Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 164(3): 392-406.e5, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36402190

RESUMO

BACKGROUND & AIMS: Advanced colorectal carcinoma (CRC) is characterized by a high frequency of primary immune evasion and refractoriness to immunotherapy. Given the importance of interferon (IFN)-γ in CRC immunosurveillance, we investigated whether and how acquired IFN-γ resistance in tumor cells would promote tumor growth, and whether IFN-γ sensitivity could be restored. METHODS: Spontaneous and colitis-associated CRC development was induced in mice with a specific IFN-γ pathway inhibition in intestinal epithelial cells. The influence of IFN-γ pathway gene status and expression on survival was assessed in patients with CRC. The mechanisms underlying IFN-γ resistance were investigated in CRC cell lines. RESULTS: The conditional knockout of the IFN-γ receptor in intestinal epithelial cells enhanced spontaneous and colitis-associated colon tumorigenesis in mice, and the loss of IFN-γ receptor α (IFNγRα) expression by tumor cells predicted poor prognosis in patients with CRC. IFNγRα expression was repressed in human CRC cells through changes in N-glycosylation, which decreased protein stability via proteasome-dependent degradation, inhibiting IFNγR-signaling. Downregulation of the bisecting N-acetylglucosaminyltransferase III (MGAT3) expression was associated with IFN-γ resistance in all IFN-γ-resistant cells, and highly correlated with low IFNγRα expression in CRC tissues. Both ectopic and pharmacological reconstitution of MGAT3 expression with all-trans retinoic acid increased bisecting N-glycosylation, as well as IFNγRα protein stability and signaling. CONCLUSIONS: Together, our results demonstrated that tumor-associated changes in N-glycosylation destabilize IFNγRα, causing IFN-γ resistance in CRC. IFN-γ sensitivity could be reestablished through the increase in MGAT3 expression, notably via all-trans retinoic acid treatment, providing new prospects for the treatment of immune-resistant CRC.


Assuntos
Colite , Neoplasias Colorretais , Humanos , Camundongos , Animais , Glicosilação , Neoplasias Colorretais/patologia , Interferon gama , Imunoterapia , Colite/patologia , Tretinoína
2.
J Physiol ; 601(8): 1353-1370, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36866700

RESUMO

Optical mapping is a widely used tool to record and visualize the electrophysiological properties in a variety of myocardial preparations such as Langendorff-perfused isolated hearts, coronary-perfused wedge preparations, and cell culture monolayers. Motion artifact originating from the mechanical contraction of the myocardium creates a significant challenge to performing optical mapping of contracting hearts. Hence, to minimize the motion artifact, cardiac optical mapping studies are mostly performed on non-contracting hearts, where the mechanical contraction is removed using pharmacological excitation-contraction uncouplers. However, such experimental preparations eliminate the possibility of electromechanical interaction, and effects such as mechano-electric feedback cannot be studied. Recent developments in computer vision algorithms and ratiometric techniques have opened the possibility of performing optical mapping studies on isolated contracting hearts. In this review, we discuss the existing techniques and challenges of optical mapping of contracting hearts.


Assuntos
Coração , Miocárdio , Potenciais de Ação/fisiologia , Coração/diagnóstico por imagem , Coração/fisiologia
3.
Europace ; 25(2): 688-697, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35989424

RESUMO

AIMS: Cardiac arrhythmia originating from the papillary muscle (PM) can trigger ventricular fibrillation (VF) and cause sudden cardiac death even in the absence of structural heart disease. Most premature ventricular contractions, however, are benign and hitherto difficult to distinguish from a potentially fatal arrhythmia. Altered repolarization characteristics are associated with electrical instability, but electrophysiological changes which precede degeneration into VF are still not fully understood. METHODS AND RESULTS: Ventricular arrhythmia (VA) was induced by aconitine injection into PMs of healthy sheep. To investigate mechanisms of degeneration of stable VA into VF in structurally healthy hearts, endocardial high-density and epicardial mapping was performed during sinus rhythm (SR) and VA. The electrical restitution curve, modelling the relation of diastolic interval and activation recovery interval (a surrogate parameter for action potential duration), is steeper in VA than in non-arrhythmia (ventricular pacing and SR). Steeper restitution curves reflect electrical instability and propensity to degenerate into VF. Importantly, we find the parameter repolarization time in relation to cycle length (RT/CL) to differentiate self-limiting from degenerating arrhythmia with high specificity and sensitivity. CONCLUSION: RT/CL may serve as a simple index to aid differentiation between self-limiting and electrically instable arrhythmia with the propensity to degenerate to VF. RT/CL is independent of cycle length and could easily be measured to identify electrical instability in patients.


Assuntos
Arritmias Cardíacas , Músculos Papilares , Animais , Ovinos , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/etiologia , Ventrículos do Coração , Potenciais de Ação/fisiologia , Eletrocardiografia
4.
J Appl Clin Med Phys ; 24(8): e13985, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37051765

RESUMO

The gamma analysis metric is a commonly used metric for VMAT plan evaluation. The major drawback of this is the lack of correlation between gamma passing rates and DVH values. The novel GDSAmean metric was developed by Steers et al. to quantify changes in the PTV mean dose (Dmean ) for VMAT patients. The aim of this work is to apply the GDSA retrospectively on head-and-neck cancer patients treated on the newly acquired Varian Halcyon, to assess changes in GDSAmean , and to evaluate the cause of day-to-day changes in the time-plot series. In-vivo EPID transmission images of head-and-neck cancer patients treated between August 2019 and July 2020 were analyzed retrospectively. The GDSAmean was determined for all patients treated. The changes in patient anatomy and rotational errors were quantified using the daily CBCT images and added to a time-plot with the daily change in GDSAmean . Over 97% of the delivered treatment fractions had a GDSAmean  < 3%. Thirteen of the patients received at least one treatment fraction where the GDSAmean  > 3%. Most of these deviations occurred for the later fractions of radiotherapy treatment. Additionally, 92% of these patients were treated for malignancies involving the larynx and oropharynx. Notable deviations in the effective separation diameters were observed for 62% of the patients where the change in GDSAmean  > 3%. For the other five cases with GDSAmean  < 3%, the mean pitch, roll, and yaw rotational errors were 0.90°, 0.45°, and 0.43°, respectively. A GDSAmean  > 3% was more likely due to a change in separation, whereas a GDSAmean  < 3% was likely caused by rotational errors. Pitch errors were shown to be the most dominant. The GDSAmean is easily implementable and can aid in scheduling new CT scans for patients before significant deviations in dose delivery occur.


Assuntos
Neoplasias de Cabeça e Pescoço , Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Estudos Retrospectivos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia
5.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175428

RESUMO

Mechanosensing plays an essential role in maintaining tissue functions. Across the human body, several tissues (i.e., striated muscles, bones, tendons, ligaments, as well as cartilage) require mechanical loading to exert their physiological functions. Contrary, mechanical unloading triggers pathological remodeling of these tissues and, consequently, human body dysfunctions. At the cellular level, both mechanical loading and unloading regulate a wide spectrum of cellular pathways. Among those, pathways regulated by oxidants such as reactive oxygen species (ROS) represent an essential node critically controlling tissue organization and function. Hence, a sensitive balance between the generation and elimination of oxidants keeps them within a physiological range. Here, the Nuclear Factor-E2-related factor 2/Antioxidant response element (Nrf2/ARE) system plays an essential role as it constitutes the major cellular regulation against exogenous and endogenous oxidative stresses. Dysregulations of this system advance, i.a., liver, neurodegenerative, and cancer diseases. Herein, we extend our comprehension of the Nrf2 system to the aforementioned mechanically sensitive tissues to explore its role in their physiology and pathology. We demonstrate the relevance of it for the tissues' functionality and highlight the imperative to further explore the Nrf2 system to understand the physiology and pathology of mechanically sensitive tissues in the context of redox biology.


Assuntos
Elementos de Resposta Antioxidante , Fator 2 Relacionado a NF-E2 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Mecanotransdução Celular , Fator 2 Relacionado a NF-E2/metabolismo , Oxidantes , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
6.
Artigo em Alemão | MEDLINE | ID: mdl-37079066

RESUMO

The Beobachtungspraxennetzwerk Halle (BeoNet-Halle) is an innovative database of outpatient care that has been collecting patient data from participating primary care and specialty practices throughout Germany since 2020 and making it available for research and care. The database is set up and maintained by the Institute of Medical Epidemiology, Biometrics and Informatics and the Institute of General Practice and Family Medicine of the Martin Luther University Halle-Wittenberg. Furthermore, the Data Integration Center of the University Medical Center Halle is involved in the project. In principle, anonymized and pseudonymized patient data from all commercially available practice management systems should flow into the databases.In this article, we describe the structure and methods of the multi-purpose database BeoNet and quantify the current data stock. The workflow of collection, transfer, and storage of broad consents is described and advantages and limitations of the database are discussed.BeoNet-Halle currently contains anonymized data of approximately 73,043 patients from five physician practices. Furthermore, it includes data from more than 2,653,437 ICD-10 diagnoses, 1,403,726 prescriptions, and 1,894,074 laboratory results. Pseudonymized data were successfully exported from 481 patients.BeoNet-Halle enables an almost seamless representation of the care provided in the participating practices. In the future, the database will map patient treatment pathways across practices and provide high-quality care data to contribute to health policy decision-making and optimization of care processes.


Assuntos
Medicina Geral , Clínicos Gerais , Humanos , Alemanha , Centros Médicos Acadêmicos , Atenção à Saúde
7.
Brief Bioinform ; 21(3): 1115-1117, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117120

RESUMO

Precision medicine has changed thinking in cancer therapy, highlighting a better understanding of the individual clinical interventions. But what role do the drivers and pathways identified from pan-cancer genome analysis play in the tumor? In this letter, we will highlight the importance of in silico modeling in precision medicine. In the current era of big data, tumor engines and pathways derived from pan-cancer analysis should be integrated into in silico models to understand the mutational tumor status and individual molecular pathway mechanism at a deeper level. This allows to pre-evaluate the potential therapy response and develop optimal patient-tailored treatment strategies which pave the way to support precision medicine in the clinic of the future.


Assuntos
Modelos Biológicos , Neoplasias/metabolismo , Transdução de Sinais , Simulação por Computador , Humanos , Neoplasias/patologia , Neoplasias/terapia , Medicina de Precisão , Resultado do Tratamento
8.
Brief Bioinform ; 21(4): 1391-1396, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31578571

RESUMO

Long non-coding RNAs (lncRNAs) are of fundamental biological importance; however, their functional role is often unclear or loosely defined as experimental characterization is challenging and bioinformatic methods are limited. We developed a novel integrated method protocol for the annotation and detailed functional characterization of lncRNAs within the genome. It combines annotation, normalization and gene expression with sequence-structure conservation, functional interactome and promoter analysis. Our protocol allows an analysis based on the tissue and biological context, and is powerful in functional characterization of experimental and clinical RNA-Seq datasets including existing lncRNAs. This is demonstrated on the uncharacterized lncRNA GATA6-AS1 in dilated cardiomyopathy.


Assuntos
RNA Longo não Codificante/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Humanos , Anotação de Sequência Molecular , Análise de Sequência de RNA/métodos
9.
BMC Musculoskelet Disord ; 23(1): 1015, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434613

RESUMO

BACKGROUND: Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial transcription factor for cellular redox homeostasis. The association of Nrf2 with elderly female osteoporotic has yet to be fully described. The aim was to elucidate a potential age-dependent Nrf2 contribution to female osteoporosis in mice. METHODS: Eighteen female wild type (WT) and 16 Nrf2-knockout (KO) mice were sacrificed at different ages (12 weeks = young mature adult and 90 weeks = old) to analyze their femurs. The morphological properties (trabecular and cortical) were evaluated by micro-computed tomography (µCT) and compared to gold standard histochemistry analysis. The quasi-static compression tests were performed to calculate the mechanical properties of bones. Additionally, the population of bone resorbing cells and aromatase expression by osteocytes was immunohistochemically evaluated and empty osteocyte lacunae was counted in cortical bone. RESULTS: Old Nrf2-KO mice revealed a significantly reduced trabecular bone mineral density (BMD), cortical thickness, cortical area, and bone fraction compared to old WT mice, regardless of no significant difference in skeletally mature young adult mice between WT and KO. Specifically, while all old WT mice showed thin metaphyseal trabeculae, trabecular bone was completely absent in 60% of old KO mice. Additionally, old KO mice showed significantly more osteoclast-like cells and fewer aromatase-positive osteocytes than WT mice, whereas the occurrence of empty osteocyte lacunae did not differ between both groups. Nrf2-KO mice further showed an age-dependently reduced fracture resilience compared to age-matched WT mice. CONCLUSION: Our results suggest that chronic Nrf2 loss can lead to age-dependent progression of female osteoporosis.


Assuntos
Fator 2 Relacionado a NF-E2 , Osteoporose , Feminino , Camundongos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Aromatase , Microtomografia por Raio-X , Camundongos Endogâmicos C57BL , Osteoporose/diagnóstico por imagem , Osteoporose/genética , Osteoporose/metabolismo , Camundongos Knockout
10.
J Cancer Educ ; 37(6): 1662-1668, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-33928527

RESUMO

The role of radiotherapy (RT) in cancer care is well described, with a clear correlation between access to radiotherapy and overall survival. Cancer mortality rates in Africa are substantially higher than those of the rest of the world, which may be partly attributed to lack of RT access and insufficient human resources. The Access to Care (A2C) Cape Town RT training programme was created in 2014 with the aim of supplementing practical RT training in the region, focusing on clinics moving from 2 to 3D conformal radiotherapy (3DCRT). The programme makes use of hybrid teaching methods, including pre-course e-learning followed by 17 on-site days of free-thinking design exercises, didactic learning, hands-on treatment planning computer sessions (39% of total teaching time), virtual simulation training and departmental demonstration sessions. Email support is offered to all teams for 3 months after each course to develop clinical protocols. Thirteen teams (radiation oncologist, medical physicist and radiation therapy technologist) from Africa attended the course between 2015 and 2019, with additional participants from seven South African and four international centres. E-learning done on the LäraNära training platform was only successful once formal progress tracking was introduced in 2019 (34% vs. 76% test completion rate). Delays between course attendance and initial clinical use of equipment proved to be detrimental to knowledge retention, with some centres having to send a second team for training. The course will be modified for remote teaching in 2021, to make provision for the global changes in travel due to Covid-19.


Assuntos
COVID-19 , Treinamento por Simulação , Humanos , África do Sul , Aprendizagem , Treinamento por Simulação/métodos , Acessibilidade aos Serviços de Saúde
12.
BMC Med Inform Decis Mak ; 21(1): 358, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930224

RESUMO

BACKGROUND: Extensive sequencing of tumor tissues has greatly improved our understanding of cancer biology over the past years. The integration of genomic and clinical data is increasingly used to select personalized therapies in dedicated tumor boards (Molecular Tumor Boards) or to identify patients for basket studies. Genomic alterations and clinical information can be stored, integrated and visualized in the open-access resource cBioPortal for Cancer Genomics. cBioPortal can be run as a local instance enabling storage and analysis of patient data in single institutions, in the respect of data privacy. However, uploading clinical input data and genetic aberrations requires the elaboration of multiple data files and specific data formats, which makes it difficult to integrate this system into clinical practice. To solve this problem, we developed cbpManager. RESULTS: cbpManager is an R package providing a web-based interactive graphical user interface intended to facilitate the maintenance of mutations data and clinical data, including patient and sample information, as well as timeline data. cbpManager enables a large spectrum of researchers and physicians, regardless of their informatics skills to intuitively create data files ready for upload in cBioPortal for Cancer Genomics on a daily basis or in batch. Due to its modular structure based on R Shiny, further data formats such as copy number and fusion data can be covered in future versions. Further, we provide cbpManager as a containerized solution, enabling a straightforward large-scale deployment in clinical systems and secure access in combination with ShinyProxy. cbpManager is freely available via the Bioconductor project at https://bioconductor.org/packages/cbpManager/ under the AGPL-3 license. It is already used at six University Hospitals in Germany (Mainz, Gießen, Lübeck, Halle, Freiburg, and Marburg). CONCLUSION: In summary, our package cbpManager is currently a unique software solution in the workflow with cBioPortal for Cancer Genomics, to assist the user in the interactive generation and management of study files suited for the later upload in cBioPortal.


Assuntos
Genômica , Neoplasias , Humanos , Armazenamento e Recuperação da Informação , Neoplasias/genética , Software , Fluxo de Trabalho
13.
J Med Internet Res ; 22(10): e19879, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33026356

RESUMO

BACKGROUND: The introduction of next-generation sequencing (NGS) into molecular cancer diagnostics has led to an increase in the data available for the identification and evaluation of driver mutations and for defining personalized cancer treatment regimens. The meaningful combination of omics data, ie, pathogenic gene variants and alterations with other patient data, to understand the full picture of malignancy has been challenging. OBJECTIVE: This study describes the implementation of a system capable of processing, analyzing, and subsequently combining NGS data with other clinical patient data for analysis within and across institutions. METHODS: On the basis of the already existing NGS analysis workflows for the identification of malignant gene variants at the Institute of Pathology of the University Hospital Erlangen, we defined basic requirements on an NGS processing and analysis pipeline and implemented a pipeline based on the GEMINI (GEnome MINIng) open source genetic variation database. For the purpose of validation, this pipeline was applied to data from the 1000 Genomes Project and subsequently to NGS data derived from 206 patients of a local hospital. We further integrated the pipeline into existing structures of data integration centers at the University Hospital Erlangen and combined NGS data with local nongenomic patient-derived data available in Fast Healthcare Interoperability Resources format. RESULTS: Using data from the 1000 Genomes Project and from the patient cohort as input, the implemented system produced the same results as already established methodologies. Further, it satisfied all our identified requirements and was successfully integrated into the existing infrastructure. Finally, we showed in an exemplary analysis how the data could be quickly loaded into and analyzed in KETOS, a web-based analysis platform for statistical analysis and clinical decision support. CONCLUSIONS: This study demonstrates that the GEMINI open source database can be augmented to create an NGS analysis pipeline. The pipeline generates high-quality results consistent with the already established workflows for gene variant annotation and pathological evaluation. We further demonstrate how NGS-derived genomic and other clinical data can be combined for further statistical analysis, thereby providing for data integration using standardized vocabularies and methods. Finally, we demonstrate the feasibility of the pipeline integration into hospital workflows by providing an exemplary integration into the data integration center infrastructure, which is currently being established across Germany.


Assuntos
Sistemas de Apoio a Decisões Clínicas/normas , Atenção à Saúde/métodos , Genômica/métodos , Interoperabilidade da Informação em Saúde/normas , Internet/normas , Aprendizado de Máquina/normas , Humanos
14.
Chaos ; 30(12): 123134, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33380038

RESUMO

The inverse mechano-electrical problem in cardiac electrophysiology is the attempt to reconstruct electrical excitation or action potential wave patterns from the heart's mechanical deformation that occurs in response to electrical excitation. Because heart muscle cells contract upon electrical excitation due to the excitation-contraction coupling mechanism, the resulting deformation of the heart should reflect macroscopic action potential wave phenomena. However, whether the relationship between macroscopic electrical and mechanical phenomena is well-defined and unique enough to be utilized for an inverse imaging technique in which mechanical activation mapping is used as a surrogate for electrical mapping has yet to be determined. Here, we provide a numerical proof-of-principle that deep learning can be used to solve the inverse mechano-electrical problem in phenomenological two- and three-dimensional computer simulations of the contracting heart wall, or in elastic excitable media, with muscle fiber anisotropy. We trained a convolutional autoencoder neural network to learn the complex relationship between electrical excitation, active stress, and tissue deformation during both focal or reentrant chaotic wave activity and, consequently, used the network to successfully estimate or reconstruct electrical excitation wave patterns from mechanical deformation in sheets and bulk-shaped tissues, even in the presence of noise and at low spatial resolutions. We demonstrate that even complicated three-dimensional electrical excitation wave phenomena, such as scroll waves and their vortex filaments, can be computed with very high reconstruction accuracies of about 95% from mechanical deformation using autoencoder neural networks, and we provide a comparison with results that were obtained previously with a physics- or knowledge-based approach.


Assuntos
Aprendizado Profundo , Potenciais de Ação , Simulação por Computador , Eletricidade , Modelos Cardiovasculares , Miócitos Cardíacos
15.
Int J Mol Sci ; 21(9)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370039

RESUMO

It was hypothesized that strontium (Sr)-doped ß-tricalcium phosphate (TCP)-based scaffolds have a positive effect on the regeneration of large bone defects (LBD). Readouts in our mice models were nuclear factor-kappa beta (NF-κB) activity and vascular endothelial growth factor receptor-2 (VEGFR-2) promoter activity during the healing process. A 2-mm critical-size femoral fracture was performed in transgenic NF-κB- and VEGFR-2-luciferase reporter mice. The fracture was filled with a 3D-printed ß-TCP scaffold with or without Sr. A bioluminescence in-vivo imaging system was used to sequentially investigate NF-κB and VEGFR-2 expression for two months. After sacrifice, soft and osseous tissue formation in the fracture sites was histologically examined. NF-κB activity increased in the ß-TCP + Sr group in the latter stage (day 40-60). VEGFR-2 activity increased in the + Sr group from days 0-15 but decreased and showed significantly less activity than the ß-TCP and non-scaffold groups from days 40-60. The new bone formation and soft tissue formation in the + Sr group were significantly higher than in the ß-TCP group, whereas the percentage of osseous tissue formation in the ß-TCP group was significantly higher than in the ß-TCP + Sr group. We analyzed longitudinal VEGFR-2 promoter activity and NF-κB activity profiles, as respective agents of angiogenesis and inflammation, during LBD healing. The extended inflammation phase and eventually more rapid resorption of scaffold caused by the addition of strontium accelerates temporary bridging of the fracture gaps. This finding has the potential to inform an improved treatment strategy for patients who suffer from osteoporosis.


Assuntos
Fosfatos de Cálcio/química , NF-kappa B/genética , Fosfatidiletanolaminas/química , Regiões Promotoras Genéticas , Estrôncio/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Regeneração Óssea , Substitutos Ósseos , Osso e Ossos/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Alicerces Teciduais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
16.
Int J Cancer ; 145(3): 678-685, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30653264

RESUMO

Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide and the need for novel biomarkers and therapeutic strategies to improve diagnosis and surveillance is obvious. This study aims to identify ß6 -integrin (ITGB6) as a novel serum tumor marker for diagnosis, prognosis, and surveillance of CRC. ITGB6 serum levels were validated in retro- and prospective CRC patient cohorts. ITGB6 serum levels were analyzed by ELISA. Using an initial cohort of 60 CRC patients, we found that ITGB6 is present in the serum of CRC, but not in non-CRC control patients. A cut-off of ≥2 ng/mL ITGB6 reveals 100% specificity for the presence of metastatic CRC. In an enlarged study cohort of 269 CRC patients, ITGB6 predicted the onset of metastatic disease and was associated with poor prognosis. Those data were confirmed in an independent, prospective cohort consisting of 40 CRC patients. To investigate whether ITGB6 can also be used for tumor surveillance, serum ITGB6-levels were assessed in 26 CRC patients, pre- and post-surgery, as well as during follow-up visits. After complete tumor resection, ITGB6 serum levels declined completely. During follow-up, a new rise in ITGB6 serum levels indicated tumor recurrence or the onset of new metastasis as confirmed by CT scan. ITGB6 was more accurate for prognosis of advanced CRC and for tumor surveillance as the established marker carcinoembryonic antigen (CEA). Our findings identify ITGB6 as a novel serum marker for diagnosis, prognosis, and surveillance of advanced CRC. This might essentially contribute to an optimized patient care.


Assuntos
Neoplasias Colorretais/sangue , Cadeias beta de Integrinas/sangue , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Neoplasias Colorretais/genética , Humanos , Cadeias beta de Integrinas/biossíntese , Cadeias beta de Integrinas/genética , Prognóstico , Estudo de Prova de Conceito , Modelos de Riscos Proporcionais , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reprodutibilidade dos Testes
17.
Calcif Tissue Int ; 105(4): 341-352, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31236620

RESUMO

Fracture healing is a natural process that recapitulates embryonic skeletal development. In the early phase after fracture, reactive oxygen species (ROS) are produced under inflammatory and ischemic conditions due to vessel injury and soft tissue damage, leading to cell death. Usually, such damage during the course of fracture healing can be largely prevented by protective mechanisms and functions of antioxidant enzymes. However, intrinsic oxidative stress can cause excessive toxic radicals, resulting in irreversible damage to cells associated with bone repair during the fracture healing process. Clinically, patients with type-2 diabetes mellitus, osteoporosis, habitual drinkers, or heavy smokers are at risk of impaired fracture healing due to elevated oxidative stress. Although increased levels of oxidative stress markers upon fracture and effects of antioxidants on fracture healing have been reported, a detailed understanding of what causes impaired fracture healing under intrinsic conditions of oxidative stress is lacking. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been identified as a key transcriptional regulator of the expression of antioxidants and detoxifying enzymes. It further not only plays a crucial role in preventing degenerative diseases in multiple organs, but also during fracture healing. This narrative review evaluates the influence of intrinsic oxidative stress on fracture healing and sheds new light on the intriguing role of Nrf2 during bone regeneration in pathological fractures.


Assuntos
Consolidação da Fratura/fisiologia , Regulação da Expressão Gênica/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Animais , Humanos , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
18.
Chaos ; 29(9): 093117, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31575136

RESUMO

The heart is an elastic excitable medium, in which mechanical contraction is triggered by nonlinear waves of electrical excitation, which diffuse rapidly through the heart tissue and subsequently activate the cardiac muscle cells to contract. These highly dynamic excitation wave phenomena have yet to be fully observed within the depths of the heart muscle, as imaging technology is unable to penetrate the tissue and provide panoramic, three-dimensional visualizations necessary for adequate study. As a result, the electrophysiological mechanisms that are associated with the onset and progression of severe heart rhythm disorders such as atrial or ventricular fibrillation remain insufficiently understood. Here, we present a novel synchronization-based data assimilation approach with which it is possible to reconstruct excitation wave dynamics within the volume of elastic excitable media by observing spatiotemporal deformation patterns, which occur in response to excitation. The mechanical data are assimilated in a numerical replication of the measured elastic excitable system, and within this replication, the data drive the intrinsic excitable dynamics, which then coevolve and correspond to a reconstruction of the original dynamics. We provide a numerical proof-of-principle and demonstrate the performance of the approach by recovering even complicated three-dimensional scroll wave patterns, including vortex filaments of electrical excitation from within a deformable bulk tissue with fiber anisotropy. In the future, the reconstruction approach could be combined with high-speed imaging of the heart's mechanical contractions to estimate its electrophysiological activity for diagnostic purposes.


Assuntos
Arritmias Cardíacas/fisiopatologia , Simulação por Computador , Fenômenos Eletrofisiológicos , Modelos Cardiovasculares , Contração Miocárdica , Miocárdio , Humanos
19.
Dig Dis ; 36(5): 337-345, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29870973

RESUMO

BACKGROUND AND AIMS: Gastrointestinal stromal tumors (GISTs) are rare malignancies but the most common mesenchymal tumors of the digestive tract. Recent advances in diagnostic imaging and an increasing incidence will confront us more frequently with stromal tumors. This single center study aimed to characterize GIST patients in terms of tumor location, clinical presentation, metastasis formation, as well as associated secondary malignancies. METHODS: In a retrospective study, 104 patients with a histologically confirmed diagnosis of GIST, collected between 1993 and 2011, were characterized for several clinical features. RESULTS: The most common GIST location was the stomach (67.6%) followed by the small intestine (16.2%). Gastrointestinal bleeding (55.8%) and abdominal pain (38.5%) were the most frequently reported symptoms whereas about one-third of patients remained clinically asymptomatic (31.6%); 14.4% of patients had either synchronous or metachronous metastases and there was a significant prevalence also in the low risk group. The proportion of secondary malignant associated neoplasms was 31% in our GIST cohort, among which gastrointestinal, genitourinary tumors, and breast cancer were the most prevalent. CONCLUSION: There was a considerable risk for metastasis formation and the development of secondary neoplasias that should encourage discussion about the appropriate surveillance strategy after surgery for GIST.


Assuntos
Neoplasias Gastrointestinais/complicações , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/complicações , Tumores do Estroma Gastrointestinal/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Neoplasias Gastrointestinais/diagnóstico , Tumores do Estroma Gastrointestinal/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/patologia , Prevalência , Estudos Retrospectivos , Fatores de Risco
20.
Phys Rev Lett ; 119(5): 054101, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28949756

RESUMO

In excitable media, chaotic dynamics governed by spiral or scroll waves is often not persistent but transient. Using extensive simulations employing different mathematical models we identify a specific type-II supertransient by an exponential increase of transient lifetimes with the system size in 2D and an investigation of the dynamics (number and lifetime of spiral waves, Kaplan-Yorke dimension). In 3D, simulations exhibit an increase of transient lifetimes and filament lengths only above a critical thickness. Finally, potential implications for understanding cardiac arrhythmias are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA