Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(15): 6927-6936, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37489836

RESUMO

Boron nitride (BN) is an exceptional material, and among its polymorphs, two-dimensional (2D) hexagonal and three-dimensional (3D) cubic BN (h-BN and c-BN) phases are most common. The phase stability regimes of these BN phases are still under debate, and phase transformations of h-BN/c-BN remain a topic of interest. Here, we investigate the phase stability of 2D/3D h-BN/c-BN nanocomposites and show that the coexistence of two phases can lead to strong nonlinear optical properties and low thermal conductivity at room temperature. Furthermore, spark-plasma sintering of the nanocomposite shows complete phase transformation to 2D h-BN with improved crystalline quality, where 3D c-BN possibly governs the nucleation and growth kinetics. Our demonstration might be insightful in phase engineering of BN polymorph-based nanocomposites with desirable properties for optoelectronics and thermal energy management applications.

2.
J Synchrotron Radiat ; 28(Pt 1): 207-213, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399570

RESUMO

Hard X-ray nanodiffraction provides a unique nondestructive technique to quantify local strain and structural inhomogeneities at nanometer length scales. However, sample mosaicity and phase separation can result in a complex diffraction pattern that can make it challenging to quantify nanoscale structural distortions. In this work, a k-means clustering algorithm was utilized to identify local maxima of intensity by partitioning diffraction data in a three-dimensional feature space of detector coordinates and intensity. This technique has been applied to X-ray nanodiffraction measurements of a patterned ferroelectric PbZr0.2Ti0.8O3 sample. The analysis reveals the presence of two phases in the sample with different lattice parameters. A highly heterogeneous distribution of lattice parameters with a variation of 0.02 Šwas also observed within one ferroelectric domain. This approach provides a nanoscale survey of subtle structural distortions as well as phase separation in ferroelectric domains in a patterned sample.

3.
Adv Mater ; 35(47): e2304624, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37707242

RESUMO

Understanding the emergent electronic structure in twisted atomically thin layers has led to the exciting field of twistronics. However, practical applications of such systems are challenging since the specific angular correlations between the layers must be precisely controlled and the layers have to be single crystalline with uniform atomic ordering. Here, an alternative, simple, and scalable approach is suggested, where nanocrystallinetwo-dimensional (2D) film on 3D substrates yields twisted-interface-dependent properties. Ultrawide-bandgap hexagonal boron nitride (h-BN) thin films are directly grown on high in-plane lattice mismatched wide-bandgap silicon carbide (4H-SiC) substrates to explore the twist-dependent structure-property correlations. Concurrently, nanocrystalline h-BN thin film shows strong non-linear second-harmonic generation and ultra-low cross-plane thermal conductivity at room temperature, which are attributed to the twisted domain edges between van der Waals stacked nanocrystals with random in-plane orientations. First-principles calculations based on time-dependent density functional theory manifest strong even-order optical nonlinearity in twisted h-BN layers. This work unveils that directly deposited 2D nanocrystalline thin film on 3D substrates could provide easily accessible twist-interfaces, therefore enabling a simple and scalable approach to utilize the 2D-twistronics integrated in 3D material devices for next-generation nanotechnology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA