65 + 0·69 for adiposity gains, both P < 0·005). BM carbohydrate and protein intakes at 4-6 weeks were positively associated with early (0-6 weeks) but tended to be negatively related with later (3-12 months) adiposity gains, while BM fat intake showed no association, suggesting that carbohydrate and protein intakes may have more functional relevance to later infant growth and adiposity.


Assuntos
Aleitamento Materno , Leite Humano , Recém-Nascido , Humanos , Lactente , Feminino , Gravidez , Leite Humano/química , Fenômenos Fisiológicos da Nutrição do Lactente , Obesidade , Ingestão de Alimentos , Carboidratos/análise
2.
BMC Pediatr ; 22(1): 580, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207675

RESUMO

BACKGROUND: Our aim was to evaluate infant behavioral state, stool microbiome profile and calprotectin in infants with infantile colic receiving a partially hydrolyzed protein formula with or without added Lacticaseibacillus (formerly Lactobacillus) rhamnosus GG (LGG). METHODS: In this single-center, double-blind, controlled, parallel, prospective study, term infants (14-28 days of age) identified with colic (using modified Wessel's criteria: cried and/or fussed ≥ 3 h/day for ≥ 3 days/week, in a one-week period) were randomized to receive one of two formulas over a three-week feeding period: marketed partially hydrolyzed cow's milk-based infant formula (PHF, n = 35) or a similar formula with added LGG (PHF-LGG, n = 36). Parent-reported infant behavior was recorded at three time points (Study Days 2-4, 10-12, and 18-20). Duration (hours/day) of crying/fussing (averaged over each three-day period) was the primary outcome. Stool samples were collected at Baseline and Study End (Days 19-21) to determine stool LGG colonization (by qPCR) and microbial abundance (using 16S rRNA gene sequencing) and calprotectin (µg/g). RESULTS: Duration of crying/fussing (mean ± SE) decreased and awake/content behavior increased over time with no significant group differences over the course of the study. There were no group differences in the percentage of infants who experienced colic by study end. Colic decreased by Study End vs Baseline in both groups. Change in fecal calprotectin also was similar between groups. Comparing Study End vs Baseline, LGG abundance was greater in the PHF-LGG group (P < 0.001) whereas alpha diversity was greater in the PHF group (P = 0.022). Beta diversity was significantly different between PHF and PHF-LGG at Study End (P = 0.05). By study end, relative abundance of L. rhamnosus was higher in the PHF-LGG vs PHF group and vs Baseline. CONCLUSIONS: In this pilot study of infants with colic, both study formulas were well tolerated. Crying/fussing decreased and awake/content behavior increased in both study groups over the course of the study. Study results demonstrate a successful introduction of the probiotic to the microbiome. The partially hydrolyzed protein formula with added LGG was associated with significant changes in the gut microbiome. TRIAL REGISTRATION: ClinicalTrials.gov, ClinicalTrials.gov Identifier: NCT02340143 . Registered 16/01/2015.


Assuntos
Cólica , Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Probióticos , Animais , Bovinos , Método Duplo-Cego , Feminino , Humanos , Fórmulas Infantis , Recém-Nascido , Complexo Antígeno L1 Leucocitário , Projetos Piloto , Estudos Prospectivos , RNA Ribossômico 16S
3.
Glycobiology ; 31(10): 1254-1267, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34142145

RESUMO

Human milk oligosaccharides (HMOs) are indigestible carbohydrates with prebiotic, pathogen decoy and immunomodulatory activities that are theorized to substantially impact infant health. The objective of this study was to monitor HMO concentrations over 1 year to develop a long-term longitudinal dataset. HMO concentrations in the breast milk of healthy lactating mothers of the Cambridge Baby Growth and Breastfeeding Study (CBGS-BF) were measured at birth, 2 weeks, 6 weeks, 3 months, 6 months and 12 months postpartum. HMO quantification was conducted by high-performance anion-exchange chromatography with pulsed amperometric detection using a newly validated "dilute-and-shoot" method. This technique minimizes sample losses and expedites throughput, making it particularly suitable for the analysis of large sample sets. Varying patterns of individual HMO concentrations were observed with changes in lactation timepoint and maternal secretor status, with the most prominent temporal changes occurring during the first 3 months. These data provide valuable information for the development of human milk banks in view of targeted distribution of donor milk based on infant age. Maternal FUT2 genotype was determined based on identification at single-nucleotide polymorphism rs516246 and compared with the genotype expected based on phenotypic markers in the HMO profile. Surprisingly, two mothers genotyped as secretors produced milk that displayed very low levels of 2'-fucosylated moieties. This unexpected discrepancy between genotype and phenotype suggests that differential enzyme expression may cause substantial variation in HMO profiles between genotypically similar mothers, and current genotypic methods of secretor status determination may require validation with HMO markers from milk analysis.


Assuntos
Fucosiltransferases/genética , Oligossacarídeos/genética , Aleitamento Materno , Feminino , Fucosiltransferases/metabolismo , Genótipo , Humanos , Leite Humano , Mães , Oligossacarídeos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Reino Unido , Galactosídeo 2-alfa-L-Fucosiltransferase
4.
Pediatr Res ; 89(5): 1222-1231, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32615579

RESUMO

BACKGROUND: Few studies have evaluated nutritive effects of prebiotics on infant behavior state, physiology, or metabolic status. METHODS: In this double-blind randomized study, infants (n = 161) received cow's milk-based infant formula (Control) or similar formula with an added prebiotic blend (polydextrose and galactooligosaccharides [PDX/GOS]) from 14-35 to 112 days of age. Infant wake behavior (crying/fussing, awake/content) and 24-h sleep-wake actograms were analyzed (Baseline, Days 70 and 112). Salivary cortisol was immunoassayed (Days 70 and 112). In a subset, exploratory stool 16S ribosomal RNA-sequencing was analyzed (Baseline, Day 112). RESULTS: One hundred and thirty-one infants completed the study. Average duration of crying/fussing episodes was similar at Baseline, significantly shorter for PDX/GOS vs. Control at Day 70, and the trajectory continued at Day 112. Latency to first and second nap was significantly longer for PDX/GOS vs. Control at Day 112. Cortisol awakening response was demonstrated at Days 70 and 112. Significant stool microbiome beta-diversity and individual taxa abundance differences were observed in the PDX/GOS group. CONCLUSIONS: Results indicate faster consolidation of daytime waking state in infants receiving prebiotics and support home-based actigraphy to assess early sleep-wake patterns. A prebiotic effect on wake organization is consistent with influence on the gut-brain axis and warrants further investigation. IMPACT: Few studies have evaluated nutritive effects of prebiotics on infant behavior state, cortisol awakening response, sleep-wake entrainment, and gut microbiome. Faster consolidation of daytime waking state was demonstrated in infants receiving a prebiotic blend in infant formula through ~4 months of age. Shorter episodes of crying were demonstrated at ~2 months of age (time point corresponding to age/developmental range associated with peak crying) in infants receiving formula with added prebiotics. Results support home-based actigraphy as a suitable method to assess early sleep-wake patterns. Prebiotic effect on wake organization is consistent with influence on the gut-brain axis and warrants further investigation.


Assuntos
Leite/química , Sono , Vigília , Actigrafia , Animais , Eixo Encéfalo-Intestino , Bovinos , Método Duplo-Cego , Fezes , Feminino , Galactose/análise , Microbioma Gastrointestinal , Glucanos/química , Humanos , Hidrocortisona/metabolismo , Lactente , Fórmulas Infantis , Recém-Nascido , Masculino , Oligossacarídeos/química , Prebióticos , Estudos Prospectivos , Saliva/metabolismo
5.
BMC Microbiol ; 20(1): 337, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33167908

RESUMO

BACKGROUND: Early infant feeding with intact or extensively hydrolyzed (EH) proteins or free amino acids (AA) may differentially affect intestinal microbiota composition and immune reactivity. This multicenter, double-blind, controlled, parallel-group, pilot study compared stool microbiota from Baseline (1-7 days of age) up to 60 days of age in healthy term infants who received mother's own milk (assigned to human milk [HM] reference group) (n = 25) or were randomized to receive one of two infant formulas: AA-based (AAF; n = 25) or EH cow's milk protein (EHF; n = 28). Stool samples were collected (Baseline, Day 30, Day 60) and 16S rRNA genes were sequenced. Alpha (Shannon, Simpson, Chao1) and beta diversity (Bray Curtis) were analyzed. Relative taxonomic enrichment and fold changes were analyzed (Wilcoxon, DESEq2). Short/branched chain fatty acids (S/BCFA) were quantified by gas chromatography. Mean S/BCFA and pH were analyzed (repeated measures ANOVA). RESULTS: At baseline, alpha diversity measures were similar among all groups; however, both study formula groups were significantly higher versus the HM group by Day 60. Significant group differences in beta diversity at Day 60 were also detected, and study formula groups were compositionally more similar compared to HM. The relative abundance of Bifidobacterium increased over time and was significantly enriched at Day 60 in the HM group. In contrast, a significant increase in members of Firmicutes for study formula groups were detected at Day 60 along with butyrate-producing species in the EHF group. Stool pH was significantly higher in the AAF group at Days 30 and 60. Butyrate increased significantly from Baseline to Day 60 in the EHF group and was significantly higher in study formula groups vs HM at Day 60. Propionate was also significantly higher for EHF and AAF at Day 30 and AAF at Day 60 vs HM. Total and individual BCFA were higher for AAF and EHF groups vs HM through Day 60. CONCLUSIONS: Distinct patterns of early neonatal microbiome, pH, and microbial metabolites were demonstrated for infants receiving mother's own milk compared to AA-based or extensively hydrolyzed protein formula. Providing different sources of dietary protein early in life may influence gut microbiota and metabolites. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02500563 . Registered July 28, 2015.


