Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Cancer Res ; 30(15): 3100-3104, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38809262

RESUMO

On November 8, 2023, the FDA approved fruquintinib, an inhibitor of vascular endothelial growth factor receptor (VEGFR)-1, -2, and -3, for the treatment of patients with metastatic colorectal cancer (mCRC) who have been previously treated with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy, an anti-VEGF therapy, and if RAS wild-type and medically appropriate, an anti-EGFR therapy. Approval was based on Study FRESCO-2, a globally conducted, double-blind, placebo-controlled randomized trial. The primary endpoint was overall survival (OS). The key secondary endpoint was progression-free survival. A total of 691 patients were randomly assigned (461 and 230 into the fruquintinib and placebo arms, respectively). Fruquintinib provided a statistically significant improvement in OS with a hazard ratio (HR) of 0.66 [95% confidence interval (CI), 0.55, 0.80; P < 0.001]. The median OS was 7.4 months (95% CI, 6.7, 8.2) in the fruquintinib arm and 4.8 months (95% CI, 4.0, 5.8) for the placebo arm. Adverse events observed were generally consistent with the known safety profile associated with the inhibition of VEGFR. The results of FRESCO-2 were supported by the FRESCO study, a double-blind, single-country, placebo-controlled, randomized trial in patients with refractory mCRC who have been previously treated with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy. In FRESCO, the OS HR was 0.65 (95% CI, 0.51, 0.83; P < 0.001). FDA concluded that the totality of the evidence from FRESCO-2 and FRESCO supported an indication for patients with mCRC with prior treatment with fluoropyrimidine, oxaliplatin-, and irinotecan-based chemotherapy, an anti-VEGF biological therapy, and if RAS wild-type and medically appropriate, an anti-EGFR therapy.


Assuntos
Benzofuranos , Neoplasias Colorretais , Aprovação de Drogas , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estados Unidos , Benzofuranos/uso terapêutico , Benzofuranos/efeitos adversos , Benzofuranos/administração & dosagem , Adulto , Método Duplo-Cego , Quinazolinas/uso terapêutico , Metástase Neoplásica , United States Food and Drug Administration , Idoso de 80 Anos ou mais , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos
2.
J Clin Invest ; 134(20)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39403935

RESUMO

BACKGROUNDImmune-related adverse events (irAEs) and their associated morbidity/mortality are a key concern for patients receiving immune checkpoint inhibitors (ICIs). Prospective evaluation of the drivers of irAEs in a diverse pan-tumor cohort is needed to identify patients at greatest risk and to develop rational treatment and interception strategies.METHODSIn an observational study, we prospectively collected blood samples and performed regular clinical evaluations for irAEs in patients receiving ICI therapy as standard of care for solid tumors. We performed in-parallel analysis of cytokines by Luminex immunoassay and circulating immune cells by cytometry by time-of-flight (CyTOF) at baseline and on treatment to investigate mechanisms of irAEs.RESULTSWe enrolled 111 patients, of whom 40.5% developed a symptomatic irAE (grade ≥ 2). Development of a grade ≥ 2 irAE was positively associated with the use of combination ICI and a history of an autoimmune disorder. Early changes in T helper 17 (Th17) (IL-6, IL-17f), type 2 (IL-5, IL-13, IL-25), and type 1 (TNF-α) cytokine signatures and congruent on-treatment expansions of Th17 and Th2 effector memory (Th2EM) T cell populations in peripheral blood were positively associated with the development of grade ≥2 irAEs. IL-6 levels were also associated with inferior cancer-specific survival and overall survival.CONCLUSIONSIn a diverse, prospective pan-tumor cohort, Th17 and Th2 skewing during early ICI treatment was associated with the development of clinically relevant irAEs but not antitumor responses, providing possible targets for monitoring and therapeutic interventions.FUNDINGJohns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy, the NCI SPORE in Gastrointestinal Cancers (P50 CA062924), NCI grant (R50CA243627 to LD), the NIH Center Core Grant (P30 CA006973), Swim Across America (to MY), NIAMS (K23AR075872 to LC), and imCORE-Genentech grant 137515 (to Johns Hopkins Medicine on behalf of MY).


Assuntos
Neoplasias , Células Th17 , Células Th2 , Humanos , Masculino , Feminino , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Células Th17/imunologia , Pessoa de Meia-Idade , Idoso , Células Th2/imunologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/uso terapêutico , Estudos Prospectivos , Imunoterapia , Adulto , Idoso de 80 Anos ou mais
3.
Cancer Immunol Res ; 10(5): 656-669, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35201318

RESUMO

Therapeutic combinations to alter immunosuppressive, solid tumor microenvironments (TME), such as in breast cancer, are essential to improve responses to immune checkpoint inhibitors (ICI). Entinostat, an oral histone deacetylase inhibitor, has been shown to improve responses to ICIs in various tumor models with immunosuppressive TMEs. The precise and comprehensive alterations to the TME induced by entinostat remain unknown. Here, we employed single-cell RNA sequencing on HER2-overexpressing breast tumors from mice treated with entinostat and ICIs to fully characterize changes across multiple cell types within the TME. This analysis demonstrates that treatment with entinostat induced a shift from a protumor to an antitumor TME signature, characterized predominantly by changes in myeloid cells. We confirmed myeloid-derived suppressor cells (MDSC) within entinostat-treated tumors associated with a less suppressive granulocytic (G)-MDSC phenotype and exhibited altered suppressive signaling that involved the NFκB and STAT3 pathways. In addition to MDSCs, tumor-associated macrophages were epigenetically reprogrammed from a protumor M2-like phenotype toward an antitumor M1-like phenotype, which may be contributing to a more sensitized TME. Overall, our in-depth analysis suggests that entinostat-induced changes on multiple myeloid cell types reduce immunosuppression and increase antitumor responses, which, in turn, improve sensitivity to ICIs. Sensitization of the TME by entinostat could ultimately broaden the population of patients with breast cancer who could benefit from ICIs.


Assuntos
Neoplasias da Mama , Células Supressoras Mieloides , Animais , Benzamidas/farmacologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Terapia de Imunossupressão , Camundongos , Piridinas , Microambiente Tumoral
4.
Clin Epigenetics ; 13(1): 25, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531075

RESUMO

Epigenetic therapies may modulate the tumor microenvironment. We evaluated the safety and optimal sequence of combination DNA methyltransferase inhibitor guadecitabine with a granulocyte macrophage-colony-stimulating-factor (GM-CSF) secreting colon cancer (CRC) vaccine (GVAX) using a primary endpoint of change in CD45RO + T cells. 18 patients with advanced CRC enrolled, 11 underwent paired biopsies and were evaluable for the primary endpoint. No significant increase in CD45RO + cells was noted. Grade 3-4 toxicities were expected and manageable. Guadecitabine + GVAX was tolerable but demonstrated no significant immunologic activity in CRC. We report a novel trial design to efficiently evaluate investigational therapies with a primary pharmacodynamic endpoint.Trial registry Clinicaltrials.gov: NCT01966289. Registered 21 October, 2013.


Assuntos
Azacitidina/análogos & derivados , Vacinas Anticâncer/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Azacitidina/administração & dosagem , Azacitidina/efeitos adversos , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Biópsia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/efeitos adversos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Terapia Combinada/métodos , Metilação de DNA/efeitos dos fármacos , Epigenômica/métodos , Estudos de Viabilidade , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Imunoterapia/métodos , Imunoterapia Ativa/métodos , Antígenos Comuns de Leucócito/efeitos dos fármacos , Antígenos Comuns de Leucócito/metabolismo , Masculino , Pessoa de Meia-Idade , Segurança , Índice de Gravidade de Doença , Microambiente Tumoral
5.
Oncoimmunology ; 9(1): 1760685, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32923118

RESUMO

Triple-negative breast cancer (TNBC) is a highly metastatic and aggressive disease with limited treatment options. Recently, the combination of the immune checkpoint inhibitor (ICI) atezolizumab (anti-PD-L1) with nab-paclitaxel was approved following a clinical trial that showed response rates in at least 43% of patients. While this approval marks a major advance in the treatment of TNBC it may be possible to improve the efficacy of ICI therapies through further modulation of the suppressive tumor immune microenvironment (TIME). Several factors may limit immune response in TNBC including aberrant growth factor signaling, such as VEGFR2 and cMet signaling, inefficient vascularization, poor delivery of drugs and immune cells, and the skewing of immune cell populations toward immunosuppressive phenotypes. Here we investigate the immune-modulating properties of AXT201, a novel 20 amino-acid integrin-binding peptide in two syngeneic mouse TNBC models: 4T1-BALB/c and NT4-FVB. AXT201 treatment improved survival in the NT4 model by 20% and inhibited the growth of 4T1 tumors by 47% over 22 days post-inoculation. Subsequent immunohistochemical analyses of 4T1 tumors also showed a 53% reduction in vascular density and a 184% increase in pericyte coverage following peptide treatment. Flow cytometry analyses demonstrated evidence of a more favorable anti-tumor immune microenvironment following treatment with AXT201, including significant decreases in the populations of T regulatory cells, monocytic myeloid-derived suppressor cells, and PD-L1 expressing cells and increased expression of T cell functional markers. Together, these findings demonstrate immune-activating properties of AXT201 that could be developed in combination with other immunomodulatory agents in the treatment of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral
6.
Cancer Immunol Res ; 7(3): 428-442, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30642833

RESUMO

In cancers with tumor-infiltrating lymphocytes (TILs), monoclonal antibodies (mAbs) that block immune checkpoints such as CTLA-4 and PD-1/PD-L1 promote antitumor T-cell immunity. Unfortunately, most cancers fail to respond to single-agent immunotherapies. T regulatory cells, myeloid derived suppressor cells (MDSCs), and extensive stromal networks within the tumor microenvironment (TME) dampen antitumor immune responses by preventing T-cell infiltration and/or activation. Few studies have explored combinations of immune-checkpoint antibodies that target multiple suppressive cell populations within the TME, and fewer have studied the combinations of both agonist and antagonist mAbs on changes within the TME. Here, we test the hypothesis that combining a T-cell-inducing vaccine with both a PD-1 antagonist and CD40 agonist mAbs (triple therapy) will induce T-cell priming and TIL activation in mouse models of nonimmunogenic solid malignancies. In an orthotopic breast cancer model and both subcutaneous and metastatic pancreatic cancer mouse models, only triple therapy was able to eradicate most tumors. The survival benefit was accompanied by significant tumor infiltration of IFNγ-, Granzyme B-, and TNFα-secreting effector T cells. Further characterization of immune populations was carried out by high-dimensional flow-cytometric clustering analysis and visualized by t-distributed stochastic neighbor embedding (t-SNE). Triple therapy also resulted in increased infiltration of dendritic cells, maturation of antigen-presenting cells, and a significant decrease in granulocytic MDSCs. These studies reveal that combination CD40 agonist and PD-1 antagonist mAbs reprogram immune resistant tumors in favor of antitumor immunity.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos CD40/agonistas , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Microambiente Tumoral/efeitos dos fármacos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacologia , Vacinas Anticâncer/uso terapêutico , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Memória Imunológica , Ativação Linfocitária , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Camundongos , Células Supressoras Mieloides/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Microambiente Tumoral/imunologia
7.
Cancer Immunol Res ; 6(12): 1561-1577, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30341213

RESUMO

Immune-checkpoint inhibition (ICI) has revolutionized treatment in cancers that are naturally immunogenic by enabling infiltration of T cells into the tumor microenvironment (TME) and promoting cytotoxic signaling pathways. Tumors possessing complex immunosuppressive TMEs such as breast and pancreatic cancers present unique therapeutic obstacles as response rates to ICI remain low. Such tumors often recruit myeloid-derived suppressor cells (MDSCs), whose functioning prohibits both T-cell activation and infiltration. We attempted to sensitize these tumors to ICI using epigenetic modulation to target MDSC trafficking and function to foster a less immunosuppressive TME. We showed that combining a histone deacetylase inhibitor, entinostat (ENT), with anti-PD-1, anti-CTLA-4, or both significantly improved tumor-free survival in both the HER2/neu transgenic breast cancer and the Panc02 metastatic pancreatic cancer mouse models. Using flow cytometry, gene-expression profiling, and ex vivo functional assays, we characterized populations of tumor-infiltrating lymphocytes (TILs) and MDSCs, as well as their functional capabilities. We showed that addition of ENT to checkpoint inhibition led to significantly decreased suppression by granulocytic MDSCs in the TME of both tumor types. We also demonstrated an increase in activated granzyme-B-producing CD8+ T effector cells in mice treated with combination therapy. Gene-expression profiling of both MDSCs and TILs identified significant changes in immune-related pathways. In summary, addition of ENT to ICI significantly altered infiltration and function of innate immune cells, allowing for a more robust adaptive immune response. These findings provide a rationale for combination therapy in patients with immune-resistant tumors, including breast and pancreatic cancers.


Assuntos
Benzamidas/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Células Supressoras Mieloides/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Piridinas/farmacologia , Animais , Antineoplásicos/farmacologia , Antígeno CTLA-4/antagonistas & inibidores , Carcinoma Ductal Pancreático/mortalidade , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Masculino , Neoplasias Mamárias Experimentais/mortalidade , Neoplasias Mamárias Experimentais/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Supressoras Mieloides/imunologia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA