RESUMO
Plasmodium vivax parasites preferentially invade reticulocytes in human beings. P. vivax merozoite surface protein 1 (PvMSP1) and PvMSP1 paralog (PvMSP1P) may have important functions in reticulocyte adherence during invasion. These proteins share similar structures, including the presence of two epidermal growth factor (EGF)-like and glycosylphosphatidylinositol (GPI)-anchored domains at the C terminus. However, there have been no reports concerning the functional activity of PvMSP1P in reticulocyte adherence during P. vivax invasion. In this study, the ability of PvMSP1P-19 to bind to reticulocytes and normocytes was analyzed. The reticulocyte binding activity of PvMSP1P-19 was 4.0-fold higher than its normocyte binding activity. The binding of PvMSP1P-19 to reticulocytes and normocytes was inhibited in a dose-dependent manner by antibodies from immunized rabbits and by antibodies from vivax parasite-infected patients. Consistently, antibodies against PvMSP1P inhibited parasite invasion during short-term in vitro cultivation. Similar to the case for PvDBPII binding activity, PvMSP1P-19 binding activity was reduced in chymotrypsin-treated reticulocytes. However, no significant difference between the binding of PvMSP1P-19 to Duffy-positive and Duffy-negative erythrocytes was found. The minimal binding motif of PvMSP1P-19 was characterized using synthetic peptides. The results showed that the residues at amino acid positions 1791 to 1808 may have an important function in mediating merozoite adherence to reticulocytes. The positively charged residues within the EGF-like domain were shown to constitute a key binding motif. This work presents strong evidence supporting the role of PvMSP1P in host target cell selection and invasion of Duffy-independent pathway in P. vivax Moreover, PvMSP1P-19-specific antibodies may confer protection against P. vivax reinvasion.
Assuntos
Proteína 1 de Superfície de Merozoito/metabolismo , Plasmodium vivax/fisiologia , Reticulócitos/parasitologia , Animais , Anticorpos Antiprotozoários/imunologia , Adesão Celular , Quimotripsina , Eritrócitos/parasitologia , Humanos , Malária Vivax/imunologia , Proteína 1 de Superfície de Merozoito/genética , Merozoítos/metabolismo , Mutação Puntual , Ligação Proteica , CoelhosRESUMO
Plasmodium vivax merozoites only invade reticulocytes, a minor though heterogeneous population of red blood cell precursors that can be graded by levels of transferrin receptor (CD71) expression. The development of a protocol that allows sorting reticulocytes into defined developmental stages and a robust ex vivo P vivax invasion assay has made it possible for the first time to investigate the fine-scale invasion preference of P vivax merozoites. Surprisingly, it was the immature reticulocytes (CD71(+)) that are generally restricted to the bone marrow that were preferentially invaded, whereas older reticulocytes (CD71(-)), principally found in the peripheral blood, were rarely invaded. Invasion assays based on the CD71(+) reticulocyte fraction revealed substantial postinvasion modification. Thus, 3 to 6 hours after invasion, the initially biomechanically rigid CD71(+) reticulocytes convert into a highly deformable CD71(-) infected red blood cell devoid of host reticular matter, a process that normally spans 24 hours for uninfected reticulocytes. Concurrent with these changes, clathrin pits disappear by 3 hours postinvasion, replaced by distinctive caveolae nanostructures. These 2 hitherto unsuspected features of P vivax invasion, a narrow preference for immature reticulocytes and a rapid remodeling of the host cell, provide important insights pertinent to the pathobiology of the P vivax infection.
Assuntos
Antígenos CD/metabolismo , Plasmodium vivax/crescimento & desenvolvimento , Receptores da Transferrina/metabolismo , Reticulócitos/fisiologia , Reticulócitos/parasitologia , Tropismo/fisiologia , Fenômenos Biomecânicos , Células Cultivadas , Deformação Eritrocítica , Humanos , Malária Vivax/sangue , Malária Vivax/parasitologia , Reticulócitos/metabolismoRESUMO
Rosetting phenomenon has been linked to malaria pathogenesis. Although rosetting occurs in all causes of human malaria, most data on this subject has been derived from Plasmodium falciparum. Here, we investigate the function and factors affecting rosette formation in Plasmodium vivax. To achieve this, we used a range of novel ex vivo protocols to study fresh and cryopreserved P vivax (n = 135) and P falciparum (n = 77) isolates from Thailand. Rosetting is more common in vivax than falciparum malaria, both in terms of incidence in patient samples and percentage of infected erythrocytes forming rosettes. Rosetting to P vivax asexual and sexual stages was evident 20 hours postreticulocyte invasion, reaching a plateau after 30 hours. Host ABO blood group, reticulocyte count, and parasitemia were not correlated with P vivax rosetting. Importantly, mature erythrocytes (normocytes), rather than reticulocytes, preferentially form rosetting complexes, indicating that this process is unlikely to directly facilitate merozoite invasion. Although antibodies against host erythrocyte receptors CD235a and CD35 had no effect, Ag-binding fragment against the BRIC 4 region of CD236R significantly inhibited rosette formation. Rosetting assays using CD236R knockdown normocytes derived from hematopoietic stem cells further supports the role of glycophorin C as a receptor in P vivax rosette formation.
Assuntos
Eritrócitos/metabolismo , Eritrócitos/parasitologia , Glicoforinas/metabolismo , Malária Vivax/metabolismo , Plasmodium vivax/imunologia , Formação de Roseta/métodos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Criopreservação/métodos , Eritrócitos/patologia , Técnicas de Silenciamento de Genes , Glicoforinas/genética , Glicoforinas/imunologia , Humanos , Malária Vivax/diagnóstico , Malária Vivax/parasitologia , Plasmodium vivax/isolamento & purificação , Receptores de Complemento 3b/antagonistas & inibidores , Fluxo de TrabalhoRESUMO
The malaria parasite develops sexually in the mosquito midgut upon entry with the ingested blood meal before it can invade the midgut epithelium and embark on sporogony. Recent data have identified a number of distinct transcriptional programmes operating during this critical phase of the parasite life cycle. We aimed at characterizing the parental contribution to these transcriptional programmes and establish the genetic framework that would guide further studies of Plasmodium zygotic development and ookinete-to-oocyst transition. To achieve this we used in vitro and in vivo cross-fertilization experiments of various parasite lines expressing fluorescent reporters under the control of constitutive and stage-specific promoters. The results revealed that the zygote/ookinete stage exhibits a maternal phenotype with respect to constitutively expressed reporters, which is derived from either maternal mRNA inheritance or transcription of the maternal allele. The respective paternal alleles are silenced in the zygote/ookinete but reactivated after midgut invasion and transformation to oocyst. Transcripts specifically produced in the zygote/ookinete are synthesized de novo by both parental alleles. These findings highlight a putative role of epigenetic regulation of Plasmodium zygotic development and add substantially to the emerging picture of the molecular mechanisms regulating this important stage of malaria transmission.
Assuntos
DNA de Protozoário/genética , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Genes de Protozoários , Oocistos , Plasmodium berghei/genética , Ativação Transcricional , Fusão Gênica Artificial , Perfilação da Expressão Gênica , Genes Reporter , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Regiões Promotoras Genéticas , Transcrição GênicaRESUMO
The passage through the mosquito is a major bottleneck for malaria parasite populations and a target of interventions aiming to block disease transmission. Here, we used DNA microarrays to profile the developmental transcriptomes of the rodent malaria parasite Plasmodium berghei in vivo, in the midgut of Anopheles gambiae mosquitoes, from parasite stages in the midgut blood bolus to sporulating oocysts on the basal gut wall. Data analysis identified several distinct transcriptional programmes encompassing genes putatively involved in developmental processes or in interactions with the mosquito. At least two of these programmes are associated with the ookinete development that is linked to mosquito midgut invasion and establishment of infection. Targeted disruption by homologous recombination of two of these genes resulted in mutant parasites exhibiting notable infection phenotypes. GAMER encodes a short polypeptide with granular localization in the gametocyte cytoplasm and shows a highly penetrant loss-of-function phenotype manifested as greatly reduced ookinete numbers, linked to impaired male gamete release. HADO encodes a putative magnesium phosphatase with distinctive cortical localization along the concave ookinete periphery. Disruption of HADO compromises ookinete development leading to significant reduction of oocyst numbers. Our data provide important insights into the molecular framework underpinning Plasmodium development in the mosquito and identifies two genes with important functions at initial stages of parasite development in the mosquito midgut.
Assuntos
Anopheles/parasitologia , Perfilação da Expressão Gênica , Plasmodium berghei/crescimento & desenvolvimento , Animais , Trato Gastrointestinal/parasitologia , Malária/transmissão , Análise de Sequência com Séries de Oligonucleotídeos , Plasmodium berghei/genética , Plasmodium berghei/isolamento & purificaçãoRESUMO
BACKGROUND: A blood-stage Plasmodium falciparum malaria vaccine would provide a second line of defence to complement partially effective or waning immunity conferred by the approved pre-erythrocytic vaccines. RH5.1 is a soluble protein vaccine candidate for blood-stage P falciparum, formulated with Matrix-M adjuvant to assess safety and immunogenicity in a malaria-endemic adult and paediatric population for the first time. METHODS: We did a non-randomised, phase 1b, single-centre, dose-escalation, age de-escalation, first-in-human trial of RH5.1/Matrix-M in Bagamoyo, Tanzania. We recruited healthy adults (aged 18-45 years) and children (aged 5-17 months) to receive the RH5.1/Matrix-M vaccine candidate in the following three-dose regimens: 10 µg RH5.1 at 0, 1, and 2 months (Adults 10M), and the higher dose of 50 µg RH5.1 at 0 and 1 month and 10 µg RH5.1 at 6 months (delayed-fractional third dose regimen; Adults DFx). Children received either 10 µg RH5.1 at 0, 1, and 2 months (Children 10M) or 10 µg RH5.1 at 0, 1, and 6 months (delayed third dose regimen; Children 10D), and were recruited in parallel, followed by children who received the dose-escalation regimen (Children DFx) and children with higher malaria pre-exposure who also received the dose-escalation regimen (High Children DFx). All RH5.1 doses were formulated with 50 µg Matrix-M adjuvant. Primary outcomes for vaccine safety were solicited and unsolicited adverse events after each vaccination, along with any serious adverse events during the study period. The secondary outcome measures for immunogenicity were the concentration and avidity of anti-RH5.1 serum IgG antibodies and their percentage growth inhibition activity (GIA) in vitro, as well as cellular immunogenicity to RH5.1. All participants receiving at least one dose of vaccine were included in the primary analyses. This trial is registered at ClinicalTrials.gov, NCT04318002, and is now complete. FINDINGS: Between Jan 25, 2021, and April 15, 2021, we recruited 12 adults (six [50%] in the Adults 10M group and six [50%] in the Adults DFx group) and 48 children (12 each in the Children 10M, Children 10D, Children DFx, and High Children DFx groups). 57 (95%) of 60 participants completed the vaccination series and 55 (92%) completed 22 months of follow-up following the third vaccination. Vaccinations were well-tolerated across both age groups. There were five serious adverse events involving four child participants during the trial, none of which were deemed related to vaccination. RH5-specific T cell and serum IgG antibody responses were induced by vaccination and purified total IgG showed in vitro GIA against P falciparum. We found similar functional quality (ie, GIA per µg RH5-specific IgG) across all age groups and dosing regimens at 14 days after the final vaccination; the concentration of RH5.1-specific polyclonal IgG required to give 50% GIA was 14·3 µg/mL (95% CI 13·4-15·2). 11 children were vaccinated with the delayed third dose regimen and showed the highest median anti-RH5 serum IgG concentration 14 days following the third vaccination (723 µg/mL [IQR 511-1000]), resulting in all 11 who received the full series showing greater than 60% GIA following dilution of total IgG to 2·5 mg/mL (median 88% [IQR 81-94]). INTERPRETATION: The RH5.1/Matrix-M vaccine candidate shows an acceptable safety and reactogenicity profile in both adults and 5-17-month-old children residing in a malaria-endemic area, with all children in the delayed third dose regimen reaching a level of GIA previously associated with protective outcome against blood-stage P falciparum challenge in non-human primates. These data support onward efficacy assessment of this vaccine candidate against clinical malaria in young African children. FUNDING: The European and Developing Countries Clinical Trials Partnership; the UK Medical Research Council; the UK Department for International Development; the National Institute for Health and Care Research Oxford Biomedical Research Centre; the Division of Intramural Research, National Institute of Allergy and Infectious Diseases; the US Agency for International Development; and the Wellcome Trust.
Assuntos
Anticorpos Antiprotozoários , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Humanos , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Tanzânia , Adulto , Masculino , Malária Falciparum/prevenção & controle , Malária Falciparum/imunologia , Feminino , Adolescente , Plasmodium falciparum/imunologia , Adulto Jovem , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Lactente , Pessoa de Meia-Idade , Proteínas de Protozoários/imunologia , Antígenos de Protozoários/imunologia , Voluntários Saudáveis , Proteínas de Transporte , Saponinas , NanopartículasRESUMO
BACKGROUND: RH5 is a leading blood-stage candidate antigen for a Plasmodium falciparum vaccine; however, its safety and immunogenicity in malaria-endemic populations are unknown. METHODS: A phase 1b, single-center, dose-escalation, age-de-escalation, double-blind, randomized, controlled trial was conducted in Bagamoyo, Tanzania (NCT03435874). Between 12th April and 25th October 2018, 63 healthy adults (18-35 years), young children (1-6 years), and infants (6-11 months) received a priming dose of viral-vectored ChAd63 RH5 or rabies control vaccine. Sixty participants were boosted with modified vaccinia virus Ankara (MVA) RH5 or rabies control vaccine 8 weeks later and completed 6 months of follow-up post priming. Primary outcomes were the number of solicited and unsolicited adverse events post vaccination and the number of serious adverse events over the study period. Secondary outcomes included measures of the anti-RH5 immune response. FINDINGS: Vaccinations were well tolerated, with profiles comparable across groups. No serious adverse events were reported. Vaccination induced RH5-specific cellular and humoral responses. Higher anti-RH5 serum immunoglobulin G (IgG) responses were observed post boost in young children and infants compared to adults. Vaccine-induced antibodies showed growth inhibition activity (GIA) in vitro against P. falciparum blood-stage parasites; their highest levels were observed in infants. CONCLUSIONS: The ChAd63-MVA RH5 vaccine shows acceptable safety and reactogenicity and encouraging immunogenicity in children and infants residing in a malaria-endemic area. The levels of functional GIA observed in RH5-vaccinated infants are the highest reported to date following human vaccination. These data support onward clinical development of RH5-based blood-stage vaccines to protect against clinical malaria in young African infants. FUNDING: Medical Research Council, London, UK.
Assuntos
Vacinas Antimaláricas , Malária Falciparum , Adulto , Criança , Pré-Escolar , Humanos , Lactente , Adenovirus dos Símios , Anticorpos Antivirais , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Raiva , Tanzânia , Adolescente , Adulto Jovem , Método Duplo-CegoRESUMO
There are no licensed vaccines against Plasmodium vivax. We conducted two phase 1/2a clinical trials to assess two vaccines targeting P. vivax Duffy-binding protein region II (PvDBPII). Recombinant viral vaccines using chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) vectors as well as a protein and adjuvant formulation (PvDBPII/Matrix-M) were tested in both a standard and a delayed dosing regimen. Volunteers underwent controlled human malaria infection (CHMI) after their last vaccination, alongside unvaccinated controls. Efficacy was assessed by comparisons of parasite multiplication rates in the blood. PvDBPII/Matrix-M, given in a delayed dosing regimen, elicited the highest antibody responses and reduced the mean parasite multiplication rate after CHMI by 51% (n = 6) compared with unvaccinated controls (n = 13), whereas no other vaccine or regimen affected parasite growth. Both viral-vectored and protein vaccines were well tolerated and elicited expected, short-lived adverse events. Together, these results support further clinical evaluation of the PvDBPII/Matrix-M P. vivax vaccine.
Assuntos
Malária , Parasitos , Humanos , Animais , Plasmodium vivax , VacinaçãoRESUMO
In endemic settings it is known that natural malaria immunity is gradually acquired following repeated exposures. Here we sought to assess whether similar acquisition of blood-stage malaria immunity would occur following repeated parasite exposure by controlled human malaria infection (CHMI). We report the findings of repeat homologous blood-stage Plasmodium falciparum (3D7 clone) CHMI studies VAC063C (ClinicalTrials.gov NCT03906474) and VAC063 (ClinicalTrials.gov NCT02927145). In total, 24 healthy, unvaccinated, malaria-naïve UK adult participants underwent primary CHMI followed by drug treatment. Ten of these then underwent secondary CHMI in the same manner, and then six of these underwent a final tertiary CHMI. As with primary CHMI, malaria symptoms were common following secondary and tertiary infection, however, most resolved within a few days of treatment and there were no long term sequelae or serious adverse events related to CHMI. Despite detectable induction and boosting of anti-merozoite serum IgG antibody responses following each round of CHMI, there was no clear evidence of anti-parasite immunity (manifest as reduced parasite growth in vivo) conferred by repeated challenge with the homologous parasite in the majority of volunteers. However, three volunteers showed some variation in parasite growth dynamics in vivo following repeat CHMI that were either modest or short-lived. We also observed no major differences in clinical symptoms or laboratory markers of infection across the primary, secondary and tertiary challenges. However, there was a trend to more severe pyrexia after primary CHMI and the absence of a detectable transaminitis post-treatment following secondary and tertiary infection. We hypothesize that this could represent the initial induction of clinical immunity. Repeat homologous blood-stage CHMI is thus safe and provides a model with the potential to further the understanding of naturally acquired immunity to blood-stage infection in a highly controlled setting. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03906474, NCT02927145.
Assuntos
Malária Falciparum , Malária , Parasitos , Adulto , Animais , Humanos , Plasmodium falciparum , Reino UnidoRESUMO
Background: There are no licensed vaccines against Plasmodium vivax , the most common cause of malaria outside of Africa. Methods: We conducted two Phase I/IIa clinical trials to assess the safety, immunogenicity and efficacy of two vaccines targeting region II of P. vivax Duffy-binding protein (PvDBPII). Recombinant viral vaccines (using ChAd63 and MVA vectors) were administered at 0, 2 months or in a delayed dosing regimen (0, 17, 19 months), whilst a protein/adjuvant formulation (PvDBPII/Matrix-M™) was administered monthly (0, 1, 2 months) or in a delayed dosing regimen (0, 1, 14 months). Delayed regimens were due to trial halts during the COVID-19 pandemic. Volunteers underwent heterologous controlled human malaria infection (CHMI) with blood-stage P. vivax parasites at 2-4 weeks following their last vaccination, alongside unvaccinated controls. Efficacy was assessed by comparison of parasite multiplication rate (PMR) in blood post-CHMI, modelled from parasitemia measured by quantitative polymerase-chain-reaction (qPCR). Results: Thirty-two volunteers were enrolled and vaccinated (n=16 for each vaccine). No safety concerns were identified. PvDBPII/Matrix-M™, given in the delayed dosing regimen, elicited the highest antibody responses and reduced the mean PMR following CHMI by 51% (range 36-66%; n=6) compared to unvaccinated controls (n=13). No other vaccine or regimen impacted parasite growth. In vivo growth inhibition of blood-stage P. vivax correlated with functional antibody readouts of vaccine immunogenicity. Conclusions: Vaccination of malaria-naïve adults with a delayed booster regimen of PvDBPII/ Matrix-M™ significantly reduces the growth of blood-stage P. vivax . Funded by the European Commission and Wellcome Trust; VAC069, VAC071 and VAC079 ClinicalTrials.gov numbers NCT03797989 , NCT04009096 and NCT04201431 .
RESUMO
Controlled human malaria infection (CHMI) provides a highly informative means to investigate host-pathogen interactions and enable in vivo proof-of-concept efficacy testing of new drugs and vaccines. However, unlike Plasmodium falciparum, well-characterized P. vivax parasites that are safe and suitable for use in modern CHMI models are limited. Here, 2 healthy malaria-naive United Kingdom adults with universal donor blood group were safely infected with a clone of P. vivax from Thailand by mosquito-bite CHMI. Parasitemia developed in both volunteers, and prior to treatment, each volunteer donated blood to produce a cryopreserved stabilate of infected RBCs. Following stringent safety screening, the parasite stabilate from one of these donors (PvW1) was thawed and used to inoculate 6 healthy malaria-naive United Kingdom adults by blood-stage CHMI, at 3 different dilutions. Parasitemia developed in all volunteers, who were then successfully drug treated. PvW1 parasite DNA was isolated and sequenced to produce a high-quality genome assembly by using a hybrid assembly method. We analyzed leading vaccine candidate antigens and multigene families, including the vivax interspersed repeat (VIR) genes, of which we identified 1145 in the PvW1 genome. Our genomic analysis will guide future assessment of candidate vaccines and drugs, as well as experimental medicine studies.
Assuntos
Genoma/genética , Malária Falciparum/genética , Animais , Voluntários Saudáveis , Humanos , Masculino , Plasmodium vivaxRESUMO
Plasmodium vivax is the most widespread and difficult to treat cause of human malaria. The development of vaccines against the blood stages of P. vivax remains a key objective for the control and elimination of vivax malaria. Erythrocyte binding-like (EBL) protein family members such as Duffy binding protein (PvDBP) are of critical importance to erythrocyte invasion and have been the major target for vivax malaria vaccine development. In this study, we focus on another member of EBL protein family, P. vivax erythrocyte binding protein (PvEBP). PvEBP was first identified in Cambodian (C127) field isolates and has subsequently been showed its preferences for binding reticulocytes which is directly inhibited by antibodies. We analysed PvEBP sequence from 316 vivax clinical isolates from eight countries including China (n = 4), Ethiopia (n = 24), Malaysia (n = 53), Myanmar (n = 10), Papua New Guinea (n = 16), Republic of Korea (n = 10), Thailand (n = 174), and Vietnam (n = 25). PvEBP gene exhibited four different phenotypic clusters based on the insertion/deletion (indels) variation. PvEBP-RII (179-479 aa.) showed highest polymorphism similar to other EBL family proteins in various Plasmodium species. Whereas even though PvEBP-RIII-V (480-690 aa.) was the most conserved domain, that showed strong neutral selection pressure for gene purifying with significant population expansion. Antigenicity of both of PvEBP-RII (16.1%) and PvEBP-RIII-V (21.5%) domains were comparatively lower than other P. vivax antigen which expected antigens associated with merozoite invasion. Total IgG recognition level of PvEBP-RII was stronger than PvEBP-RIII-V domain, whereas total IgG inducing level was stronger in PvEBP-RIII-V domain. These results suggest that PvEBP-RII is mainly recognized by natural IgG for innate protection, whereas PvEBP-RIII-V stimulates IgG production activity by B-cell for acquired immunity. Overall, the low antigenicity of both regions in patients with vivax malaria likely reflects genetic polymorphism for strong positive selection in PvEBP-RII and purifying selection in PvEBP-RIII-V domain. These observations pose challenging questions to the selection of EBP and point out the importance of immune pressure and polymorphism required for inclusion of PvEBP as a vaccine candidate.
Assuntos
Variação Genética , Malária Vivax/imunologia , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Sequência de Aminoácidos , Anticorpos Antiprotozoários/imunologia , Ásia , Humanos , Imunidade Humoral , Malária Vivax/parasitologia , Plasmodium vivax/química , Plasmodium vivax/imunologia , Polimorfismo Genético , Proteínas de Protozoários/química , Seleção Genética , Alinhamento de SequênciaRESUMO
The Plasmodium vivax merozoite surface protein 1 paralog (PvMSP1P), which has epidermal growth factor (EGF)-like domains, was identified as a novel erythrocyte adhesive molecule. This EGF-like domain (PvMSP1P-19) elicited high level of acquired immune response in patients. Antibodies against PvMSP1P significantly reduced erythrocyte adhesion activity to its unknown receptor. To determine PvMSP1P-19-specific antibody function and B-cell epitopes in vivax patients, five monoclonal antibodies (mAbs) and 18-mer peptides were generated. The mAb functions were determined by erythrocyte-binding inhibition assay and invasion inhibition assay with P. knowlesi. B-cell epitopes of PvMSP1P-19 domains were evaluated by peptide microarray. The pvmsp1p-19 sequences showed limited polymorphism in P. vivax worldwide isolates. The 1BH9-A10 showed erythrocyte binding inhibitory by interaction with the N-terminus of PvMSP1P-19, while this mAb failed to recognize PkMSP1P-19 suggesting the species-specific for P. vivax. Other mAbs showed cross-reactivity with PkMSP1P-19. Among them, the 2AF4-A2 and 2AF4-A6 mAb significantly reduced parasite invasion through C-terminal recognition. The linear B-cell epitope in naturally exposed P. vivax patient was identified at three linear epitopes. In this study, PvMSP1P-19 N-terminal-specific 1BH9-A10 and C-terminal-specific 2AF4 mAbs showed functional activity for epitope recognition suggesting that PvMSP1P may be useful for vaccine development strategy for specific single epitope to prevent P. vivax invasion.
Assuntos
Anticorpos Monoclonais , Antígenos de Protozoários/imunologia , Fator de Crescimento Epidérmico/imunologia , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Epitopos de Linfócito B/imunologia , Humanos , Vacinas Antimaláricas , Pessoa de Meia-Idade , Adulto JovemRESUMO
The malaria genome encodes over 5,000 proteins and many of these have also been proposed to be potential vaccine candidates, although few of these have been tested clinically. RH5 is one of the leading blood-stage Plasmodium falciparum malaria vaccine antigens and Phase I/II clinical trials of vaccines containing this antigen are currently underway. Its likely mechanism of action is to elicit antibodies that can neutralize merozoites by blocking their invasion of red blood cells (RBC). However, many other antigens could also elicit neutralizing antibodies against the merozoite, and most of these have never been compared directly to RH5. The objective of this study was to compare a range of blood-stage antigens to RH5, to identify any antigens that outperform or synergize with anti-RH5 antibodies. We selected 55 gene products, covering 15 candidate antigens that have been described in the literature and 40 genes selected on the basis of bioinformatics functional prediction. We were able to make 20 protein-in-adjuvant vaccines from the original selection. Of these, S-antigen and CyRPA robustly elicited antibodies with neutralizing properties. Anti-CyRPA IgG generally showed additive GIA with anti-RH5 IgG, although high levels of anti-CyRPA-specific rabbit polyclonal IgG were required to achieve 50% GIA. Our data suggest that further vaccine antigen screening efforts are required to identify a second merozoite target with similar antibody-susceptibility to RH5.
Assuntos
Eritrócitos/imunologia , Eritrócitos/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Merozoítos/imunologia , Plasmodium falciparum/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Especificidade de Anticorpos/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Feminino , Humanos , Imunoglobulina G/imunologia , Malária Falciparum/prevenção & controle , Camundongos , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Polimorfismo Genético , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologiaRESUMO
The most widespread form of malaria is caused by Plasmodium vivax. To replicate, this parasite must invade immature red blood cells through a process requiring interaction of the P. vivax Duffy binding protein (PvDBP) with its human receptor, the Duffy antigen receptor for chemokines. Naturally acquired antibodies that inhibit this interaction associate with clinical immunity, suggesting PvDBP as a leading candidate for inclusion in a vaccine to prevent malaria due to P. vivax. Here, we isolated a panel of monoclonal antibodies from human volunteers immunized in a clinical vaccine trial of PvDBP. We screened their ability to prevent PvDBP from binding to the Duffy antigen receptor for chemokines, and their capacity to block red blood cell invasion by a transgenic Plasmodium knowlesi parasite genetically modified to express PvDBP and to prevent reticulocyte invasion by multiple clinical isolates of P. vivax. This identified a broadly neutralizing human monoclonal antibody that inhibited invasion of all tested strains of P. vivax. Finally, we determined the structure of a complex of this antibody bound to PvDBP, indicating the molecular basis for inhibition. These findings will guide future vaccine design strategies and open up possibilities for testing the prophylactic use of such an antibody.
Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologia , Anticorpos Antiprotozoários/química , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Cristalografia por Raios X , Sistema do Grupo Sanguíneo Duffy/metabolismo , Epitopos de Linfócito B , Eritrócitos/parasitologia , Variação Genética , Humanos , Fragmentos Fab das Imunoglobulinas , Vacinas Antimaláricas/administração & dosagem , Malária Vivax/parasitologia , Plasmodium knowlesi/genética , Plasmodium knowlesi/crescimento & desenvolvimento , Plasmodium knowlesi/imunologia , Plasmodium vivax/genética , Plasmodium vivax/crescimento & desenvolvimento , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Reticulócitos/parasitologiaRESUMO
The ability to culture pathogenic organisms substantially enhances the quest for fundamental knowledge and the development of vaccines and drugs. Thus, the elaboration of a protocol for the in vitro cultivation of the erythrocytic stages of Plasmodium falciparum revolutionized research on this important parasite. However, for P. vivax, the most widely distributed and difficult to treat malaria parasite, a strict preference for reticulocytes thwarts efforts to maintain it in vitro. Cultivation of P. cynomolgi, a macaque-infecting species phylogenetically close to P. vivax, was briefly reported in the early 1980s, but not pursued further. Here, we define the conditions under which P. cynomolgi can be adapted to long term in vitro culture to yield parasites that share many of the morphological and phenotypic features of P. vivax. We further validate the potential of this culture system for high-throughput screening to prime and accelerate anti-P. vivax drug discovery efforts.
Assuntos
Eritrócitos/parasitologia , Macaca/parasitologia , Malária/veterinária , Doenças dos Macacos/parasitologia , Plasmodium cynomolgi/crescimento & desenvolvimento , Animais , Anopheles/parasitologia , Malária/parasitologia , Malária/transmissãoRESUMO
The invasion of CD71+ reticulocytes by Plasmodium vivax is a crucial yet poorly characterised event. The application of flow cytometry to ex vivo invasion assays promises to facilitate the quantitative analysis of P. vivax reticulocyte invasion. However, current protocols suffer from a low level of sensitivity due to the absence of a particular design for P. vivax cell tropism. Importantly, merozoite invasion into contaminating red blood cells from the schizont inoculum (auto-invasion) may confound the analysis. Here we present a stable two-color flow cytometry assay for the accurate quantification of P. vivax merozoite invasion into intracellularly labelled CD71+ reticulocytes. Various enzymatic treatments, antibodies and invasion inhibitory molecules were used to successfully demonstrate the utility of this method. Fluorescent labelling of red blood cells did not affect the invasion and early intra-erythrocytic development of P. vivax. Importantly, this portable field assay allows for the economic usage of limited biological material (parasites and reticulocytes) and the intracellular labeling of the target cells reduces the need for highly purified schizont inoculums. This assay will facilitate the study of P. vivax merozoite biology and the testing of vaccine candidates against vivax malaria.
Assuntos
Citometria de Fluxo/métodos , Malária Vivax/parasitologia , Plasmodium vivax/isolamento & purificação , Reticulócitos/parasitologia , Antígenos CD/imunologia , Técnicas Bacteriológicas/economia , Técnicas Bacteriológicas/métodos , Sequência de Bases , Eritrócitos/parasitologia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Malária Vivax/sangue , Plasmodium vivax/citologia , Plasmodium vivax/genética , Plasmodium vivax/imunologia , Receptores da Transferrina/imunologia , Reticulócitos/imunologiaRESUMO
Malaria vaccine development has largely focused on Plasmodium falciparum; however, a reawakening to the importance of Plasmodium vivax has spurred efforts to develop vaccines against this difficult to treat and at times severe form of relapsing malaria, which constitutes a significant proportion of human malaria cases worldwide. The almost complete dependence of P. vivax red blood cell invasion on the interaction of the P. vivax Duffy-binding protein region II (PvDBP_RII) with the human Duffy antigen receptor for chemokines (DARC) makes this antigen an attractive vaccine candidate against blood-stage P. vivax. Here, we generated both preclinical and clinically compatible adenoviral and poxviral vectored vaccine candidates expressing the Salvador I allele of PvDBP_RII - including human adenovirus serotype 5 (HAdV5), chimpanzee adenovirus serotype 63 (ChAd63), and modified vaccinia virus Ankara (MVA) vectors. We report on the antibody and T cell immunogenicity of these vaccines in mice or rabbits, either used alone in a viral vectored prime-boost regime or in "mixed-modality" adenovirus prime - protein-in--adjuvant boost regimes (using a recombinant PvDBP_RII protein antigen formulated in Montanide(®)ISA720 or Abisco(®)100 adjuvants). Antibodies induced by these regimes were found to bind to native parasite antigen from P. vivax infected Thai patients and were capable of inhibiting the binding of PvDBP_RII to its receptor DARC using an in vitro binding inhibition assay. In recent years, recombinant ChAd63 and MVA vectors have been quickly translated into human clinical trials for numerous antigens from P. falciparum as well as a growing number of other pathogens. The vectors reported here are immunogenic in small animals, elicit antibodies against PvDBP_RII, and have recently entered clinical trials, which will provide the first assessment of the safety and immunogenicity of the PvDBP_RII antigen in humans.