Assuntos
Ácidos Graxos Voláteis/análise , Fezes/química , Fezes/microbiologia , Microbioma Gastrointestinal , Aminoácidos/análise , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas Alimentares/análise , Método Duplo-Cego , Ácidos Graxos Voláteis/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lactente , Fórmulas Infantis/química , Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido , Leite Humano/química , Projetos Piloto , RNA Ribossômico 16S/genética
6.
Eur J Neurosci ; 45(3): 342-357, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27763700

RESUMO

Manipulating gut microbes may improve mental health. Prebiotics are indigestible compounds that increase the growth and activity of health-promoting microorganisms, yet few studies have examined how prebiotics affect CNS function. Using an acute inescapable stressor known to produce learned helplessness behaviours such as failure to escape and exaggerated fear, we tested whether early life supplementation of a blend of two prebiotics, galactooligosaccharide (GOS) and polydextrose (PDX), and the glycoprotein lactoferrin (LAC) would attenuate behavioural and biological responses to stress later in life. Juvenile, male F344 rats were fed diets containing either GOS and PDX alone, LAC alone, or GOS, PDX and LAC. All diets altered gut bacteria, while diets containing GOS and PDX increased Lactobacillus spp. After 4 weeks, rats were exposed to inescapable stress, and either immediately killed for blood and tissues, or assessed for learned helplessness 24 h later. Diets did not attenuate stress effects on spleen weight, corticosterone and blood glucose; however, all diets differentially attenuated stress-induced learned helplessness. Notably, in situ hybridization revealed that all diets reduced stress-evoked cfos mRNA in the dorsal raphe nucleus (DRN), a structure important for learned helplessness behaviours. In addition, GOS, PDX and LAC diet attenuated stress-evoked decreases in mRNA for the 5-HT1A autoreceptor in the DRN and increased basal BDNF mRNA within the prefrontal cortex. These data suggest early life diets containing prebiotics and/or LAC promote behavioural stress resistance and uniquely modulate gene expression in corresponding circuits.


Assuntos
Dieta , Desamparo Aprendido , Lactoferrina/uso terapêutico , Prebióticos , Estresse Psicológico/dietoterapia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lactoferrina/farmacologia , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/crescimento & desenvolvimento , Núcleos da Rafe/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptor 5-HT1A de Serotonina/metabolismo , Estresse Psicológico/prevenção & controle
7.
J Dairy Sci ; 100(4): 2471-2481, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28131576

RESUMO

Obesity is characterized by altered gut homeostasis, including dysbiosis and increased gut permeability closely linked to the development of metabolic disorders. Milk oligosaccharides are complex sugars that selectively enhance the growth of specific beneficial bacteria in the gastrointestinal tract and could be used as prebiotics. The aim of the study was to demonstrate the effects of bovine milk oligosaccharides (BMO) and Bifidobacterium longum ssp. infantis (B. infantis) on restoring diet-induced obesity intestinal microbiota and barrier function defects in mice. Male C57/BL6 mice were fed a Western diet (WD, 40% fat/kcal) or normal chow (C, 14% fat/kcal) for 7 wk. During the final 2 wk of the study, the diet of a subgroup of WD-fed mice was supplemented with BMO (7% wt/wt). Weekly gavage of B. infantis was performed in all mice starting at wk 3, yet B. infantis could not be detected in any luminal contents when mice were killed. Supplementation of the WD with BMO normalized the cecal and colonic microbiota with increased abundance of Lactobacillus compared with both WD and C mice and restoration of Allobaculum and Ruminococcus levels to that of C mice. The BMO supplementation reduced WD-induced increase in paracellular and transcellular flux in the large intestine as well as mRNA levels of the inflammatory marker tumor necrosis factor α. In conclusion, BMO are promising prebiotics to modulate gut microbiota and intestinal barrier function for enhanced health.


Assuntos
Disbiose , Leite/metabolismo , Animais , Bovinos , Dieta , Inflamação , Camundongos , Camundongos Obesos , Oligossacarídeos/metabolismo , Permeabilidade
8.
J Nutr ; 146(2): 200-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26701794

RESUMO

BACKGROUND: Sialyllactose is a key human milk oligosaccharide and consists of sialic acid (SA) bound to a lactose molecule. Breastfed infants have increased accumulation of ganglioside-bound SA compared with formula-fed infants. OBJECTIVE: This study aimed to determine whether different isomers of sialyllactose enrich brain SA and modulate the microbiome of developing neonatal piglets. METHODS: Day-old pigs were randomly allocated to 6 diets (control, 2 or 4 g 3'-sialyllactose/L, 2 or 4 g 6'-sialyllactose/L, or 2 g polydextrose/L + 2 g galacto-oligosaccharides/L; n = 9) and fed 3 times/d for 21 d. Pigs were killed, and the left hemisphere of the brain was dissected into cerebrum, cerebellum, corpus callosum, and hippocampus regions. SA was determined by using a modified periodic acid-resorcinol reaction. Microbial composition of the intestinal digesta was analyzed with the use of 16S ribosomal DNA Illumina sequencing. RESULTS: Dietary sialyllactose did not affect feed intake, growth, or fecal consistency. Ganglioside-bound SA in the corpus callosum of pigs fed 2 g 3'-sialyllactose or 6'-sialyllactose/L increased by 15% in comparison with control pigs. Similarly, ganglioside-bound SA in the cerebellum of pigs fed 4 g 3'-sialyllactose/L increased by 10% in comparison with control pigs. Significant (P < 0.05, Adonis Test) microbiome differences were observed in the proximal and distal colons of piglets fed control compared with 4-g 6'-sialyllactose/L formulas. Differences were attributed to an increase in bacterial taxa belonging to species Collinsella aerofaciens (phylum Actinobacteria), genera Ruminococcus and Faecalibacterium (phylum Firmicutes), and genus Prevotella (phylum Bacteroidetes) (Wald test, P < 0.05, DeSeq2) compared with piglets fed the control diet. Taxa belonging to families Enterobacteriaceae and Enterococcaceae (phylum Proteobacteria), as well as taxa belonging to family Lachnospiraceae and order Lactobacillales (phylum Firmicutes), were 2.3- and 4-fold lower, respectively, in 6'-sialyllactose-fed piglets than in controls. CONCLUSIONS: Supplementation of formula with 3'- or 6'-sialyllactose can enrich ganglioside SA in the brain and modulate gut-associated microbiota in neonatal pigs. We propose 2 potential routes by which sialyllactose may positively affect the neonate: serving as a source of SA for neurologic development and promoting beneficial microbiota.


Assuntos
Encéfalo/efeitos dos fármacos , Colo/efeitos dos fármacos , Suplementos Nutricionais , Gangliosídeos/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Fórmulas Infantis , Lactose/análogos & derivados , Ácidos Siálicos/farmacologia , Animais , Bactérias/crescimento & desenvolvimento , Encéfalo/metabolismo , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Colo/microbiologia , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/metabolismo , Dieta , Isomerismo , Lactose/farmacologia , Leite Humano/química , Oligossacarídeos/farmacologia , Suínos
9.
J Pediatr Gastroenterol Nutr ; 63(6): 688-697, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27031373

RESUMO

OBJECTIVE: This study tested the hypothesis that the addition of prebiotics and 2 functional milk ingredients to infant formula would maintain normal growth and gut development, and modify microbiota composition and neurotransmitter gene expression in neonatal piglets. METHODS: Two-day-old male piglets (n = 24) were fed formula (CONT) or formula with polydextrose (1.2 g/100 g diet), galactooligosaccharides (3.5 g/100 g diet), bovine lactoferrin (0.3 g/100 g diet), and milk fat globule membrane-10 (2.5 g/100 g diet) (TEST) for 30 days. On study day 31, intestinal samples, ileal and colonic contents, and feces were collected. Intestinal histomorphology, disaccharidase activity, serotonin (5'HT), vasoactive intestinal peptide (VIP), and tyrosine hydroxylase (TH) were measured. Gut microbiota composition was assessed by pyrosequencing of the V3-V5 regions of 16S rRNA and quantitative polymerase chain reaction. RESULTS: Body weight of piglets on TEST was greater (P ≤ 0.05) than CONT on days 17 to 30. Both groups displayed growth patterns within the range observed for sow-reared pigs. TEST piglets had greater jejunal lactase (P = 0.03) and higher (P = 0.003) ileal VIP expression. TEST piglets tended to have greater (P = 0.09) sucrase activity, longer (P = 0.08) ileal villi, and greater (P = 0.06) duodenal TH expression. Microbial communities of TEST piglets differed from CONT in ascending colon (AC, P = 0.001) and feces (P ≤ 0.05). CONT piglets had greater relative abundances of Mogibacterium, Collinsella, Klebsiella, Escherichia/Shigella, Eubacterium, and Roseburia compared with TEST piglets in AC. In feces, CONT piglets harbored lower (P ≤ 0.05) proportions of Parabacteroides, Clostridium IV, Lutispora, and Sutterella than TEST piglets. CONCLUSIONS: A mixture of bioactive ingredients improved weight gain and gut maturation, modulated colonic and fecal microbial composition, and reduced the proportions of opportunistic pathogens.


Assuntos
Colo/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Fórmulas Infantis , Prebióticos/microbiologia , Animais , Peso Corporal , Expressão Gênica , Humanos , Lactente , Mucosa Intestinal/enzimologia , Masculino , Leite/metabolismo , Neurotransmissores , Suínos
10.
Brain Behav Immun ; 50: 166-177, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26144888

RESUMO

There are extensive bidirectional interactions between the gut microbiota and the central nervous system (CNS), and studies demonstrate that stressor exposure significantly alters gut microbiota community structure. We tested whether oligosaccharides naturally found in high levels in human milk, which have been reported to impact brain development and enhance the growth of beneficial commensal microbes, would prevent stressor-induced alterations in gut microbial community composition and attenuate stressor-induced anxiety-like behavior. Mice were fed standard laboratory diet, or laboratory diet containing the human milk oligosaccharides 3'Sialyllactose (3'SL) or 6'Sialyllactose (6'SL) for 2 weeks prior to being exposed to either a social disruption stressor or a non-stressed control condition. Stressor exposure significantly changed the structure of the colonic mucosa-associated microbiota in control mice, as indicated by changes in beta diversity. The stressor resulted in anxiety-like behavior in both the light/dark preference and open field tests in control mice. This effect was associated with a reduction in immature neurons in the dentate gyrus as indicated by doublecortin (DCX) immunostaining. These effects were not evident in mice fed milk oligosaccharides; stressor exposure did not significantly change microbial community structure in mice fed 3'SL or 6'SL. In addition, 3'SL and 6'SL helped maintain normal behavior on tests of anxiety-like behavior and normal numbers of DCX+ immature neurons. These studies indicate that milk oligosaccharides support normal microbial communities and behavioral responses during stressor exposure, potentially through effects on the gut microbiota-brain axis.


Assuntos
Ansiedade/microbiologia , Encéfalo/microbiologia , Microbioma Gastrointestinal/fisiologia , Lactose/análogos & derivados , Oligossacarídeos/administração & dosagem , Estresse Psicológico/microbiologia , Animais , Índice de Massa Corporal , Proliferação de Células , Corticosterona/sangue , Proteína Duplacortina , Interleucina-6/sangue , Lactose/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/microbiologia , Baço/microbiologia
11.
Front Nutr ; 10: 1003032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969811

RESUMO

Background: Infant gut microbiota composition is influenced by various factors early in life. Here, we investigate associations between infant gut microbiome development, infant age, breastfeeding duration, and human milk oligosaccharides (HMO) composition in breastmilk. Methods: A total of 94 mother-infant pairs were recruited as part of the Cambridge Baby Growth and Breastfeeding Study (CBGS-BF) (Cambridge, UK). Infant stool samples (n = 337) were collected at 2 week, 6 week, 3 month, and 6 month of age. The 16S rRNA V3-V4 rRNA region was sequenced using MiSeq Illumina to determine microbiota composition and diversity. Mother's hindmilk samples were collected at birth, 2 week, 6 week, 3 month, and 6 month postpartum. Concentrations of five neutral [2'FL, 3'FL, lacto-N-fucopentaose 1 (LNFP1), LNnT, LNT] and two acidic (3'SL, and 6'SL) HMOs were measured in all milk samples using High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD). We explored the associations between infant gut microbiome parameters and age, duration of exclusive breastfeeding (EBF), and levels of individual HMOs. Results: Bifidobacterium was the most abundant genus in infant stool at all-time points, irrespective of breastfeeding duration, with an overall mean relative abundance of 70%. The relative abundance of B. bifidum in stool from infants who were breastfed for longer than 6 months was significantly higher compared to the infant breastfed up to 3 months (p = 0.0285). Alpha-diversity (both Shannon and ASV-level Richness) of infant gut microbiota showed a biphasic change with infant age, decreasing from 2 weeks until 3 months and then increasing until 6 months of age. Bifidobacterium relative abundance was associated with higher concentrations of 2'FL and LNFP1 in breastmilk across all time-points (p = 0.049 and 0.017, respectively), with trends toward a higher abundance of B. longum species. No significant association with Bifidobacterium was found for breastmilk LNnT, 3'SL, and 6'SL levels. Conclusion: Our study is in line with previous data demonstrating that EBF duration in the first months of life impacts infant gut microbiota composition. The observed links between specific HMOs in breastmilk and bacteria in infant stool provide evidence of how mother's milk affects infant microbiome development.

12.
Nutrients ; 15(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36839274

RESUMO

Butyrate in human milk (HM) has been suggested to reduce excessive weight and adipo-sity gains during infancy. However, HM butyrate's origins, determinants, and its influencing mechanism on weight gain are not completely understood. These were studied in the prospective longitudinal Cambridge Baby Growth and Breastfeeding Study (CBGS-BF), in which infants (n = 59) were exclusively breastfed for at least 6 weeks. Infant growth (birth, 2 weeks, 6 weeks, 3 months, 6 months, and 12 months) and HM butyrate concentrations (2 weeks, 6 weeks, 3 months, and 6 months) were measured. At age 6 weeks, HM intake volume was measured by deuterium-labelled water technique and HM microbiota by 16S sequencing. Cross-sectionally at 6 weeks, HM butyrate was associated with HM microbiota composition (p = 0.036) although no association with the abundance of typical butyrate producers was detected. In longitudinal analyses across all time points, HM butyrate concentrations were overall negatively associated with infant weight and adiposity, and associations were stronger at younger infant ages. HM butyrate concentration was also inversely correlated with HM intake volume, supporting a possible mechanism whereby butyrate might reduce infant growth via appetite regulation and modulation of HM intake.


Assuntos
Microbiota , Leite Humano , Feminino , Humanos , Lactente , Butiratos , Estudos Prospectivos , Aleitamento Materno , Aumento de Peso
13.
J Pediatr Gastroenterol Nutr ; 55(3): 321-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22383026

RESUMO

OBJECTIVES: Human milk oligosaccharides (HMOs) are the third most abundant component of breast milk. Our laboratory has previously revealed gene clusters specifically linked to HMO metabolism in selected bifidobacteria isolated from fecal samples of infants. Our objective was to test the hypothesis that growth of selected bifidobacteria on HMO stimulates the intestinal epithelium. METHODS: Caco-2 and HT-29 cells were incubated with lactose (LAC)- or HMO-grown Bifidobacterium longum subsp infantis (B infantis) or B bifidum. Bacterial adhesion and translocation were measured by real-time quantitative polymerase chain reaction. Expression of pro- and anti-inflammatory cytokines and tight junction proteins was analyzed by real-time reverse transcriptase. Distribution of tight junction proteins was measured using immunofluorescent microscopy. RESULTS: We showed that HMO-grown B infantis had a significantly higher rate of adhesion to HT-29 cells compared with B bifidum. B infantis also induced expression of a cell membrane glycoprotein, P-selectin glycoprotein ligand-1. Both B infantis and B bifidum grown on HMO caused less occludin relocalization and higher expression of anti-inflammatory cytokine, interleukin-10 compared with LAC-grown bacteria in Caco-2 cells. B bifidum grown on HMO showed higher expression of junctional adhesion molecule and occludin in Caco-2 cells and HT-29 cells. There were no significant differences between LAC or HMO treatments in bacterial translocation. CONCLUSIONS: The study provides evidence for the specific relation between HMO-grown bifidobacteria and intestinal epithelial cells. To our knowledge, this is the first study describing HMO-induced changes in the bifidobacteria-intestinal cells interaction.


Assuntos
Aderência Bacteriana , Bifidobacterium , Colo/microbiologia , Mucosa Intestinal/microbiologia , Leite Humano/química , Oligossacarídeos , Células CACO-2 , Membrana Celular/metabolismo , Colo/metabolismo , Meios de Cultura , Células HT29 , Humanos , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Moléculas de Adesão Juncional/metabolismo , Glicoproteínas de Membrana/metabolismo , Ocludina/metabolismo
14.
Nutrients ; 13(3)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800961

RESUMO

In 2020, with the advent of a pandemic touching all aspects of global life, there is a renewed interest in nutrition solutions to support the immune system. Infants are vulnerable to infection and breastfeeding has been demonstrated to provide protection. As such, human milk is a great model for sources of functional nutrition ingredients, which may play direct roles in protection against viral diseases. This review aims to summarize the literature around human milk (lactoferrin, milk fat globule membrane, osteopontin, glycerol monolaurate and human milk oligosaccharides) and infant nutrition (polyunsaturated fatty acids, probiotics and postbiotics) inspired ingredients for support against viral infections and the immune system more broadly. We believe that the application of these ingredients can span across all life stages and thus apply to both pediatric and adult nutrition. We highlight the opportunities for further research in this field to help provide tangible nutrition solutions to support one's immune system and fight against infections.


Assuntos
COVID-19/imunologia , Ingredientes de Alimentos/análise , Sistema Imunitário/virologia , Leite Humano/química , SARS-CoV-2/imunologia , Adulto , COVID-19/terapia , Feminino , Alimento Funcional/análise , Humanos , Lactente , Fenômenos Fisiológicos da Nutrição do Lactente/imunologia , Masculino , Terapia Nutricional/métodos
15.
Curr Dev Nutr ; 5(5): nzab027, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33981943

RESUMO

BACKGROUND: Milk fat globule membrane (MFGM) and lactoferrin (LF) are human-milk bioactive components demonstrated to support gastrointestinal and immune development. Significantly fewer diarrhea and respiratory-associated adverse events through 18 mo of age were previously reported in healthy term infants fed a cow-milk-based infant formula with an added source of bovine MFGM and bovine LF through 12 mo of age. OBJECTIVES: The aim was to compare microbiota and metabolite profiles in a subset of study participants. METHODS: Stool samples were collected at baseline (10-14 d of age) and day 120. Bacterial community profiling was performed via 16S rRNA gene sequencing and alpha and beta diversity were analyzed (QIIME 2). Differentially abundant taxa were determined using linear discriminant analysis effect size (LefSE) and visualized (Metacoder). Untargeted stool metabolites were analyzed (HPLC/MS) and expressed as the fold-change between group means (control to MFGM+LF ratio). RESULTS: Alpha diversity increased significantly in both groups from baseline to 4 mo. Subtle group differences in beta diversity were demonstrated at 4 mo (Jaccard distance; R 2 = 0.01, P = 0.042). Specifically, Bacteroides uniformis and Bacteroides plebeius were more abundant in the MFGM+LF group at 4 mo. Metabolite profile differences for MFGM+LF versus control included lower fecal medium-chain fatty acids, deoxycarnitine, and glycochenodeoxycholate, and some higher fecal carbohydrates and steroids (P < 0.05). After applying multiple test correction, the differences in stool metabolomics were not significant. CONCLUSIONS: Addition of bovine MFGM and LF in infant formula was associated with subtle differences in stool microbiome and metabolome by 4 mo of age, including increased prevalence of Bacteroides species. Stool metabolite profiles may be consistent with altered microbial metabolism. This trial was registered at https://clinicaltrials.gov as NCT02274883.

16.
Nutrients ; 13(8)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34445039

RESUMO

Growth and nutrition during early life have been strongly linked to future health and metabolic risks. The Cambridge Baby Growth Study (CBGS), a longitudinal birth cohort of 2229 mother-infant pairs, was set up in 2001 to investigate early life determinant factors of infant growth and body composition in the UK setting. To carry out extensive profiling of breastmilk intakes and composition in relation to infancy growth, the Cambridge Baby Growth and Breastfeeding Study (CBGS-BF) was established upon the original CBGS. The strict inclusion criteria were applied, focusing on a normal birth weight vaginally delivered infant cohort born of healthy and non-obese mothers. Crucially, only infants who were exclusively breastfed for the first 6 weeks of life were retained in the analysed study sample. At each visit from birth, 2 weeks, 6 weeks, and then at 3, 6, 12, 24, and 36 months, longitudinal anthropometric measurements and blood spot collections were conducted. Infant body composition was assessed using air displacement plethysmography (ADP) at 6 weeks and 3 months of age. Breast milk was collected for macronutrients and human milk oligosaccharides (HMO) measurements. Breast milk intake volume was also estimated, as well as sterile breastmilk and infant stool collection for microbiome study.


Assuntos
Aleitamento Materno , Desenvolvimento Infantil , Leite Humano , Valor Nutritivo , Adiposidade , Fatores Etários , Estatura , Pré-Escolar , Inglaterra , Feminino , Microbioma Gastrointestinal , Cabeça/crescimento & desenvolvimento , Humanos , Lactente , Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido , Masculino , Leite Humano/química , Leite Humano/microbiologia , Estado Nutricional , Fatores de Tempo , Circunferência da Cintura , Aumento de Peso
17.
Exp Dermatol ; 19(6): 518-26, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20100190

RESUMO

Hair loss (alopecia) can result from a variety of metabolic, endocrine, immunologic, and environmental causes. This investigation was undertaken to determine the mechanisms underlying the sporadic development of alopecia in litters from C57BL/6 interleukin-10-deficient (Il10(-/-)) mice. All pups in affected litters demonstrated alopecia by postnatal days 17-19, with hair loss from their trunks but not from their head, base of tail, or feet. Histopathology revealed distorted hair follicles containing broken hair shafts and prominent dermal infiltrates containing increased numbers of activated mast cells. Hair re-growth began soon after weaning, suggesting that the alopecia was triggered by factors transmitted during lactation. Milk from Il10(-/-) dams induced macrophage secretion of pro-inflammatory cytokines in vitro regardless of whether or not their pups developed alopecia. Feeding dams a diet containing 3-6 ppm iron increased the percentage of litters with alopecia to 100% for pups with mast cells, with 0% alopecia in mast cell-deficient pups. When dams were fed a diet containing 131 ppm iron, significantly lower haemoglobin and hematocrit values were observed in pups from litters with alopecia (71%; 5 of 7 litters) compared to litters without alopecia. Genetic or pharmacologic inhibition of c-kit that resulted in depletion of mast cells in pups prevented hair loss in at-risk litters. These studies demonstrate that maternal iron-restricted diets enhance the incidence of alopecia in IL-10-deficient mouse pups and suggest mast cells as potential effector cells. Further studies are indicated to further explore the mechanisms involved and to determine how mast cells may contribute to alopecia in humans.


Assuntos
Alopecia/etiologia , Interleucina-10/deficiência , Deficiências de Ferro , Proteínas Proto-Oncogênicas c-kit/genética , Alopecia/genética , Alopecia/patologia , Anemia/complicações , Anemia/patologia , Animais , Animais Lactentes , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Degranulação Celular , Linhagem Celular , Quimiocinas/metabolismo , Citocinas/metabolismo , Dieta , Feminino , Folículo Piloso/patologia , Interleucina-10/genética , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Mutantes , Leite/imunologia , Gravidez , Proteínas Proto-Oncogênicas c-kit/imunologia , Pele/patologia
18.
Nutrients ; 12(6)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481558

RESUMO

Abstract: Since originally isolated in 1899, the genus Bifidobacterium has been demonstrated to predominate in the gut microbiota of breastfed infants and to benefit the host by accelerating maturation of the immune response, balancing the immune system to suppress inflammation, improving intestinal barrier function, and increasing acetate production. In particular, Bifidobacterium longum subspecies infantis (B. infantis) is well adapted to the infant gut and has co-evolved with the mother-infant dyad and gut microbiome, in part due to its ability to consume complex carbohydrates found in human milk. B. infantis and its human host have a symbiotic relationship that protects the preterm or term neonate and nourishes a healthy gut microbiota prior to weaning. To provide benefits associated with B. infantis to all infants, a number of commercialized strains have been developed over the past decades. As new ingredients become available, safety and suitability must be assessed in preclinical and clinical studies. Consideration of the full clinical evidence for B. infantis use in pediatric nutrition is critical to better understand its potential impacts on infant health and development. Herein we summarize the recent clinical studies utilizing select strains of commercialized B. infantis.


Assuntos
Bifidobacterium longum subspecies infantis/fisiologia , Aleitamento Materno , Microbioma Gastrointestinal/fisiologia , Fenômenos Fisiológicos da Nutrição do Lactente/fisiologia , Leite Humano/metabolismo , Probióticos , Carboidratos da Dieta/metabolismo , Feminino , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Lactente , Recém-Nascido , Intestinos/imunologia , Intestinos/microbiologia , Masculino , Simbiose
19.
J Agric Food Chem ; 68(24): 6646-6655, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32396007

RESUMO

The milk fat globule membrane (MFGM) is a complex, highly conserved structure surrounding fat droplets secreted into mammalian milk. This study evaluated the impact of MFGM on Lactobacillus rhamnosus GG (LGG). MFGM-10 (2.5 g/L, 5 g/L, and 10 g/L) did not affect LGG growth in MRS medium but enhanced the ability of LGG to survive in the presence of 0.5% porcine bile. In the presence of MFGM-10 (5 g/L) and bile (0.5%), there were less complex polysaccharides in the media and less capsular polysaccharides associated with the LGG cells compared to the bile exposure alone (p < 0.05). The expression of four EPS genes was modulated by bile stress and MFGM. Biofilm thickness was increased (p < 0.05) during bile stress with MFGM compared to other treatments. Furthermore, MFGM increased LGG survival during transit in the murine GI tract. Future experiments will determine the impact of MFGM on LGG probiotic functionality.


Assuntos
Ácidos e Sais Biliares/farmacologia , Biofilmes , Glicolipídeos/química , Glicoproteínas/química , Lacticaseibacillus rhamnosus/fisiologia , Gotículas Lipídicas/química , Polissacarídeos Bacterianos/metabolismo , Probióticos/química , Animais , Lacticaseibacillus rhamnosus/efeitos dos fármacos , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Suínos
20.
Sci Rep ; 10(1): 3848, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123201

RESUMO

Dietary prebiotics produce favorable changes in the commensal gut microbiome and reduce host vulnerability to stress-induced disruptions in complex behaviors such as sleep. The mechanisms for how prebiotics modulate stress physiology remain unclear; however, emerging evidence suggests that gut microbes and their metabolites may play a role. This study tested if stress and/or dietary prebiotics (Test diet) alter the fecal metabolome; and explored if these changes were related to sleep and/or gut microbial alpha diversity. Male F344 rats on either Test or Control diet were instrumented for electroencephalography biotelemetry measures of sleep/wake. After 5 weeks on diet, rats were either stressed or remained in home cages. Based on untargeted mass spectrometry and 16S rRNA gene sequencing, both stress and Test diet altered the fecal metabolome/microbiome. In addition, Test diet prevented the stress-induced reduction in microbial alpha diversity based on PD_Whole_Tree, which has been previously published. Network propagation analysis revealed that stress increased members of the neuroactive steroidal pregnane molecular family; and that Test diet reduced this effect. We also discovered links between sleep, alpha diversity, and pyrimidine, secondary bile acid, and neuroactive glucocorticoid/pregnanolone-type steroidal metabolites. These results reveal novel microbial-dependent metabolites that may modulate stress physiology and sleep.


Assuntos
Dieta , Fezes/microbiologia , Prebióticos , Sono , Animais , Fezes/química , Masculino , Metabolômica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA