Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Dermatol ; 62(5): 694-699, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35751767

RESUMO

The extract of Polypodium leucotomos is used as a dietary supplement for its ultraviolet radiation-protective properties. Polypodium leucotomos extract reportedly inhibits CYP3A, which is important for drug metabolism in vitro in human microsomes and in vivo in rats. In this study, we explored the inhibitory effect of the P. leucotomos extract on CYP3A4-mediated midazolam metabolism in humans. This open-label, two-period, fixed-sequence study was performed on six healthy, Japanese, male volunteers. During period 1 (control), midazolam (1 mg) was orally administered. After a wash-out period of at least 5 days, period 2 was initiated. Subjects ingested P. leucotomos extract (240 mg) once in the morning and once at noon on the day before midazolam administration, and once the next morning (thrice overall). Midazolam was administered as in period 1. Blood samples were regularly collected for 8 hours after drug administration, and serum midazolam concentration was determined by ultra-fast liquid chromatography-tandem mass spectrometry. The pharmacokinetic parameters of midazolam were calculated and compared between the two periods. The area under the concentration-time curve was 19.18 ± 3.65 ng h/ml, maximum serum concentration was 7.81 ± 1.25 ng/ml, and half-life was 2.32 ± 0.35 hours during period 2. These parameters did not differ from those recorded in period 1 (area under the concentration-time curve: 18.74 ± 2.97 ng h/ml, maximum serum concentration: 8.78 ± 1.67 ng/ml, half-life: 2.52 ± 0.52 h). Therefore, short-term oral administration of P. leucotomos extract did not cause food-drug interactions mediated by CYP3A4 inhibition in humans.


Assuntos
Midazolam , Polypodium , Humanos , Masculino , Animais , Ratos , Midazolam/farmacologia , Citocromo P-450 CYP3A/metabolismo , Polypodium/metabolismo , Voluntários Saudáveis , Raios Ultravioleta , Administração Oral , Área Sob a Curva , Interações Medicamentosas
2.
J Inflamm Res ; 12: 285-291, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695471

RESUMO

PURPOSE: Dipeptidyl peptidase-4 inhibitors, including linagliptin, prevent inflammation. However, the in vitro effects of linagliptin are unclear. Moreover, although linagliptin inhibits lipopolysaccharide (LPS)-induced inflammation, the anti-inflammatory effects of linagliptin in this context are not concentration-dependent. In the absence of LPS-binding protein (LBP), the pro-inflammatory effects of LPS involve pathways other than the Toll-like receptor (TLR) 4 pathway. Here, we aimed to determine the anti-inflammatory mechanisms of linagliptin in an experimental model in which LBP was added to the medium. METHODS: Human U937 monocytes were cultured at 1 × 106 cells/mL in Roswell Park Memorial Institute medium and differentiated into macrophages using phorbol myristate acetate. All processes were carried out in medium containing 10% fetal bovine serum (FBS). After 48 hrs of culture, we replaced the medium and pretreated the cells with 100, 250, 500, or 2500 nM linagliptin for 1 hr. We exchanged the medium again, and the cells were treated with 1 ng/mL LPS with or without 100, 250, 500, or 2500 nM linagliptin. Interleukin (IL)-6 and LBP in the supernatant, nuclear factor (NF)-κB/p65 in the nucleus, and reactive oxygen species (ROS) in the cells, as important markers of the mechanism of inflammation induction by LPS, were measured using enzyme-linked immunosorbent assay kits. RESULTS: Linagliptin significantly prevented LPS-stimulated IL-6 production and intranuclear NF-κB/p65 levels in a concentration-dependent manner. LPS-induced intracellular ROS levels were significantly decreased by linagliptin at all concentrations. LBP levels were markedly higher in FBS-containing medium than in medium without FBS. However, LBP levels did not change following administration of linagliptin and/or LPS. CONCLUSION: Concentration-dependent and -independent inflammatory suppression was observed following linagliptin treatment in the context of LPS-induced pro-inflammatory responses. Thus, our findings suggested that linagliptin induced two different mechanisms to repress inflammation, i.e., TLR4-dependent and -independent mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA