Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 54(8): 1715-1727.e7, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34283971

RESUMO

Allergic airway inflammation is driven by type-2 CD4+ T cell inflammatory responses. We uncover an immunoregulatory role for the nucleotide release channel, Panx1, in T cell crosstalk during airway disease. Inverse correlations between Panx1 and asthmatics and our mouse models revealed the necessity, specificity, and sufficiency of Panx1 in T cells to restrict inflammation. Global Panx1-/- mice experienced exacerbated airway inflammation, and T-cell-specific deletion phenocopied Panx1-/- mice. A transgenic designed to re-express Panx1 in T cells reversed disease severity in global Panx1-/- mice. Panx1 activation occurred in pro-inflammatory T effector (Teff) and inhibitory T regulatory (Treg) cells and mediated the extracellular-nucleotide-based Treg-Teff crosstalk required for suppression of Teff cell proliferation. Mechanistic studies identified a Salt-inducible kinase-dependent phosphorylation of Panx1 serine 205 important for channel activation. A genetically targeted mouse expressing non-phosphorylatable Panx1S205A phenocopied the exacerbated inflammation in Panx1-/- mice. These data identify Panx1-dependent Treg:Teff cell communication in restricting airway disease.


Assuntos
Asma/imunologia , Comunicação Celular/imunologia , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Conexinas/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Sistema Respiratório/imunologia
2.
Mol Cell ; 65(6): 999-1013.e7, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28306514

RESUMO

PARK2 is a gene implicated in disease states with opposing responses in cell fate determination, yet its contribution in pro-survival signaling is largely unknown. Here we show that PARK2 is altered in over a third of all human cancers, and its depletion results in enhanced phosphatidylinositol 3-kinase/Akt (PI3K/Akt) activation and increased vulnerability to PI3K/Akt/mTOR inhibitors. PARK2 depletion contributes to AMPK-mediated activation of endothelial nitric oxide synthase (eNOS), enhanced levels of reactive oxygen species, and a concomitant increase in oxidized nitric oxide levels, thereby promoting the inhibition of PTEN by S-nitrosylation and ubiquitination. Notably, AMPK activation alone is sufficient to induce PTEN S-nitrosylation in the absence of PARK2 depletion. Park2 loss and Pten loss also display striking cooperativity to promote tumorigenesis in vivo. Together, our findings reveal an important missing mechanism that might account for PTEN suppression in PARK2-deficient tumors, and they highlight the importance of PTEN S-nitrosylation in supporting cell survival and proliferation under conditions of energy deprivation.


Assuntos
Metabolismo Energético , Neoplasias/enzimologia , Óxido Nítrico/metabolismo , Estresse Oxidativo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antineoplásicos/farmacologia , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Relação Dose-Resposta a Droga , Ativação Enzimática , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Oxirredução , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Interferência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
3.
Cell ; 138(3): 576-91, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19631370

RESUMO

Type I interferons (IFNs) are important for antiviral and autoimmune responses. Retinoic acid-induced gene I (RIG-I) and mitochondrial antiviral signaling (MAVS) proteins mediate IFN production in response to cytosolic double-stranded RNA or single-stranded RNA containing 5'-triphosphate (5'-ppp). Cytosolic B form double-stranded DNA, such as poly(dA-dT)*poly(dA-dT) [poly(dA-dT)], can also induce IFN-beta, but the underlying mechanism is unknown. Here, we show that the cytosolic poly(dA-dT) DNA is converted into 5'-ppp RNA to induce IFN-beta through the RIG-I pathway. Biochemical purification led to the identification of DNA-dependent RNA polymerase III (Pol-III) as the enzyme responsible for synthesizing 5'-ppp RNA from the poly(dA-dT) template. Inhibition of RNA Pol-III prevents IFN-beta induction by transfection of DNA or infection with DNA viruses. Furthermore, Pol-III inhibition abrogates IFN-beta induction by the intracellular bacterium Legionella pneumophila and promotes the bacterial growth. These results suggest that RNA Pol-III is a cytosolic DNA sensor involved in innate immune responses.


Assuntos
Citosol/imunologia , DNA/imunologia , Imunidade Inata , Interferon beta/imunologia , RNA Polimerase III/imunologia , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Animais , Autoimunidade , Linhagem Celular , Sistema Livre de Células , Vírus de DNA/imunologia , Humanos , Interleucina-1beta/imunologia , Legionella pneumophila/imunologia , Camundongos , Polifosfatos/metabolismo , RNA/química , RNA/imunologia , RNA/metabolismo , RNA Polimerase III/metabolismo , RNA de Cadeia Dupla/metabolismo , Uridina Trifosfato/metabolismo
4.
Biochem Soc Trans ; 51(4): 1687-1699, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37622532

RESUMO

Pannexin 1 (PANX1) is a widely expressed large-pore ion channel located in the plasma membrane of almost all vertebrate cells. It possesses a unique ability to act as a conduit for both inorganic ions (e.g. potassium or chloride) and bioactive metabolites (e.g. ATP or glutamate), thereby activating varying signaling pathways in an autocrine or paracrine manner. Given its crucial role in cell-cell interactions, the activity of PANX1 has been implicated in maintaining homeostasis of cardiovascular, immune, and nervous systems. Dysregulation of PANX1 has also been linked to numerous diseases, such as ischemic stroke, seizure, and inflammatory disorders. Therefore, the mechanisms underlying different modes of PANX1 activation and its context-specific channel properties have gathered significant attention. In this review, we summarize the roles of PANX1 in various physiological processes and diseases, and analyze the accumulated lines of evidence supporting diverse molecular mechanisms associated with different PANX1 activation modalities. We focus on examining recent discoveries regarding PANX1 regulations by reversible post-translational modifications, elevated intracellular calcium concentration, and protein-protein interactions, as well as by irreversible cleavage of its C-terminal tail. Additionally, we delve into the caveats in the proposed PANX1 gating mechanisms and channel open-closed configurations by critically analyzing the structural insights derived from cryo-EM studies and the unitary properties of PANX1 channels. By doing so, we aim to identify potential research directions for a better understanding of the functions and regulations of PANX1 channels.


Assuntos
Cálcio , Comunicação Celular , Conexinas , Proteínas do Tecido Nervoso , Membrana Celular , Cloretos , Ácido Glutâmico , Humanos , Conexinas/genética , Proteínas do Tecido Nervoso/genética
5.
J Clin Immunol ; 42(8): 1730-1741, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35947322

RESUMO

PURPOSE: Anti-granulocyte-macrophage colony-stimulating factor autoantibodies (anti-GM-CSF Abs) are a predisposing factor for pulmonary alveolar proteinosis (PAP) and Cryptococcus gattii cryptococcosis. This study aimed to investigate clinical manifestations in anti-GM-CSF Ab-positive patients with C. gattii cryptococcosis and analyze the properties of anti-GM-CSF Abs derived from these patients and patients with PAP. METHODS: Thirty-nine patients diagnosed with cryptococcosis (caused by C. neoformans or C. gattii) and 6 with PAP were enrolled in the present study. Clinical information was obtained from medical records. Blood samples were collected for analysis of autoantibody properties. We also explored the National Health Insurance Research Database (NHIRD) of Taiwan to investigate the epidemiology of cryptococcosis and PAP. RESULTS: High titers of neutralizing anti-GM-CSF Abs were identified in 15 patients with cryptococcosis (15/39, 38.5%). Most anti-GM-CSF Ab-positive cryptococcosis cases had central nervous system (CNS) involvement (14/15, 93.3%). Eleven out of 14 (78.6%) anti-GM-CSF Ab-positive CNS cryptococcosis patients were confirmed to be infected with C. gattii, and PAP did not occur synchronously or metachronously in a single patient from our cohort. Exploration of an association between HLA and anti-GM-CSF Ab positivity or differential properties of autoantibodies from cryptococcosis patients and PAP yielded no significant results. CONCLUSION: Anti-GM-CSF Abs can cause two diseases, C. gattii cryptococcosis and PAP, which seldom occur in the same subject. Current biological evidence regarding the properties of anti-GM-CSF Abs cannot provide clues regarding decisive mechanisms. Further analysis, including more extensive cohort studies and investigations into detailed properties, is mandatory to better understand the pathogenesis of anti-GM-CSF Abs.


Assuntos
Criptococose , Proteinose Alveolar Pulmonar , Humanos , Autoanticorpos , Criptococose/diagnóstico , Criptococose/epidemiologia , Proteinose Alveolar Pulmonar/diagnóstico , Proteinose Alveolar Pulmonar/etiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia
6.
Mol Cell ; 54(2): 289-96, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766893

RESUMO

The innate immune system deploys a variety of sensors to detect signs of infection. Nucleic acids represent a major class of pathogen signatures that can trigger robust immune responses. The presence of DNA in the cytoplasm of mammalian cells is a danger signal that activates innate immune responses; however, how cytosolic DNA triggers these responses remained unclear until recently. In this review, we focus on the mechanism of DNA sensing by the newly discovered cGAS-cGAMP-STING pathway and highlight recent progress in dissecting the in vivo functions of this pathway in immune defense as well as autoimmunity.


Assuntos
Citosol/metabolismo , DNA/metabolismo , Imunidade Inata/genética , Modelos Imunológicos , Nucleotídeos Cíclicos/fisiologia , Nucleotidiltransferases/fisiologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Modelos Moleculares , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais
7.
Mol Cell ; 54(1): 193-202, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24657164

RESUMO

Phosphoinositide 3-kinase (PI3K) activity is important for regulating cell growth, survival, and motility. We report here the identification of bromodomain-containing protein 7 (BRD7) as a p85α-interacting protein that negatively regulates PI3K signaling. BRD7 binds to the inter-SH2 (iSH2) domain of p85 through an evolutionarily conserved region located at the C terminus of BRD7. Via this interaction, BRD7 facilitates nuclear translocation of p85α. The BRD7-dependent depletion of p85 from the cytosol impairs formation of p85/p110 complexes in the cytosol, leading to a decrease in p110 proteins and in PI3K pathway signaling. In contrast, silencing of endogenous BRD7 expression by RNAi increases the steady-state level of p110 proteins and enhances Akt phosphorylation after stimulation. These data suggest that BRD7 and p110 compete for the interaction to p85. The unbound p110 protein is unstable, leading to the attenuation of PI3K activity, which suggests how BRD7 could function as a tumor suppressor.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células CHO , Células COS , Chlorocebus aethiops , Proteínas Cromossômicas não Histona/genética , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Cricetinae , Cricetulus , Ativação Enzimática , Células HEK293 , Células HeLa , Humanos , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Transdução de Sinais , Transfecção , Proteínas Supressoras de Tumor/genética , Domínios de Homologia de src
8.
Blood ; 133(13): 1507-1516, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692123

RESUMO

A large unmet medical need exists for safer antithrombotic drugs because all currently approved anticoagulant agents interfere with hemostasis, leading to an increased risk of bleeding. Genetic and pharmacologic evidence in humans and animals suggests that reducing factor XI (FXI) levels has the potential to effectively prevent and treat thrombosis with a minimal risk of bleeding. We generated a fully human antibody (MAA868) that binds the catalytic domain of both FXI (zymogen) and activated FXI. Our structural studies show that MAA868 traps FXI and activated FXI in an inactive, zymogen-like conformation, explaining its equally high binding affinity for both forms of the enzyme. This binding mode allows the enzyme to be neutralized before entering the coagulation process, revealing a particularly attractive anticoagulant profile of the antibody. MAA868 exhibited favorable anticoagulant activity in mice with a dose-dependent protection from carotid occlusion in a ferric chloride-induced thrombosis model. MAA868 also caused robust and sustained anticoagulant activity in cynomolgus monkeys as assessed by activated partial thromboplastin time without any evidence of bleeding. Based on these preclinical findings, we conducted a first-in-human study in healthy subjects and showed that single subcutaneous doses of MAA868 were safe and well tolerated. MAA868 resulted in dose- and time-dependent robust and sustained prolongation of activated partial thromboplastin time and FXI suppression for up to 4 weeks or longer, supporting further clinical investigation as a potential once-monthly subcutaneous anticoagulant therapy.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticoagulantes/uso terapêutico , Coagulação Sanguínea/efeitos dos fármacos , Fator XI/antagonistas & inibidores , Trombose/tratamento farmacológico , Adolescente , Adulto , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticoagulantes/farmacologia , Feminino , Humanos , Imunoglobulina G/farmacologia , Imunoglobulina G/uso terapêutico , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Trombose/sangue , Adulto Jovem
9.
Circ Res ; 122(4): 606-615, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29237722

RESUMO

RATIONALE: Resistant hypertension is a major health concern with unknown cause. Spironolactone is an effective antihypertensive drug, especially for patients with resistant hypertension, and is considered by the World Health Organization as an essential medication. Although spironolactone can act at the mineralocorticoid receptor (MR; NR3C2), there is increasing evidence of MR-independent effects of spironolactone. OBJECTIVE: Here, we detail the unexpected discovery that Panx1 (pannexin 1) channels could be a relevant in vivo target of spironolactone. METHODS AND RESULTS: First, we identified spironolactone as a potent inhibitor of Panx1 in an unbiased small molecule screen, which was confirmed by electrophysiological analysis. Next, spironolactone inhibited α-adrenergic vasoconstriction in arterioles from mice and hypertensive humans, an effect dependent on smooth muscle Panx1, but independent of the MR NR3C2. Last, spironolactone acutely lowered blood pressure, which was dependent on smooth muscle cell expression of Panx1 and independent of NR3C2. This effect, however, was restricted to steroidal MR antagonists as a nonsteroidal MR antagonist failed to reduced blood pressure. CONCLUSIONS: These data suggest new therapeutic modalities for resistant hypertension based on Panx1 inhibition.


Assuntos
Anti-Hipertensivos/farmacologia , Conexinas/antagonistas & inibidores , Diuréticos/farmacologia , Hipertensão/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Espironolactona/farmacologia , Animais , Anti-Hipertensivos/uso terapêutico , Arteríolas/efeitos dos fármacos , Conexinas/metabolismo , Diuréticos/uso terapêutico , Células HEK293 , Humanos , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Proteínas do Tecido Nervoso/metabolismo , Espironolactona/uso terapêutico
10.
Nature ; 507(7492): 329-34, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24646995

RESUMO

Plasma membrane pannexin 1 channels (PANX1) release nucleotide find-me signals from apoptotic cells to attract phagocytes. Here we show that the quinolone antibiotic trovafloxacin is a novel PANX1 inhibitor, by using a small-molecule screen. Although quinolones are widely used to treat bacterial infections, some quinolones have unexplained side effects, including deaths among children. PANX1 is a direct target of trovafloxacin at drug concentrations seen in human plasma, and its inhibition led to dysregulated fragmentation of apoptotic cells. Genetic loss of PANX1 phenocopied trovafloxacin effects, revealing a non-redundant role for pannexin channels in regulating cellular disassembly during apoptosis. Increase in drug-resistant bacteria worldwide and the dearth of new antibiotics is a major human health challenge. Comparing different quinolone antibiotics suggests that certain structural features may contribute to PANX1 blockade. These data identify a novel linkage between an antibiotic, pannexin channels and cellular integrity, and suggest that re-engineering certain quinolones might help develop newer antibacterials.


Assuntos
Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Conexinas/antagonistas & inibidores , Fluoroquinolonas/efeitos adversos , Fluoroquinolonas/farmacologia , Naftiridinas/efeitos adversos , Naftiridinas/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Animais , Antibacterianos/sangue , Conexinas/deficiência , Conexinas/genética , Conexinas/metabolismo , Descoberta de Drogas/métodos , Feminino , Fluoroquinolonas/sangue , Humanos , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naftiridinas/sangue , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Timócitos/citologia , Timócitos/efeitos dos fármacos , Timócitos/metabolismo
12.
Proc Natl Acad Sci U S A ; 108(34): 14157-62, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21825134

RESUMO

Class IA PI3Ks are activated by growth factor receptors and generate lipid second messengers that mediate downstream responses including cell growth, cell migration, and cell survival. The p85 regulatory subunit of PI3K contains Src homology-2 (SH2) domains that mediate binding to tyrosine-phosphorylated receptors or adaptor proteins to facilitate localization and activation of PI3K at the plasma membrane. We report here that persistent activation of PKC family members by phorbol ester stimulation in cells leads to phosphorylation of two serine residues at analogous sites on both SH2 domains of p85α (S361 and S652). The modified serine residues are located in the phospho-tyrosine binding pockets of the two SH2 domains, and in the crystal structures the phosphate moieties are predicted to occupy the same space as the phosphate moieties of bound phospho-tyrosine peptides. Consistent with this prediction, phosphorylation at these serine residues or mutation to aspartate inhibits binding of p85α to tyrosine-phosphorylated peptides. We provide evidence that protein kinase D, which is phosphorylated and activated by PKCs, mediates phosphorylation of S652 in the C-terminal SH2 domain. These results reveal cross talk between PKC signaling and PI3K signaling that impairs PI3K pathway activation under conditions of persistent PKC (and protein kinase D) activity.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/química , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Ativadores de Enzimas/metabolismo , Fosfosserina/metabolismo , Domínios de Homologia de src , Sequência de Aminoácidos , Animais , Sítios de Ligação , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteína Quinase C/metabolismo , Multimerização Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo
13.
Proc Natl Acad Sci U S A ; 108(42): 17390-5, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21960441

RESUMO

RIG-I-like receptors (RLRs) activate host innate immune responses against virus infection through recruiting the mitochondrial adaptor protein MAVS (also known as IPS1, VISA, or CARDIF). Here we show that MAVS also plays a pivotal role in maintaining intestinal homeostasis. We found that MAVS knockout mice developed more severe mortality and morbidity than WT animals in an experimental model of colitis. Bone marrow transplantation experiments revealed that MAVS in cells of nonhematopoietic origin plays a dominant role in the protection against colitis. Importantly, RNA species derived from intestinal commensal bacteria activate the RIG-I-MAVS pathway to induce the production of multiple cytokines and antimicrobial peptides, including IFN-ß and RegIIIγ. These results unveil a previously unexplored role of MAVS in monitoring intestinal commensal bacteria and maintaining tissue homeostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Colite/imunologia , Colite/prevenção & controle , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Transplante de Medula Óssea/imunologia , Colite/induzido quimicamente , Proteína DEAD-box 58 , RNA Helicases DEAD-box/imunologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Feminino , Imunidade Inata , Intestinos/imunologia , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , RNA Bacteriano/imunologia
14.
Cell Death Dis ; 15(2): 123, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336804

RESUMO

Discovery of new small molecules that can activate distinct programmed cell death pathway is of significant interest as a research tool and for the development of novel therapeutics for pathological conditions such as cancer and infectious diseases. The small molecule raptinal was discovered as a pro-apoptotic compound that can rapidly trigger apoptosis by promoting the release of cytochrome c from the mitochondria and subsequently activating the intrinsic apoptotic pathway. As raptinal is very effective at inducing apoptosis in a variety of different cell types in vitro and in vivo, it has been used in many studies investigating cell death as well as the clearance of dying cells. While examining raptinal as an apoptosis inducer, we unexpectedly identified that in addition to its pro-apoptotic activities, raptinal can also inhibit the activity of caspase-activated Pannexin 1 (PANX1), a ubiquitously expressed transmembrane channel that regulates many cell death-associated processes. By implementing numerous biochemical, cell biological and electrophysiological approaches, we discovered that raptinal can simultaneously induce apoptosis and inhibit PANX1 activity. Surprisingly, raptinal was found to inhibit cleavage-activated PANX1 via a mechanism distinct to other well-described PANX1 inhibitors such as carbenoxolone and trovafloxacin. Furthermore, raptinal also interfered with PANX1-regulated apoptotic processes including the release of the 'find-me' signal ATP, the formation of apoptotic cell-derived extracellular vesicles, as well as NLRP3 inflammasome activation. Taken together, these data identify raptinal as the first compound that can simultaneously induce apoptosis and inhibit PANX1 channels. This has broad implications for the use of raptinal in cell death studies as well as in the development new PANX1 inhibitors.


Assuntos
Apoptose , Conexinas , Fluorenos , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular , Conexinas/antagonistas & inibidores , Conexinas/metabolismo , Ciclopentanos/farmacologia
15.
J Biol Chem ; 287(14): 11303-11, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22311983

RESUMO

Pannexin 1 (PANX1) channels mediate release of ATP, a "find-me" signal that recruits macrophages to apoptotic cells; PANX1 activation during apoptosis requires caspase-mediated cleavage of PANX1 at its C terminus, but how the C terminus inhibits basal channel activity is not understood. Here, we provide evidence suggesting that the C terminus interacts with the human PANX1 (hPANX1) pore and that cleavage-mediated channel activation requires disruption of this inhibitory interaction. Basally silent hPANX1 channels localized on the cell membrane could be activated directly by protease-mediated C-terminal cleavage, without additional apoptotic effectors. By serial deletion, we identified a C-terminal region just distal to the caspase cleavage site that is required for inhibition of hPANX1; point mutations within this small region resulted in partial activation of full-length hPANX1. Consistent with the C-terminal tail functioning as a pore blocker, we found that truncated and constitutively active hPANX1 channels could be inhibited, in trans, by the isolated hPANX1 C terminus either in cells or when applied directly as a purified peptide in inside-out patch recordings. Furthermore, using a cysteine cross-linking approach, we showed that relief of inhibition following cleavage requires dissociation of the C terminus from the channel pore. Collectively, these data suggest a mechanism of hPANX1 channel regulation whereby the intact, pore-associated C terminus inhibits the full-length hPANX1 channel and a remarkably well placed caspase cleavage site allows effective removal of key inhibitory C-terminal determinants to activate hPANX1.


Assuntos
Trifosfato de Adenosina/metabolismo , Caspases/metabolismo , Conexinas/química , Conexinas/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Proteólise , Sequência de Aminoácidos , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Porosidade
16.
Antimicrob Agents Chemother ; 57(11): 5717-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23959320

RESUMO

To compare the in vitro antibacterial efficacies and resistance profiles of rifampin-based combinations against methicillin-resistant Staphylococcus aureus (MRSA) in a biofilm model, the antibacterial activities of vancomycin, teicoplanin, daptomycin, minocycline, linezolid, fusidic acid, fosfomycin, and tigecycline alone or in combination with rifampin against biofilm-embedded MRSA were measured. The rifampin-resistant mutation frequencies were evaluated. Of the rifampin-based combinations, rifampin enhances the antibacterial activities of and even synergizes with fusidic acid, tigecycline, and, to a lesser extent, linezolid, fosfomycin, and minocycline against biofilm-embedded MRSA. Such combinations with weaker rifampin resistance induction activities may provide a therapeutic advantage in MRSA biofilm-related infections.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Rifampina/farmacologia , Biofilmes/crescimento & desenvolvimento , Combinação de Medicamentos , Sinergismo Farmacológico , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Taxa de Mutação , Organofosfonatos/farmacologia , Oxazolidinonas/farmacologia , Peptídeos Cíclicos/farmacologia , Esteróis/farmacologia , Tetraciclinas/farmacologia
17.
Antimicrob Agents Chemother ; 56(6): 2916-22, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22470122

RESUMO

The emergence of multidrug-resistant Salmonella isolates has created the need for new therapeutic agents. We evaluated the intracellular activity of four carbapenem compounds against clinical nontyphoid Salmonella (NTS) isolates in vitro and ex vivo. Subsequently, the efficacy of carbapenem treatment against selected Salmonella isolates in vivo was assessed using a murine peritonitis model. The MIC(50) and MIC(90) for doripenem, ertapenem, imipenem, and meropenem against 126 NTS isolates were found to be 0.062 and 0.062, 0.015 and 0.015, 0.5 and 1, and 0.031 and 0.031 µg/ml, respectively. The intracellular killing effect of ertapenem was sustained for 24 h and was superior to that of imipenem, meropenem, and doripenem; its effect was comparable to that of ceftriaxone. Ertapenem demonstrated an excellent pharmacokinetic profile with a percent time above the MIC of 75.5% and an area under the concentration-time curve/MIC ratio of 20,733. When peritoneal exudate cells were examined directly ex vivo from mice with Salmonella-induced peritonitis, cells from mice treated with ertapenem and ceftriaxone had intracellular and extracellular bacterial counts reduced 10(2)- to 10(4)-fold and exhibited killing effects similar to each other. The survival rates of mice inoculated with 1 × 10(5) and 10(6) CFU of a ceftriaxone-susceptible Salmonella isolate that were subsequently treated with ertapenem or ceftriaxone were 100% and 90%, respectively. When mice were inoculated with 5 × 10(4) and 10(5) CFU of a ceftriaxone-resistant and ciprofloxacin-resistant Salmonella isolate, mice treated with ertapenem had a higher survival rate than mice treated with ceftriaxone (70% versus 0% and 50% versus 0%, respectively; P < 0.001). Our results suggest that ertapenem is at least as effective as ceftriaxone in treating murine Salmonella infections and show that further clinical investigations on the potential use of ertapenem in treatment of human Salmonella infections are warranted.


Assuntos
Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Salmonella/efeitos dos fármacos , Animais , Linhagem Celular , Doripenem , Ertapenem , Feminino , Imipenem/farmacologia , Imipenem/uso terapêutico , Meropeném , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Peritonite/tratamento farmacológico , Peritonite/microbiologia , Salmonella/patogenicidade , Tienamicinas/farmacologia , Tienamicinas/uso terapêutico , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico
18.
J Microbiol Immunol Infect ; 54(3): 447-456, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32102749

RESUMO

BACKGROUND: This study aims to investigate the antimicrobial ability and mechanism analysis of Lactobacillus species against carbapenemase-producing Enterobacteriaceae (CPE). METHODS: Five Lactobacillus spp. strains and 18 CPE clinical isolates were collected. Their anti-CPE effects were assessed by agar well diffusion and broth microdilution assay, as well as time-kill test. Finally, the specific anti-CPE mechanism, especially for the effect of organic acids was determined using broth microdilution method. RESULTS: All of five Lactobacilli isolates displayed the potent activity against most CPE isolates with mean zones of inhibition ranging 10.2-21.1 mm. The anti-CPE activity was not affected by heating, catalase, and proteinase treatment. Under the concentration of 50% LUC0180 cell-free supernatant (CFS), lactic acid, and mix acid could totally inhibit the growth of carbapenem-resistant Klebsiella pneumoniae (CPE0011), and acetic acid could inhibit 67.8%. In contrast, succinic acid and citric acid could not inhibit the growth of CPE0011. While we decreased the concentration to 25%, only lactic acid and mix acid displayed 100% inhibition. In contrast, succinic acid, citric acid and acetic acid did not show any inhibitory effect. CONCLUSIONS: Lactobacillus strains exhibit potent anti-CPE activity, and lactic acid produced by Lactobacillus strains is the major antimicrobial mechanism.


Assuntos
Antibiose , Enterobacteriáceas Resistentes a Carbapenêmicos/fisiologia , Lactobacillus/fisiologia , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Ácido Cítrico/farmacologia , Infecções por Enterobacteriaceae/microbiologia , Humanos , Técnicas In Vitro , Klebsiella pneumoniae/efeitos dos fármacos , Ácido Láctico/farmacologia , Lactobacillus/química , Testes de Sensibilidade Microbiana , Ácido Succínico/farmacologia
19.
Elife ; 102021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33410749

RESUMO

Pannexin 1 (Panx1) is a membrane channel implicated in numerous physiological and pathophysiological processes via its ability to support release of ATP and other cellular metabolites for local intercellular signaling. However, to date, there has been no direct demonstration of large molecule permeation via the Panx1 channel itself, and thus the permselectivity of Panx1 for different molecules remains unknown. To address this, we expressed, purified, and reconstituted Panx1 into proteoliposomes and demonstrated that channel activation by caspase cleavage yields a dye-permeable pore that favors flux of anionic, large-molecule permeants (up to ~1 kDa). Large cationic molecules can also permeate the channel, albeit at a much lower rate. We further show that Panx1 channels provide a molecular pathway for flux of ATP and other anionic (glutamate) and cationic signaling metabolites (spermidine). These results verify large molecule permeation directly through caspase-activated Panx1 channels that can support their many physiological roles.


Assuntos
Trifosfato de Adenosina/metabolismo , Conexinas/genética , Canais Iônicos/genética , Proteínas do Tecido Nervoso/genética , Transdução de Sinais , Proteínas de Xenopus/genética , Animais , Caspases/metabolismo , Conexinas/metabolismo , Humanos , Canais Iônicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Spodoptera/genética , Spodoptera/metabolismo , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
20.
Nat Commun ; 12(1): 4482, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301959

RESUMO

Activation of Pannexin 1 (PANX1) ion channels causes release of intercellular signaling molecules in a variety of (patho)physiological contexts. PANX1 can be activated by G protein-coupled receptors (GPCRs), including α1-adrenergic receptors (α1-ARs), but how receptor engagement leads to channel opening remains unclear. Here, we show that GPCR-mediated PANX1 activation can occur via channel deacetylation. We find that α1-AR-mediated activation of PANX1 channels requires Gαq but is independent of phospholipase C or intracellular calcium. Instead, α1-AR-mediated PANX1 activation involves RhoA, mammalian diaphanous (mDia)-related formin, and a cytosolic lysine deacetylase activated by mDia - histone deacetylase 6. HDAC6 associates with PANX1 and activates PANX1 channels, even in excised membrane patches, suggesting direct deacetylation of PANX1. Substitution of basally-acetylated intracellular lysine residues identified on PANX1 by mass spectrometry either prevents HDAC6-mediated activation (K140/409Q) or renders the channels constitutively active (K140R). These data define a non-canonical RhoA-mDia-HDAC6 signaling pathway for GαqPCR activation of PANX1 channels and uncover lysine acetylation-deacetylation as an ion channel silencing-activation mechanism.


Assuntos
Conexinas/metabolismo , Desacetilase 6 de Histona/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Acetilação , Animais , Células Cultivadas , Conexinas/genética , Conexinas/fisiologia , Células HEK293 , Desacetilase 6 de Histona/genética , Humanos , Células Jurkat , Lisina/genética , Lisina/metabolismo , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Técnicas de Patch-Clamp , Receptores Adrenérgicos alfa 1/genética , Transdução de Sinais/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA