Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 24(1): 447, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012571

RESUMO

BACKGROUND: Aptamers, which are biomaterials comprised of single-stranded DNA/RNA that form tertiary structures, have significant potential as next-generation materials, particularly for drug discovery. The systematic evolution of ligands by exponential enrichment (SELEX) method is a critical in vitro technique employed to identify aptamers that bind specifically to target proteins. While advanced SELEX-based methods such as Cell- and HT-SELEX are available, they often encounter issues such as extended time consumption and suboptimal accuracy. Several In silico aptamer discovery methods have been proposed to address these challenges. These methods are specifically designed to predict aptamer-protein interaction (API) using benchmark datasets. However, these methods often fail to consider the physicochemical interactions between aptamers and proteins within tertiary structures. RESULTS: In this study, we propose AptaTrans, a pipeline for predicting API using deep learning techniques. AptaTrans uses transformer-based encoders to handle aptamer and protein sequences at the monomer level. Furthermore, pretrained encoders are utilized for the structural representation. After validation with a benchmark dataset, AptaTrans has been integrated into a comprehensive toolset. This pipeline synergistically combines with Apta-MCTS, a generative algorithm for recommending aptamer candidates. CONCLUSION: The results show that AptaTrans outperforms existing models for predicting API, and the efficacy of the AptaTrans pipeline has been confirmed through various experimental tools. We expect AptaTrans will enhance the cost-effectiveness and efficiency of SELEX in drug discovery. The source code and benchmark dataset for AptaTrans are available at https://github.com/pnumlb/AptaTrans .


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos , Software , Redes Neurais de Computação , Algoritmos , Ligantes
2.
Development ; 141(5): 1151-60, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24504337

RESUMO

Layer-specific cortical neurons are essential components of local, intracortical and subcortical circuits and are specified by complex signaling pathways acting on cortical progenitors. However, whether extrinsic signals contribute to postmitotic cortical neuronal development is unclear. Here we show in mice that retinoic acid (RA) receptors are activated in newly born migrating cortical neurons indicative of endogenous RA in the cortex. Disruption of RA signaling in postmitotic neurons by dominant-negative retinoid receptor RAR403 expression specifically delays late-born cortical neuron migration in vivo. Moreover, prospective layer V-III neurons that express RAR403 fail to maintain their fates and instead acquire characteristics of layer II neurons. This latter phenotype is rescued by active forms of ß-catenin at central and caudal but not rostral cortical regions. Taken together, these observations suggest that RA signaling pathways operate postmitotically to regulate the onset of radial migration and to consolidate regional differences in cortical neuronal identity.


Assuntos
Neurônios/metabolismo , Receptores do Ácido Retinoico/metabolismo , Animais , Western Blotting , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Feminino , Hibridização In Situ , Camundongos , Neurogênese/genética , Neurogênese/fisiologia , Gravidez , Receptores do Ácido Retinoico/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
3.
EMBO J ; 30(1): 165-80, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21119615

RESUMO

Diacylglycerol (DAG) is an important lipid second messenger. DAG signalling is terminated by conversion of DAG to phosphatidic acid (PA) by diacylglycerol kinases (DGKs). The neuronal synapse is a major site of DAG production and action; however, how DGKs are targeted to subcellular sites of DAG generation is largely unknown. We report here that postsynaptic density (PSD)-95 family proteins interact with and promote synaptic localization of DGKι. In addition, we establish that DGKι acts presynaptically, a function that contrasts with the known postsynaptic function of DGKζ, a close relative of DGKι. Deficiency of DGKι in mice does not affect dendritic spines, but leads to a small increase in presynaptic release probability. In addition, DGKι-/- synapses show a reduction in metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) at neonatal (∼2 weeks) stages that involve suppression of a decrease in presynaptic release probability. Inhibition of protein kinase C normalizes presynaptic release probability and mGluR-LTD at DGKι-/- synapses. These results suggest that DGKι requires PSD-95 family proteins for synaptic localization and regulates presynaptic DAG signalling and neurotransmitter release during mGluR-LTD.


Assuntos
Encéfalo/metabolismo , Diacilglicerol Quinase/análise , Diacilglicerol Quinase/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo , Animais , Encéfalo/ultraestrutura , Linhagem Celular , Células Cultivadas , Diacilglicerol Quinase/genética , Maleato de Dizocilpina/metabolismo , Deleção de Genes , Expressão Gênica , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/ultraestrutura , Neurotransmissores/metabolismo , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica
4.
Development ; 139(20): 3870-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22951639

RESUMO

The mammalian cortex is a multilaminar structure consisting of specialized layer-specific neurons that form complex circuits throughout the brain and spinal cord. These neurons are generated in a defined sequence dictated by their birthdate such that early-born neurons settle in deep cortical layers whereas late-born neurons populate more superficial layers. Cortical neuronal birthdate is partly controlled by an intrinsic clock-type mechanism; however, the role of extrinsic factors in the temporal control of cell-cycle exit is less clear. Here, we show that Gde2, a six-transmembrane protein that induces spinal neuronal differentiation, is expressed in the developing cortex throughout cortical neurogenesis. In the absence of Gde2, cortical progenitors fail to exit the cell cycle on time, remain cycling, accumulate and exit the cell cycle en masse towards the end of the neurogenic period. These dynamic changes in cell-cycle progression cause deficits and delays in deep-layer neuronal differentiation and robust increases in superficial neuronal numbers. Gde2(-/-) cortices show elevated levels of Notch signaling coincident with when progenitors fail to differentiate, suggesting that abnormal Notch activation retains cells in a proliferative phase that biases them to superficial fates. However, no change in Notch signaling is observed at the time of increased cell-cycle exit. These observations define a key role for Gde2 in controlling cortical neuronal fates by regulating the timing of neurogenesis, and show that loss of Gde2 uncovers additional mechanisms that trigger remaining neuronal progenitors to differentiate at the end of the neurogenic period.


Assuntos
Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Diester Fosfórico Hidrolases/metabolismo , Receptores Notch/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Diferenciação Celular , Embrião de Mamíferos/fisiologia , Camundongos , Camundongos Knockout
5.
J Cell Sci ; 125(Pt 19): 4518-31, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22767509

RESUMO

Dendritic arborization is important for neuronal development as well as the formation of neural circuits. Rac1 is a member of the Rho GTPase family that serve as regulators of neuronal development. Breakpoint cluster region protein (BCR) is a Rac1 GTPase-activating protein that is abundantly expressed in the central nervous system. Here, we show that BCR plays a key role in neuronal development. Dendritic arborization and actin polymerization were attenuated by overexpression of BCR in hippocampal neurons. Knockdown of BCR using specific shRNAs increased the dendritic arborization as well as actin polymerization. The number of dendrites in null mutant BCR(-/-) mice was considerably increased compared with that in wild-type mice. We found that the function of the BCR GTPase-activating domain could be modulated by protein tyrosine phosphatase receptor T (PTPRT), which is expressed principally in the brain. We demonstrate that tyrosine 177 of BCR was the main target of PTPRT and the BCR mutant mimicking dephosphorylation of tyrosine 177 alleviated the attenuation of dendritic arborization. Additionally the attenuated dendritic arborization found upon BCR overexpression was relieved upon co-expression of PTPRT. When PTPRT was knocked down by a specific shRNA, the dendritic arborization was significantly reduced. The activity of the BCR GTPase-activating domain was modulated by means of conversions between the intra- and inter-molecular interactions, which are finely regulated through the dephosphorylation of a specific tyrosine residue by PTPRT. We thus show conclusively that BCR is a novel substrate of PTPRT and that BCR is involved in the regulation of neuronal development via control of the BCR GTPase-activating domain function by PTPRT.


Assuntos
Dendritos/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Fosforilação , Fosfotirosina/metabolismo , Polimerização , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcr/química , Proteínas Proto-Oncogênicas c-bcr/deficiência , Ratos , Deleção de Sequência , Transdução de Sinais , Especificidade por Substrato
6.
EMBO J ; 28(8): 1170-9, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19229292

RESUMO

Diacylglycerol (DAG) is an important lipid signalling molecule that exerts an effect on various effector proteins including protein kinase C. A main mechanism for DAG removal is to convert it to phosphatidic acid (PA) by DAG kinases (DGKs). However, it is not well understood how DGKs are targeted to specific subcellular sites and tightly regulates DAG levels. The neuronal synapse is a prominent site of DAG production. Here, we show that DGKzeta is targeted to excitatory synapses through its direct interaction with the postsynaptic PDZ scaffold PSD-95. Overexpression of DGKzeta in cultured neurons increases the number of dendritic spines, which receive the majority of excitatory synaptic inputs, in a manner requiring its catalytic activity and PSD-95 binding. Conversely, DGKzeta knockdown reduces spine density. Mice deficient in DGKzeta expression show reduced spine density and excitatory synaptic transmission. Time-lapse imaging indicates that DGKzeta is required for spine maintenance but not formation. We propose that PSD-95 targets DGKzeta to synaptic DAG-producing receptors to tightly couple synaptic DAG production to its conversion to PA for the maintenance of spine density.


Assuntos
Espinhas Dendríticas/metabolismo , Diacilglicerol Quinase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isoenzimas/metabolismo , Proteínas de Membrana/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Células Cultivadas , Espinhas Dendríticas/ultraestrutura , Diacilglicerol Quinase/genética , Diglicerídeos/metabolismo , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Isoenzimas/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/ultraestrutura
7.
SLAS Technol ; 28(2): 63-69, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36455858

RESUMO

The development of phenotypic assays with appropriate analyses is an important step in the drug discovery process. Assays using induced pluripotent stem cell (iPSC)-derived human neurons are emerging as powerful tools for drug discovery in neurological disease. We have previously shown that longitudinal single cell tracking enabled the quantification of survival and death of neurons after overexpression of α-synuclein with a familial Parkinson's disease mutation (A53T). The reliance of this method on manual counting, however, rendered the process labor intensive, time consuming and error prone. To overcome these hurdles, we have developed automated detection algorithms for neurons using the BioStation CT live imaging system and CL-Quant software. In the current study, we use these algorithms to successfully measure the risk of neuronal death caused by overexpression of α-synuclein (A53T) with similar accuracy and improved consistency as compared to manual counting. This novel method also provides additional key readouts of neuronal fitness including total neurite length and the number of neurite nodes projecting from the cell body. Finally, the algorithm reveals the neuroprotective effects of brain-derived neurotrophic factor (BDNF) treatment in neurons overexpressing α-synuclein (A53T). These data show that an automated algorithm improves the consistency and considerably shortens the analysis time of assessing neuronal health, making this method advantageous for small molecule screening for inhibitors of synucleinopathy and other neurodegenerative diseases.


Assuntos
Sinucleinopatias , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Sinucleinopatias/metabolismo , Rastreamento de Células , Neurônios/metabolismo , Algoritmos
8.
Biomaterials ; 303: 122360, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38465578

RESUMO

BACKGROUND & AIMS: Several types of human stem cells from embryonic (ESCs) and induced pluripotent (iPSCs) to adult tissue-specific stem cells are commonly used to generate 3D liver organoids for modeling tissue physiology and disease. We have recently established a protocol for direct conversion of primary human hepatocytes (hPHs) from healthy donor livers into bipotent progenitor cells (hCdHs). Here we extended this culture system to generate hCdH-derived liver organoids for diverse biomedical applications. METHODS: To obtain hCdHs, hPHs were cultured in reprogramming medium containing A83-01 and CHIR99021 for 7 days. Liver organoids were established from hCdHs (hCdHOs) and human liver cells (hLOs) using the same donor livers for direct comparison, as well as from hiPSCs. Organoid properties were analyzed by standard in vitro assays. Molecular changes were determined by RT-qPCR and RNA-seq. Clinical relevance was evaluated by transplantation into FRG mice, modeling of alcohol-related liver disease (ARLD), and in vitro drug-toxicity tests. RESULTS: hCdHs were clonally expanded as organoid cultures with low variability between starting hCdH lines. Similar to the hLOs, hCdHOs stably maintained stem cell phenotype based on accepted criteria. However, hCdHOs had an advantage over hLOs in terms of EpCAM expression, efficiency of organoid generation and capacity for directed hepatic differentiation as judged by molecular profiling, albumin secretion, glycogen accumulation, and CYP450 activities. Accordingly, FRG mice transplanted with hCdHOs survived longer than mice injected with hLOs. When exposed to ethanol, hCdHOs developed stronger ARLD phenotype than hLOs as evidenced by transcriptional profiling, lipid accumulation and mitochondrial dysfunction. In drug-induced injury assays in vitro, hCdHOs showed a similar or higher sensitivity response than hPHs. CONCLUSION: hCdHOs provide a novel patient-specific stem cell-based platform for regenerative medicine, toxicology testing and modeling liver diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Medicina Regenerativa , Adulto , Humanos , Animais , Camundongos , Células Cultivadas , Fígado/metabolismo , Organoides , Diferenciação Celular
9.
Sci Rep ; 12(1): 3471, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236868

RESUMO

Both intra-pore hydrate morphology and inter-pore hydrate distribution influence the physical properties of hydrate-bearing sediments, yet there has been no pore-scale observations of hydrate habit under pressure in preserved pressure core samples so far. We present for the first time a pore-scale micro-CT study of natural hydrate-bearing cores that were acquired from Green Canyon Block 955 in UT-GOM2-1 Expedition and preserved within hydrate pressure-temperature stability conditions throughout sub-sampling and imaging processes. Measured hydrate saturation in the sub-samples, taken from units expected to have in-situ saturation of 80% or more, ranges from 3 ± 1% to 56 ± 11% as interpreted from micro-CT images. Pore-scale observations of gas hydrate in the sub-samples suggest that hydrate in silty sediments at the Gulf of Mexico is pore-invasive rather than particle displacive, and hydrate particles in these natural water-saturated samples are pore-filling with no evidence of grain-coating. Hydrate can form a connected 3D network and provide mechanical support for the sediments even without cementation. The technical breakthrough to directly visualize particle-level hydrate pore habits in natural sediments reported here sheds light on future investigations of pressure- and temperature-sensitive processes including hydrate-bearing sediments, dissolved gases, and other biochemical processes in the deep-sea environment.


Assuntos
Sedimentos Geológicos , Metano , Gases/química , Sedimentos Geológicos/química , Metano/química , Temperatura , Microtomografia por Raio-X
10.
Neurotherapeutics ; 19(3): 1018-1036, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35445353

RESUMO

Increasing evidence has shown that Parkinson's disease (PD) impairs midbrain dopaminergic, cortical and other neuronal subtypes in large part due to the build-up of lipid- and vesicle-rich α-synuclein (αSyn) cytotoxic inclusions. We previously identified stearoyl-CoA desaturase (SCD) as a potential therapeutic target for synucleinopathies. A brain-penetrant SCD inhibitor, YTX-7739, was developed and has entered Phase 1 clinical trials. Here, we report the efficacy of YTX-7739 in reversing pathological αSyn phenotypes in various in vitro and in vivo PD models. In cell-based assays, YTX-7739 decreased αSyn-mediated neuronal death, reversed the abnormal membrane interaction of amplified E46K ("3K") αSyn, and prevented pathological phenotypes in A53T and αSyn triplication patient-derived neurospheres, including dysregulated fatty acid profiles and pS129 αSyn accumulation. In 3K PD-like mice, YTX-7739 crossed the blood-brain barrier, decreased unsaturated fatty acids, and prevented progressive motor deficits. Both YTX-7739 treatment and decreasing SCD activity through deletion of one copy of the SCD1 gene (SKO) restored the physiological αSyn tetramer-to-monomer ratio, dopaminergic integrity, and neuronal survival in 3K αSyn mice. YTX-7739 efficiently reduced pS129 + and PK-resistant αSyn in both human wild-type αSyn and 3K mutant mice similar to the level of 3K-SKO. Together, these data provide further validation of SCD as a PD therapeutic target and YTX-7739 as a clinical candidate for treating human α-synucleinopathies.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Encéfalo/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Doença de Parkinson/genética , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
11.
J Neurosci ; 30(45): 15102-12, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21068316

RESUMO

PSD-95 (postsynaptic density-95) is thought to play important roles in the regulation of dendritic spines and excitatory synapses, but the underlying mechanisms have not been fully elucidated. TANC1 is a PSD-95-interacting synaptic protein that contains multiple domains for protein-protein interactions but whose function is not well understood. In the present study, we provide evidence that TANC1 and its close relative TANC2 regulate dendritic spines and excitatory synapses. Overexpression of TANC1 and TANC2 in cultured neurons increases the density of dendritic spines and excitatory synapses in a manner that requires the PDZ (PSD-95/Dlg/ZO-1)-binding C termini of TANC proteins. TANC1-deficient mice exhibit reduced spine density in the CA3 region of the hippocampus, but not in the CA1 or dentate gyrus regions, and show impaired spatial memory. TANC2 deficiency, however, causes embryonic lethality. These results suggest that TANC1 is important for dendritic spine maintenance and spatial memory, and implicate TANC2 in embryonic development.


Assuntos
Venenos de Crotalídeos/metabolismo , Espinhas Dendríticas/metabolismo , Desenvolvimento Embrionário/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Memória/fisiologia , Percepção Espacial/fisiologia , Animais , Células Cultivadas , Proteína 4 Homóloga a Disks-Large , Hipocampo/citologia , Hipocampo/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Neurônios/citologia , Neurônios/metabolismo , Ratos , Sinapses/metabolismo
12.
J Neurosci ; 30(42): 14134-44, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20962234

RESUMO

Rho family small GTPases are important regulators of neuronal development. Defective Rho regulation causes nervous system dysfunctions including mental retardation and Alzheimer's disease. Rac1, a member of the Rho family, regulates dendritic spines and excitatory synapses, but relatively little is known about how synaptic Rac1 is negatively regulated. Breakpoint cluster region (BCR) is a Rac GTPase-activating protein known to form a fusion protein with the c-Abl tyrosine kinase in Philadelphia chromosome-positive chronic myelogenous leukemia. Despite the fact that BCR mRNAs are abundantly expressed in the brain, the neural functions of BCR protein have remained obscure. We report here that BCR and its close relative active BCR-related (ABR) localize at excitatory synapses and directly interact with PSD-95, an abundant postsynaptic scaffolding protein. Mice deficient for BCR or ABR show enhanced basal Rac1 activity but only a small increase in spine density. Importantly, mice lacking BCR or ABR exhibit a marked decrease in the maintenance, but not induction, of long-term potentiation, and show impaired spatial and object recognition memory. These results suggest that BCR and ABR have novel roles in the regulation of synaptic Rac1 signaling, synaptic plasticity, and learning and memory, and that excessive Rac1 activity negatively affects synaptic and cognitive functions.


Assuntos
Proteínas Ativadoras de GTPase/biossíntese , Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas rac1 de Ligação ao GTP/biossíntese , Animais , Biolística , Células Cultivadas , Espinhas Dendríticas/metabolismo , Eletrofisiologia , Proteínas Ativadoras de GTPase/genética , Hipocampo/citologia , Hipocampo/metabolismo , Imuno-Histoquímica , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Proteínas Serina-Treonina Quinases/genética , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/fisiologia , Transmissão Sináptica/fisiologia , Transfecção , Proteínas rac1 de Ligação ao GTP/genética
13.
Nat Commun ; 12(1): 256, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431871

RESUMO

In humans, inactivating mutations in MLL4, which encodes a histone H3-lysine 4-methyltransferase, lead to Kabuki syndrome (KS). While dwarfism is a cardinal feature of KS, the underlying etiology remains unclear. Here we report that Mll4 regulates the development of growth hormone-releasing hormone (GHRH)-producing neurons in the mouse hypothalamus. Our two Mll4 mutant mouse models exhibit dwarfism phenotype and impairment of the developmental programs for GHRH-neurons. Our ChIP-seq analysis reveals that, in the developing mouse hypothalamus, Mll4 interacts with the transcription factor Nrf1 to trigger the expression of GHRH-neuronal genes. Interestingly, the deficiency of Mll4 results in a marked reduction of histone marks of active transcription, while treatment with the histone deacetylase inhibitor AR-42 rescues the histone mark signature and restores GHRH-neuronal production in Mll4 mutant mice. Our results suggest that the developmental dysregulation of Mll4-directed epigenetic control of transcription plays a role in the development of GHRH-neurons and dwarfism phenotype in mice.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/biossíntese , Histona-Lisina N-Metiltransferase/metabolismo , Hipotálamo/citologia , Neurônios/metabolismo , Animais , Sequência de Bases , Nanismo/metabolismo , Embrião de Mamíferos/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Hipotálamo/embriologia , Masculino , Camundongos Knockout , Modelos Biológicos , Fator 1 Nuclear Respiratório/metabolismo , Fenilbutiratos/farmacologia , Fatores de Transcrição/metabolismo
14.
J Neurosci ; 29(5): 1586-95, 2009 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19193906

RESUMO

IRSp53 is an adaptor protein that acts downstream of Rac and Cdc42 small GTPases and is implicated in the regulation of membrane deformation and actin filament assembly. In neurons, IRSp53 is an abundant postsynaptic protein and regulates actin-rich dendritic spines; however, its in vivo functions have not been explored. We characterized transgenic mice deficient of IRSp53 expression. Unexpectedly, IRSp53(-/-) neurons do not show significant changes in the density and ultrastructural morphologies of dendritic spines. Instead, IRSp53(-/-) neurons exhibit reduced AMPA/NMDA ratio of excitatory synaptic transmission and a selective increase in NMDA but not AMPA receptor-mediated transmission. IRSp53(-/-) hippocampal slices show a markedly enhanced long-term potentiation (LTP) with no changes in long-term depression. LTP-inducing theta burst stimulation enhances NMDA receptor-mediated transmission. Spatial learning and novel object recognition are impaired in IRSp53(-/-) mice. These results suggest that IRSp53 is involved in the regulation of NMDA receptor-mediated excitatory synaptic transmission, LTP, and learning and memory behaviors.


Assuntos
Potenciação de Longa Duração/fisiologia , Transtornos da Memória/metabolismo , Memória/fisiologia , Proteínas do Tecido Nervoso/deficiência , Receptores de N-Metil-D-Aspartato/fisiologia , Transmissão Sináptica/fisiologia , Animais , Aprendizagem/fisiologia , Masculino , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Ratos
15.
Exp Cell Res ; 315(14): 2410-9, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19460367

RESUMO

SPIN90 is a key regulator of actin cytoskeletal organization. Using the BioGRID(beta) database (General Repository for Interaction Datasets), we identified IRSp53 as a binding partner of SPIN90, and confirmed the in vivo formation of a SPIN90-IRSp53 complex mediated through direct association of the proline-rich domain (PRD) of SPIN90 with the SH3 domain of IRSp53. SPIN90 and IRSp53 positively cooperated to mediate Rac activation, and co-expression of SPIN90 and IRSp53 in COS-7 cells led to the complex formation of SPIN90-IRSp53 in the leading edge of cells. PDGF treatment induced strong colocalization of SPIN90 and IRSp53 at membrane protrusions. Within such PDGF-induced protrusions, knockdown of SPIN90 protein using siRNA significantly reduced lamellipodia-like protrusions as well as localization of IRSp53 at those sites. Finally, competitive inhibition of SPIN90-IRSp53 binding by SPIN90 PRD dramatically reduced ruffle formation, further suggesting that SPIN90 plays a key role in the formation of the membrane protrusions associated with cell motility.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células COS , Membrana Celular/ultraestrutura , Movimento Celular/fisiologia , Extensões da Superfície Celular , Chlorocebus aethiops , Técnicas de Silenciamento de Genes , Vetores Genéticos/metabolismo , Humanos , Proteínas Musculares/genética , Fator de Crescimento Derivado de Plaquetas/farmacologia , RNA Interferente Pequeno/metabolismo , Transfecção
16.
J Neurosci ; 28(53): 14546-56, 2008 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-19118189

RESUMO

PSD-95 is an abundant postsynaptic density (PSD) protein involved in the formation and regulation of excitatory synapses and dendritic spines, but the underlying mechanisms are not comprehensively understood. Here we report a novel PSD-95-interacting protein Preso that regulates spine morphogenesis. Preso is mainly expressed in the brain and contains WW (domain with two conserved Trp residues), PDZ (PSD-95/Dlg/ZO-1), FERM (4.1, ezrin, radixin, and moesin), and C-terminal PDZ-binding domains. These domains associate with actin filaments, the Rac1/Cdc42 guanine nucleotide exchange factor betaPix, phosphatidylinositol-4,5-bisphosphate, and the postsynaptic scaffolding protein PSD-95, respectively. Preso overexpression increases the density of dendritic spines in a manner requiring WW, PDZ, FERM, and PDZ-binding domains. Conversely, knockdown or dominant-negative inhibition of Preso decreases spine density, excitatory synaptic transmission, and the spine level of filamentous actin. These results suggest that Preso positively regulates spine density through its interaction with the synaptic plasma membrane, actin filaments, PSD-95, and the betaPix-based Rac1 signaling pathway.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Espinhas Dendríticas/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neurônios/ultraestrutura , Domínios PDZ/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Proteína 4 Homóloga a Disks-Large , Embrião de Mamíferos , Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Guanilato Quinases , Hipocampo/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Morfogênese/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Estrutura Terciária de Proteína , Ratos , Transmissão Sináptica/genética , Transfecção , Técnicas do Sistema de Duplo-Híbrido
17.
Neurospine ; 16(4): 789-792, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31805760

RESUMO

A 73-year-old woman underwent deformity correction surgery (anterior lumbar interbody fusion of L2-L3-L4-L5-S1, pedicle subtraction osteotomy at L4, and posterior screw fixation from T10 to the pelvis) due to lumbar degenerative flat-back. Following the operation, the patient experienced pain in her back and buttocks, for which she regularly took medications. She reported frequently feeling a heavy and stretched sensation of pain after the operation in those areas, which made her regret undergoing the operation. However, at 33 months postoperatively, she reported that one day, while getting up from a chair, she felt a crack in her back, which was followed by an improvement in her back and buttock pain; thereafter, she stopped taking pain medications. Follow-up radiography revealed a bilateral rod fracture at the L4-5 level on the right side and at the L3-4 level on the left side. The overall pelvic parameters, except pelvic incidence, slightly changed after the rod fracture. Therefore, the broken rod was replaced and another rod was added to the broken rod area; however, the changed pelvic parameters were not corrected further during the reoperation. Following the reoperation, the patient showed improvements and she no longer required pain medication.

18.
Rev Sci Instrum ; 90(12): 124504, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31893836

RESUMO

Understanding mechanical interactions between hydrate and hosting sediments is critical for evaluating formation stability and associated environmental impacts of hydrate-bearing sediments during gas production. While core-scale studies of hydrate-bearing sediments are readily available and some explanations of observed results rely on pore-scale behavior of hydrate, actual pore-scale observations supporting the larger-scale phenomena are rarely available for hydrate-bearing sediments, especially with methane as guest molecules. The primary reasons for the scarcity include the challenge of developing tools for small-scale testing apparatus and pore-scale visualization capability. We present a testing assembly that combines pore-scale visualization and triaxial test capability of methane hydrate-bearing sediments. This testing assembly allows temperature regulation and independent control of four pressures: influent and effluent pore pressure, confining pressure, and axial pressure. Axial and lateral effective stresses can be applied independently to a 9.5 mm diameter and 19 mm long specimen while the pore pressure and temperature are controlled to maintain the stability of methane hydrate. The testing assembly also includes an X-ray transparent beryllium core holder so that 3D computed tomography scanning can be conducted during the triaxial loading. This testing assembly permits pore-scale exploration of hydrate-sediment interaction in addition to the traditional stress-strain relationship. Exemplary outcomes are presented to demonstrate applications of the testing assembly on geomechanical property estimations of methane-hydrate bearing sediments.

19.
Spine (Phila Pa 1976) ; 43(15): 1044-1051, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29215502

RESUMO

STUDY DESIGN: A retrospective analysis of functional limitations due to stiffness after long-level spinal instrumented fusion surgery to correct lumbar degenerative flat back was performed. OBJECTIVE: To analysis the functional limitations in patients treated surgically for adult lumbar degenerative flat back (ALDFB) with long-level instrumented fusion to the sacrum or pelvis. SUMMARY OF BACKGROUND DATA: Long-level instrumented fusion for ALDFB decreases back pain and spinal deformity. On the contrary, this surgery considerably eliminates spinal range of motion. This may have the potential to impair function and ability to perform activities of daily living (ADLs). METHODS: Consecutive 44 patients who underwent long-level instrumented fusion to the sacrum or pelvis for ALDFB were retrospectively included in this study. All patients were followed up for a minimum of 13 months. The Lumbar Stiffness Disability Index for Korean Lifestyle and Oswestry Disability Index were administered and analyzed to assess the impact of spinal stiffness on daily living. Cohorts were defined based on the upper instrumented vertebrae (above T10 [group 1] or below L1 [group 2]) and lower instrumented vertebrae (S1 pedicle screw [group S] or iliac bolt screw [group I]). RESULTS: All patients showed deteriorated postoperative ADLs compared to preoperative values. Group 1 showed deterioration postoperatively compared to group 2. Group 1 showed deteriorated postoperative ADLs compared to preoperative values. In group 2, question 5 and 7 showed deterioration postoperatively compared to preoperative values, and question 2 and 10 showed improvement postoperatively compared to preoperative values. Group I showed deterioration postoperatively compared to group S. CONCLUSION: This study will hopefully allow surgeons to provide patients with ALDFB with a more informed explanation of expected surgery effects on specific ADLs. LEVEL OF EVIDENCE: 3.


Assuntos
Atividades Cotidianas , Vértebras Lombares/cirurgia , Amplitude de Movimento Articular , Fusão Vertebral/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Avaliação da Deficiência , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Parafusos Pediculares , Estudos Retrospectivos , Resultado do Tratamento
20.
World Neurosurg ; 119: 500-505, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29959077

RESUMO

BACKGROUND: Partially calcified lumbar herniated nucleus pulposus (HNP) can cause severe radiating pain and neurologic symptoms requiring surgical treatment. As it is not safe to enforce conventional endoscopic lumbar discectomy using trephine or burr to remove the partially calcified disc, we report a calcification floating technique using a working channel for the treatment of these cases. METHODS: We retrospectively analyzed 31 patients who underwent full endoscopic discectomy using this technique for partially calcified lumbar HNP between April 2009 and June 2013. Calcification floating technique was performed by inserting the working channel around the partially calcified HNP and then rotating the working channel around it to remove the lesion. We analyzed the outcomes with a Visual Analogue Scale (VAS), Oswestry Disability Index (ODI), and complication rate. RESULTS: The mean follow-up period was 26.58 ± 11.2 months. The interlaminar approach was used in 15 cases, and the transforaminal approach was used in 16 cases. The mean VAS of 8.19 ± 0.65 before surgery was decreased to 1.29 ± 0.69 at the last follow-up. The mean ODI score before surgery was decreased at the last follow-up, from 41.32 ± 2.87 to 9.87 ± 3.47. Mean operative duration was 45 ± 12 minutes per level. None of the patients required revision surgery or developed any major complication. CONCLUSIONS: Calcification floating technique is a safe and effective method for the treatment of partially calcified lumbar HNP.


Assuntos
Calcinose/cirurgia , Discotomia/métodos , Endoscopia/métodos , Degeneração do Disco Intervertebral/cirurgia , Deslocamento do Disco Intervertebral/cirurgia , Núcleo Pulposo/patologia , Núcleo Pulposo/cirurgia , Adolescente , Adulto , Calcinose/complicações , Calcinose/diagnóstico por imagem , Feminino , Seguimentos , Humanos , Degeneração do Disco Intervertebral/complicações , Degeneração do Disco Intervertebral/diagnóstico por imagem , Deslocamento do Disco Intervertebral/complicações , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Vértebras Lombares/cirurgia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Núcleo Pulposo/diagnóstico por imagem , Estudos Retrospectivos , Tomógrafos Computadorizados , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA