Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Immunol ; 16(11): 1142-52, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26414765

RESUMO

Mitochondria need to be juxtaposed to phagosomes for the synergistic production of ample reactive oxygen species (ROS) in phagocytes to kill pathogens. However, how phagosomes transmit signals to recruit mitochondria has remained unclear. Here we found that the kinases Mst1 and Mst2 functioned to control ROS production by regulating mitochondrial trafficking and mitochondrion-phagosome juxtaposition. Mst1 and Mst2 activated the GTPase Rac to promote Toll-like receptor (TLR)-triggered assembly of the TRAF6-ECSIT complex that is required for the recruitment of mitochondria to phagosomes. Inactive forms of Rac, including the human Rac2(D57N) mutant, disrupted the TRAF6-ECSIT complex by sequestering TRAF6 and substantially diminished ROS production and enhanced susceptibility to bacterial infection. Our findings demonstrate that the TLR-Mst1-Mst2-Rac signaling axis is critical for effective phagosome-mitochondrion function and bactericidal activity.


Assuntos
Fagócitos/imunologia , Fagócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Infecções Bacterianas/etiologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Atividade Bactericida do Sangue/imunologia , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/microbiologia , Fagócitos/microbiologia , Fagossomos/imunologia , Fagossomos/metabolismo , Fagossomos/microbiologia , Proteína Quinase C-alfa/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Sepse/etiologia , Sepse/imunologia , Sepse/metabolismo , Serina-Treonina Quinase 3 , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Receptores Toll-Like/metabolismo , Ubiquitinação , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/metabolismo
2.
Mol Cell ; 69(3): 480-492.e7, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29395065

RESUMO

Fatty acid oxidation (FAO) is crucial for cells to overcome metabolic stress by providing ATP and NADPH. However, the mechanism by which FAO is regulated in tumors remains elusive. Here we show that Nur77 is required for the metabolic adaptation of melanoma cells by protecting FAO. Glucose deprivation activates ERK2 to phosphorylate and induce Nur77 translocation to the mitochondria, where Nur77 binds to TPß, a rate-limiting enzyme in FAO. Although TPß activity is normally inhibited by oxidation under glucose deprivation, the Nur77-TPß association results in Nur77 self-sacrifice to protect TPß from oxidation. FAO is therefore able to maintain NADPH and ATP levels and prevent ROS increase and cell death. The Nur77-TPß interaction further promotes melanoma metastasis by facilitating circulating melanoma cell survival. This study demonstrates a novel regulatory function of Nur77 with linkage of the FAO-NADPH-ROS pathway during metabolic stress, suggesting Nur77 as a potential therapeutic target in melanoma.


Assuntos
Melanoma/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Sobrevivência Celular/fisiologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Células HEK293 , Humanos , Metabolismo dos Lipídeos , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/metabolismo , Subunidade beta da Proteína Mitocondrial Trifuncional/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
3.
Nucleic Acids Res ; 50(9): 5158-5170, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35489061

RESUMO

Pseudogenes (genes disrupted by frameshift or in-frame stop codons) are ubiquitously present in the bacterial genome and considered as nonfunctional fossil. Here, we used RNA-seq and mass-spectrometry technologies to measure the transcriptomes and proteomes of Salmonella enterica serovars Paratyphi A and Typhi. All pseudogenes' mRNA sequences remained disrupted, and were present at comparable levels to their intact homologs. At the protein level, however, 101 out of 161 pseudogenes suggested successful translation, with their low expression regardless of growth conditions, genetic background and pseudogenization causes. The majority of frameshifting detected was compensatory for -1 frameshift mutations. Readthrough of in-frame stop codons primarily involved UAG; and cytosine was the most frequent base adjacent to the codon. Using a fluorescence reporter system, fifteen pseudogenes were confirmed to express successfully in vivo in Escherichia coli. Expression of the intact copy of the fifteen pseudogenes in S. Typhi affected bacterial pathogenesis as revealed in human macrophage and epithelial cell infection models. The above findings suggest the need to revisit the nonstandard translation mechanism as well as the biological role of pseudogenes in the bacterial genome.


Assuntos
Proteogenômica , Pseudogenes , Salmonella paratyphi A/genética , Salmonella typhi/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Códon de Terminação , Expressão Gênica , Genoma Bacteriano , Pseudogenes/genética
4.
J Biomed Sci ; 30(1): 9, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732731

RESUMO

BACKGROUND: Pseudomonas aeruginosa intestinal carriage rates are significantly higher in immunosuppressed individuals and hospitalized patients who therefore have increased risk of infections and antibiotic-associated diarrhea. To combat intestinal dysbiosis and decolonize P. aeruginosa from gastrointestinal tract, we investigated the anti-adherence and gut microbiota modulation properties of marine prebiotic fucoidans. METHODS: Proteomic analysis of culture supernatant was performed by LC-MS/MS. Using lectin-based enzyme-linked immunosorbent assay, hemagglutinin domain interaction and inhibition with biomolecules were studied. We investigated the role of nutritional grade fucoidans in a mouse model and used 16S ribosomal RNA sequencing to examine fecal microbiota composition. RESULTS: Analysis of culture supernatant proteins indicated the secretion of two-partner secretion (TPS) family proteins, including TpsA1/CdiA2 and TpsA2/CdiA1. Lectin like activity at the N-terminal of TpsA due to a conserved hemagglutinin domain (Pfam identifier [ID] PF05860) mediates binding to mucins that carry multiple fucosylated glycans. Fucose-rich sulfated polysaccharides (fucoidans) and sulfated dextrans were found to be potent inhibitors of the recombinant N-terminal hemagglutinin domain of TpsA (TpsA-NT-HAD) binding to mucins. In a mouse model, antibiotic-induced dysbiosis was essential for P. aeruginosa gastrointestinal colonization. After prophylactic oral fucoidans supplementation, a higher proportion (60%) of the mice were decolonized over time and resisted re-colonization, this was associated with remarkable expansion of Bacteroides (post-infection day-3 abundance, 29-50%) and consequential reductions in bloom of Enterobacteriaceae and Enterococcaceae populations. In the non-supplemented group, Parabacteroides mediated recovery from dysbiosis but failed to decolonize P. aeruginosa. CONCLUSIONS: Supplementing diet with marine prebiotic fucoidans can mediate earlier recovery from dysbiosis and decolonization of P. aeruginosa from gut by inhibiting secreted virulence factor (TpsA/CdiA) interaction with mucins and promoting the growth of beneficial Bacteroides population. We suggest the prophylactic use of nutritional grade fucoidans to decolonize P. aeruginosa from gastrointestinal tract of at-risk individuals to prevent infection and transmission of colonizing P. aeruginosa.


Assuntos
Prebióticos , Pseudomonas aeruginosa , Camundongos , Animais , Mucinas , Disbiose , Bacteroides , Hemaglutininas , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Antibacterianos/farmacologia , Polissacarídeos , Modelos Animais de Doenças , Lectinas
5.
J Cell Sci ; 133(9)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32184263

RESUMO

Under metabolic stress, cellular components can assemble into distinct membraneless organelles for adaptation. One such example is cytidine 5'-triphosphate synthase (CTPS, for which there are CTPS1 and CTPS2 forms in mammals), which forms filamentous structures under glutamine deprivation. We have previously demonstrated that histidine (His)-mediated methylation regulates the formation of CTPS filaments to suppress enzymatic activity and preserve the CTPS protein under glutamine deprivation, which promotes cancer cell growth after stress alleviation. However, it remains unclear where and how these enigmatic structures are assembled. Using CTPS-APEX2-mediated in vivo proximity labeling, we found that synaptosome-associated protein 29 (SNAP29) regulates the spatiotemporal filament assembly of CTPS along the cytokeratin network in a keratin 8 (KRT8)-dependent manner. Knockdown of SNAP29 interfered with assembly and relaxed the filament-induced suppression of CTPS enzymatic activity. Furthermore, APEX2 proximity labeling of keratin 18 (KRT18) revealed a spatiotemporal association of SNAP29 with cytokeratin in response to stress. Super-resolution imaging suggests that during CTPS filament formation, SNAP29 interacts with CTPS along the cytokeratin network. This study links the cytokeratin network to the regulation of metabolism by compartmentalization of metabolic enzymes during nutrient deprivation.


Assuntos
Carbono-Nitrogênio Ligases , Histidina , Animais , Citidina Trifosfato , Histidina/genética , Queratinas
6.
J Proteome Res ; 18(1): 449-460, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30336044

RESUMO

MicroRNAs are noncoding RNA species comprising 18-23 nucleotides that regulate host-virus interaction networks. Here, we show that enterovirus A71 infection in human rhabdomyosarcoma (RD) is regulated by miR-197 expression. Transfection of miR-197 mimic into RD cells inhibited virus replication by interfering with the viral RNA synthesis. We employed a combination of mass-spectrometry-based quantitative proteomics with the stable isotope labeling with amino acids in cell culture (SILAC) approach for the identification of the miR-197 target genes in RD cells and to investigate the differential expression of the prospective target proteins. A total of 1822 proteins were repeatedly identified in miR-197-transfected RD cells, 106 of which were predicted to have seed sites by TargetScan. Notably, seven of eight selected genes potentially related to viral replication and immune response were validated as direct miR-197 targets, using a luciferase 3'-untranslated region (UTR) reporter assay. The expression levels of three selected endogenous molecules (ITGAV, ETF1, and MAP2K1/MEK1) were significantly reduced when RD cells were transfected with a miR-197 mimic. Our results provide a comprehensive database of miR-197 targets, which might provide better insights into the understanding of host-virus interaction.


Assuntos
Enterovirus Humano A/fisiologia , Interações Hospedeiro-Patógeno , MicroRNAs/fisiologia , Proteômica/métodos , Rabdomiossarcoma/virologia , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/farmacologia , RNA Viral/efeitos dos fármacos , Rabdomiossarcoma/genética , Replicação Viral/efeitos dos fármacos
7.
Mol Cell Proteomics ; 16(10): 1829-1849, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28821604

RESUMO

Oral cancer is one of the most common cancers worldwide, and there are currently no biomarkers approved for aiding its management. Although many potential oral cancer biomarkers have been discovered, very few have been verified in body fluid specimens in parallel to evaluate their clinical utility. The lack of appropriate multiplexed assays for chosen targets represents one of the bottlenecks to achieving this goal. In the present study, we develop a peptide immunoaffinity enrichment-coupled multiple reaction monitoring-mass spectrometry (SISCAPA-MRM) assay for verifying multiple reported oral cancer biomarkers in saliva. We successfully produced 363 clones of mouse anti-peptide monoclonal antibodies (mAbs) against 36 of 49 selected targets, and characterized useful mAbs against 24 targets in terms of their binding affinity for peptide antigens and immuno-capture ability. Comparative analyses revealed that an equilibrium dissociation constant (KD ) cut-off value < 2.82 × 10-9 m could identify most clones with an immuno-capture recovery rate >5%. Using these mAbs, we assembled a 24-plex SISCAPA-MRM assay and optimized assay conditions in a 25-µg saliva matrix background. This multiplexed assay showed reasonable precision (median coefficient of variation, 7.16 to 32.09%), with lower limits of quantitation (LLOQ) of <10, 10-50, and >50 ng/ml for 14, 7 and 3 targets, respectively. When applied to a model saliva sample pooled from oral cancer patients, this assay could detect 19 targets at higher salivary levels than their LLOQs. Finally, we demonstrated the utility of this assay for quantification of multiple targets in individual saliva samples (20 healthy donors and 21 oral cancer patients), showing that levels of six targets were significantly altered in cancer compared with the control group. We propose that this assay could be used in future studies to compare the clinical utility of multiple oral cancer biomarker candidates in a large cohort of saliva samples.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma de Células Escamosas/diagnóstico , Espectrometria de Massas/métodos , Neoplasias Bucais/diagnóstico , Proteômica/métodos , Saliva/química , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/imunologia , Biomarcadores Tumorais/metabolismo , Simulação por Computador , Humanos , Imunoensaio , Limite de Detecção , Camundongos , Peptídeos/imunologia
8.
Nucleic Acids Res ; 45(1): 271-287, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-27899653

RESUMO

Cells and viruses can utilize internal ribosome entry sites (IRES) to drive translation when cap-dependent translation is inhibited by stress or viral factors. IRES trans-acting factors (ITAFs) are known to participate in such cap-independent translation, but there are gaps in the understanding as to how ITAFs, particularly negative ITAFs, regulate IRES-driven translation. This study found that Lys109, Lys121 and Lys122 represent critical ubiquitination sites for far upstream element-binding protein 2 (KHSRP, also known as KH-type splicing regulatory protein or FBP2), a negative ITAF. Mutations at these sites subsequently reduced KHSRP ubiquitination and abolished its inhibitory effect on IRES-driven translation. We further found that interaction between the Kelch domain of Kelch-like protein 12 (KLHL12) and the C-terminal domain of KHSRP contributed to KHSRP ubiquitination, leading to downregulation of enterovirus IRES-mediated translation in infected cells and increased competition against other positive ITAFs. Together, these results show that ubiquitination can exert control over IRES-driven translation via modification of ITAFs, and to the best of our knowledge, this is the first description of such a regulatory mechanism for IRES-dependent translation.


Assuntos
Enterovirus/genética , Interações Hospedeiro-Patógeno , Proteínas dos Microfilamentos/genética , Células Musculares/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/genética , Transativadores/genética , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular Tumoral , Enterovirus/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Humanos , Sítios Internos de Entrada Ribossomal , Lisina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Células Musculares/virologia , Mutação , Domínios Proteicos , Proteínas de Ligação a RNA/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Ubiquitinação
9.
J Proteome Res ; 17(5): 1953-1966, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29634903

RESUMO

The axon is a long projection connecting a neuron to its targets. Here, the axons of cultured rat cortical neurons were isolated with micropatterned chips that enable the separation of axons from their cell bodies. Proteins extracted from isolated axons and whole neurons were subjected to analyses using two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) analyses without and with stable isotope dimethyl labeling, resulting in the identification of >2500 axonal proteins and 103 axon-enriched proteins. A strong correlation exists between the abundances of axonal proteins and their counterparts in whole neurons. The proteomic results confirm the axonal protein constituents of the subcellular structures documented in earlier electron microscopic studies. Cortical axons have proteins that are components of machineries for protein degradation and the synthesis of soluble, membrane, and secretory proteins, although axons lack conventional Golgi apparatus. Despite the fact that axons lack nucleus, nuclear proteins were identified, and 67 of them were found enriched in axons. Some of the results obtained by the MS-based studies were validated by quantitative Western blotting and immunofluorescence staining analyses. The results represent the first comprehensive description of the axonal protein landscape. The MS proteomics data are available via ProteomeXchange with identifier PXD005527.


Assuntos
Axônios/química , Neurônios/química , Proteínas/análise , Proteômica/métodos , Animais , Células Cultivadas , Marcação por Isótopo , Proteínas Nucleares , Ratos
10.
J Virol ; 90(3): 1424-38, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26581983

RESUMO

UNLABELLED: Enterovirus 71 (EV71), a member of Picornaviridae, is associated with severe central nervous system complications. In this study, we identified a cellular microRNA (miRNA), miR-197, whose expression was downregulated by viral infection in a time-dependent manner. In miR-197 mimic-transfected cells, EV71 replication was inhibited, whereas the internal ribosome entry site (IRES) activity was decreased in EV71 strains with or without predicted miR-197 target sites, indicating that miR-197 targets host proteins to modulate viral replication. We thus used a quantitative proteomics approach, aided by the TargetScan algorithm, to identify putative target genes of miR-197. Among them, RAN was selected and validated as a genuine target in a 3' untranslated region (UTR) reporter assay. Reduced production of RAN by RNA interference markedly reduced the synthesis of EV71-encoded viral proteins and virus titers. Furthermore, reintroduction of nondegradable RAN into these knockdown cells rescued viral protein synthesis. miR-197 levels were modulated by EV71 to maintain RAN mRNA translatability at late times postinfection since we demonstrated that cap-independent translation exerted by its intrinsic IRES activity was occurring at times when translation attenuation was induced by EV71. EV71-induced downregulation of miR-197 expression increased the expression of RAN, which supported the nuclear transport of the essential viral proteins 3D/3CD and host protein hnRNP K for viral replication. Our data suggest that downregulation of cellular miRNAs may constitute a newly identified mechanism that sustains the expression of host proteins to facilitate viral replication. IMPORTANCE: Enterovirus 71 (EV71) is a picornavirus with a positive-sense single-stranded RNA that globally inhibits the cellular translational system, mainly by cleaving cellular eukaryotic translation initiation factor 4G (eIF4G) and poly(A)-binding protein (PABP), which inhibits the association of the ribosome with the host capped mRNA. We used a microRNA (miRNA) microarray chip to identify the host miRNA 197 (miR-197) that was downregulated by EV71. We also used quantitative mass spectrometry and a target site prediction tool to identify the miR-197 target genes. During viral infection, the expression of the target protein RAN was upregulated considerably, and there was a parallel downregulation of miR-197. The nuclear transport of viral 3D/3CD protein and of the host proteins involved in viral replication proceeded in an RAN-dependent manner. We have identified a new mechanism in picornavirus through which EV71-induced cellular miRNA downregulation can regulate host protein levels to facilitate viral replication.


Assuntos
Enterovirus Humano A/imunologia , Enterovirus Humano A/fisiologia , Interações Hospedeiro-Patógeno , MicroRNAs/metabolismo , Proteínas Virais/biossíntese , Replicação Viral , Proteína ran de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Humanos
11.
J Proteome Res ; 13(6): 2818-29, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24787432

RESUMO

The ability to discriminate lung cancer malignant pleural effusion (LC-MPE) from benign pleural effusion has profound implications for the therapy and prognosis of lung cancer. Here, we established a pipeline to verify potential biomarkers for this purpose. In the discovery phase, label-free quantification was performed for the proteome profiling of exudative pleural effusion in order to select 34 candidate biomarkers with significantly elevated levels in LC-MPE. In the verification phase, signature peptides for 34 candidates were first confirmed by accurate inclusion mass screening (AIMS). To quantify the candidates in PEs, multiple reaction monitoring mass spectrometry (MRM-MS) with stable isotope-labeled standards (SIS) peptides was performed for the 34 candidate biomarkers using the QconCAT approach for the generation of the SIS peptides. The results of the MRM assay were used to prioritize candidates based on their discriminatory power in 82 exudative PE samples. The five potential biomarkers (ALCAM, CDH1, MUC1, SPINT1, and THBS4; AUC > 0.7) and one three-marker panel (SPINT1/SVEP1/THBS4; AUC = 0.95) were able to effectively differentiate LC-MPE from benign PE. Collectively, these results demonstrate that our pipeline is a feasible platform for verifying potential biomarkers for human diseases.


Assuntos
Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/metabolismo , Derrame Pleural Maligno/metabolismo , Adenocarcinoma/diagnóstico , Adenocarcinoma/secundário , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Biomarcadores Tumorais/química , Estudos de Casos e Controles , Diagnóstico Diferencial , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Derrame Pleural Maligno/diagnóstico , Proteoma/química , Proteoma/metabolismo , Proteômica , Curva ROC
12.
Mol Cell Proteomics ; 11(11): 1105-22, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22843992

RESUMO

The process of nucleocytoplasmic shuttling is mediated by karyopherins. Dysregulated expression of karyopherins may trigger oncogenesis through aberrant distribution of cargo proteins. Karyopherin subunit alpha-2 (KPNA2) was previously identified as a potential biomarker for nonsmall cell lung cancer by integration of the cancer cell secretome and tissue transcriptome data sets. Knockdown of KPNA2 suppressed the proliferation and migration abilities of lung cancer cells. However, the precise molecular mechanisms underlying KPNA2 activity in cancer remain to be established. In the current study, we applied gene knockdown, subcellular fractionation, and stable isotope labeling by amino acids in cell culture-based quantitative proteomic strategies to systematically analyze the KPNA2-regulating protein profiles in an adenocarcinoma cell line. Interaction network analysis revealed that several KPNA2-regulating proteins are involved in the cell cycle, DNA metabolic process, cellular component movements and cell migration. Importantly, E2F1 was identified as a potential novel cargo of KPNA2 in the nuclear proteome. The mRNA levels of potential effectors of E2F1 measured using quantitative PCR indicated that E2F1 is one of the "master molecule" responses to KPNA2 knockdown. Immunofluorescence staining and immunoprecipitation assays disclosed co-localization and association between E2F1 and KPNA2. An in vitro protein binding assay further demonstrated that E2F1 interacts directly with KPNA2. Moreover, knockdown of KPNA2 led to subcellular redistribution of E2F1 in lung cancer cells. Our results collectively demonstrate the utility of quantitative proteomic approaches and provide a fundamental platform to further explore the biological roles of KPNA2 in nonsmall cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Transporte/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Proteômica/métodos , alfa Carioferinas/metabolismo , Sequência de Aminoácidos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Fator de Transcrição E2F1/metabolismo , Fase G2 , Técnicas de Silenciamento de Genes , Humanos , Marcação por Isótopo , Neoplasias Pulmonares/patologia , Mitose , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Proteoma/metabolismo , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Frações Subcelulares/metabolismo , alfa Carioferinas/química
13.
Cancer ; 119(22): 4003-11, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23963810

RESUMO

BACKGROUND: A previous comparative tissue proteomics study by the authors of the current study led to the identification of caldesmon (CaD) as one of the proteins associated with cervical metastasis of oral cavity squamous cell carcinoma (OSCC). In the current investigation, the authors focused on the potential functions of CaD in patients with OSCC. METHODS: CaD expression was examined in tissue samples from 155 patients using immunohistochemical analysis. The expression of CaD variants was determined by Western blot analysis and reverse transcriptase-polymerase chain reaction. In addition, the specific effects of CaD gene overexpression and silence were determined in OSCC cell lines. RESULTS: CaD expression was found to be significantly higher in tumor cells from metastatic lymph nodes compared with primary tumor cells, and was nearly absent in normal oral epithelia. Higher CaD expression was found to be correlated with positive N classification, poor differentiation, perineural invasion, and tumor depth (P = .001, P = .029, P = .001, and P = .031, respectively). In survival analyses, OSCC patients with higher CaD expression were found to have poorer prognosis with regard to disease-specific survival and disease-free survival (P = .003 and P = .014, respectively). Multivariate analyses further indicated that higher CaD expression was an independent predictor of disease-specific survival (P = .043). Serum CaD levels were found to be significantly higher in patients with OSCC, but this finding was not associated with clinicopathological manifestations. Data obtained from in vitro suppression, rescue, and overexpression of CaD in OEC-M1 cells indicated that CaD promotes migration and invasive processes in OSCC cells. CONCLUSIONS: The findings of the current study collectively suggest that the low-molecular-weight CaD expression in OSCC tumors is associated with tumor metastasis and patient survival.


Assuntos
Proteínas de Ligação a Calmodulina/biossíntese , Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias Bucais/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Técnicas de Cultura de Células , Movimento Celular/fisiologia , Intervalo Livre de Doença , Feminino , Inativação Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imuno-Histoquímica , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Adulto Jovem
15.
BMC Biochem ; 14: 18, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23870088

RESUMO

BACKGROUND: Lamins A and C, two major structural components of the nuclear lamina that determine nuclear shape and size, are phosphoproteins. Phosphorylation of lamin A/C is cell cycle-dependent and is involved in regulating the assembly-disassembly of lamin filaments during mitosis. We previously reported that P-STM, a phosphoepitope-specific antibody raised against the autophosphorylation site of p21-activated kinase 2, recognizes a number of phosphoproteins, including lamins A and C, in mitotic HeLa cells. RESULTS: Here, using recombinant proteins and synthetic phosphopeptides containing potential lamin A/C phosphorylation sites in conjunction with in vitro phosphorylation assays, we determined the lamin A/C phosphoepitope(s) recognized by P-STM. We found that phosphorylation of Thr-19 is required for generating the P-STM phosphoepitope in lamin A/C and showed that it could be created in vitro by p34cdc2/cyclin B kinase (CDK1)-catalyzed phosphorylation of lamin A/C immunoprecipitated from unsynchronized HeLa S3 cells. To further explore changes in lamin A/C phosphorylation in living cells, we precisely quantified the phosphorylation levels of Thr-19 and other sites in lamin A/C isolated from HeLa S3 cells at interphase and mitosis using the SILAC method and liquid chromatography-tandem mass spectrometry. The results showed that the levels of phosphorylated Thr-19, Ser-22 and Ser-392 in both lamins A and C, and Ser-636 in lamin A only, increased -2- to 6-fold in mitotic HeLa S3 cells. CONCLUSIONS: Collectively, our results demonstrate that P-STM is a useful tool for detecting Thr-19-phosphorylated lamin A/C in cells and reveal quantitative changes in the phosphorylation status of major lamin A/C phosphorylation sites during mitosis.


Assuntos
Anticorpos/imunologia , Lamina Tipo A/metabolismo , Fosfopeptídeos/imunologia , Sequência de Aminoácidos , Proteína Quinase CDC2/metabolismo , Isótopos de Carbono/química , Cromatografia Líquida de Alta Pressão , Células HeLa , Humanos , Imunoprecipitação , Marcação por Isótopo , Lamina Tipo A/química , Mitose , Dados de Sequência Molecular , Fosfopeptídeos/análise , Fosfopeptídeos/isolamento & purificação , Fosforilação , Espectrometria de Massas em Tandem
16.
J Sep Sci ; 36(9-10): 1582-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23494885

RESUMO

This study reported a pH-mediated stacking CE coupled with ESI MS/MS method to determine the phosphorylation sites of three synthetic phosphopeptides containing structural isomers. These phosphopeptides mimic the phosphopeptides (amino acid residues 12-25) derived from the trypsin-digested products of human lamin A/C protein. The LODs were determined to be 118, 132 and 1240 fmol for SGAQASS(19)TpPL(22)SPTR, SGAQASS(19)TPL(22)SpPTR, and SGAQASS(19)TpPL(22)SpPTR, respectively. The established method was employed to analyze the phosphorylation sites of the trypsin-digested products of glutathione S-transferase-lamin A/C (1-57) fusion protein that had been phosphorylated in vitro by cyclin-dependent kinase 1. The results indicated that this method is feasible to specifically determine the phosphorylation site from phosphopeptide isomers in the trypsin-digested products of a kinase-catalyzed phosphoprotein, which should benefit the investigation of protein kinase-mediated cellular signal transduction.


Assuntos
Eletroforese Capilar/métodos , Glutationa Transferase/química , Fosfopeptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteína Quinase CDC2/metabolismo , Eletroforese Capilar/instrumentação , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Isomerismo , Laminas/química , Laminas/genética , Laminas/metabolismo , Dados de Sequência Molecular , Fosfopeptídeos/genética , Fosfopeptídeos/isolamento & purificação , Fosfopeptídeos/metabolismo , Fosforilação , Espectrometria de Massas em Tandem/métodos
17.
Biochem J ; 444(2): 303-14, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22397410

RESUMO

In the present study, we observed that the Golgi-SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) GS28 forms a complex with p53 in HEK (human embryonic kidney)-293 cells. Given that p53 represents a tumour suppressor that affects the sensitivity of cancer cells to various chemotherapeutic drugs, we examined whether GS28 may influence the level of sensitivity to the DNA-damaging drug cisplatin. Indeed, knockdown of GS28 using short-hairpin RNA (shGS28) induced resistance to cisplatin in HEK-293 cells. On the other hand, overexpression of GS28 sensitized HEK-293 cells to cisplatin, whereas no sensitization effect was noted for the mitotic spindle-damaging drugs vincristine and taxol. Accordingly, we observed that knockdown of GS28 reduced the accumulation of p53 and its pro-apoptotic target Bax. Conversely, GS28 overexpression induced the accumulation of p53 and Bax as well as the pro-apoptotic phosphorylation of p53 on Ser(46). Further experiments showed that these cellular responses could be abrogated by the p53 inhibitor PFT-α (pifithrin-α), indicating that GS28 may affect the stability and activity of p53. The modulatory effects of GS28 on cisplatin sensitivity and p53 stability were absent in lung cancer H1299 cells which are p53-null. As expected, ectopic expression of p53 in H1299 cells restored the modulatory effects of GS28 on sensitivity to cisplatin. In addition, GS28 was found to form a complex with the p53 E3 ligase MDM2 (murine double minute 2) in H1299 cells. Furthermore, the ubiquitination of p53 was reduced by overexpression of GS28 in cells, confirming that GS28 enhances the stability of the p53 protein. Taken together, these results suggest that GS28 may potentiate cells to DNA-damage-induced apoptosis by inhibiting the ubiquitination and degradation of p53.


Assuntos
Apoptose/fisiologia , Cisplatino/farmacologia , Complexos Multiproteicos/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação/fisiologia , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/genética , Sinergismo Farmacológico , Células HEK293 , Humanos , Dados de Sequência Molecular , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Qb-SNARE/genética , Ubiquitinação/efeitos dos fármacos
18.
Elife ; 122023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37067034

RESUMO

For decades, studies of snake venoms focused on the venom-ome-specific toxins (VSTs). VSTs are dominant soluble proteins believed to contribute to the main venomous effects and emerged into gene clusters for fast adaptation and diversification of snake venoms. However, the conserved minor venom components, such as snake venom phosphodiesterase (svPDE), remain largely unexplored. Here, we focus on svPDE by genomic and transcriptomic analysis across snake clades and demonstrate that soluble svPDE is co-opted from the ancestral membrane-attached ENPP3 (ectonucleotide pyrophosphatase/phosphodiesterase 3) gene by replacing the original 5' exon with the exon encoding a signal peptide. Notably, the exons, promoters, and transcription/translation starts have been replaced multiple times during snake evolution, suggesting the evolutionary necessity of svPDE. The structural and biochemical analyses also show that svPDE shares the similar functions with ENPP family, suggesting its perturbation to the purinergic signaling and insulin transduction in venomous effects.


Assuntos
Venenos de Serpentes , Toxinas Biológicas , Animais , Venenos de Serpentes/genética , Venenos de Serpentes/química , Venenos de Serpentes/metabolismo , Serpentes , Fosfodiesterase I
19.
J Proteome Res ; 11(3): 1715-9, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22296100

RESUMO

Recoding refers to the reprogramming of mRNA translation by nonstandard read-out rules. In this study, we used stable isotope labeling with amino acids in cell culture (SILAC) technology to investigate the proteome of host-adapted Salmonella serovars, which are characteristic of accumulation of pseudogenes. Interestingly, a few annotated pseudogenes were indeed able to express peptides downstream of the inactivation site, suggesting the occurrence of recoding. Two mechanisms of recoding, namely, programmed frameshifting and codon redefinition, were both found. We believe that the phenomena of recoding are not rare in bacteria. More studies are required for a better understanding of bacterial translation and the implication of pseudogene recoding in Salmonella serovars.


Assuntos
Proteínas de Bactérias/genética , Proteoma/genética , Pseudogenes , Salmonella/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Códon , Expressão Gênica , Genoma Bacteriano , Dados de Sequência Molecular , Fases de Leitura Aberta , Mapeamento de Peptídeos , Proteoma/metabolismo , Proteômica , Salmonella/metabolismo
20.
J Proteome Res ; 11(12): 5611-29, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23082778

RESUMO

Bladder cancer is a common urologic cancer whose incidence continues to rise annually. Urinary microparticles are an attractive material for noninvasive bladder cancer biomarker discovery. In this study, we applied isotopic dimethylation labeling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to discover bladder cancer biomarkers in urinary microparticles isolated from hernia (control) and bladder cancer patients. This approach identified 2964 proteins based on more than two distinct peptides, of which 2058 had not previously been reported as constituents of human urine exosomes/microparticles. A total of 107 differentially expressed proteins were identified as candidate biomarkers. Differences in the concentrations of 29 proteins (41 signature peptides) were precisely quantified by LC-MRM/MS in 48 urine samples of bladder cancer, hernia, and urinary tract infection/hematuria. Concentrations of 24 proteins changed significantly (p<0.05) between bladder cancer (n=28) and hernia (n=12), with area-under-the-curve values ranging from 0.702 to 0.896. Finally, we quantified tumor-associated calcium-signal transducer 2 (TACSTD2) in raw urine specimens (n=221) using a commercial ELISA and confirmed its potential value for diagnosis of bladder cancer. Our study reveals a strong association of TACSTD2 with bladder cancer and highlights the potential of human urinary microparticles in the noninvasive diagnosis of bladder cancer.


Assuntos
Biomarcadores Tumorais/urina , Exossomos/química , Proteoma/análise , Neoplasias da Bexiga Urinária/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Antígenos de Neoplasias/urina , Área Sob a Curva , Estudos de Casos e Controles , Moléculas de Adesão Celular/urina , Cromatografia Líquida/métodos , Ensaio de Imunoadsorção Enzimática , Feminino , Hematúria/diagnóstico , Hérnia/diagnóstico , Humanos , Marcação por Isótopo , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas de Neoplasias/urina , Proteômica/métodos , Reprodutibilidade dos Testes , Neoplasias da Bexiga Urinária/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA