Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 152(1-2): 276-89, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23273991

RESUMO

MDA5, a viral double-stranded RNA (dsRNA) receptor, shares sequence similarity and signaling pathways with RIG-I yet plays essential functions in antiviral immunity through distinct specificity for viral RNA. Revealing the molecular basis for the functional divergence, we report here the crystal structure of MDA5 bound to dsRNA, which shows how, using the same domain architecture, MDA5 recognizes the internal duplex structure, whereas RIG-I recognizes the terminus of dsRNA. We further show that MDA5 uses direct protein-protein contacts to stack along dsRNA in a head-to-tail arrangement, and that the signaling domain (tandem CARD), which decorates the outside of the core MDA5 filament, also has an intrinsic propensity to oligomerize into an elongated structure that activates the signaling adaptor, MAVS. These data support a model in which MDA5 uses long dsRNA as a signaling platform to cooperatively assemble the core filament, which in turn promotes stochastic assembly of the tandem CARD oligomers for signaling.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , RNA de Cadeia Dupla/metabolismo , Sequência de Aminoácidos , Humanos , Helicase IFIH1 Induzida por Interferon , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA de Cadeia Dupla/química , Receptores do Ácido Retinoico/química , Receptores do Ácido Retinoico/metabolismo , Alinhamento de Sequência , Difração de Raios X
2.
Mol Cell Proteomics ; 20: 100142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34478875

RESUMO

Chromatin-associated RNAs have diverse roles in the nucleus. However, their mechanisms of action are poorly understood, in part because of the inability to identify proteins that specifically associate with chromatin-bound RNAs. Here, we address this problem for a subset of chromatin-associated RNAs that form R-loops-RNA-DNA hybrid structures that include a displaced strand of ssDNA. R-loops generally form cotranscriptionally and have important roles in regulation of gene expression, immunoglobulin class switching, and other processes. However, unresolved R-loops can lead to DNA damage and chromosome instability. To identify factors that may bind and regulate R-loop accumulation or mediate R-loop-dependent functions, we used a comparative immunoprecipitation/MS approach, with and without RNA-protein crosslinking, to identify a stringent set of R-loop-binding proteins in mouse embryonic stem cells. We identified 364 R-loop-interacting proteins, which were highly enriched for proteins with predicted RNA-binding functions. We characterized several R-loop-interacting proteins of the DEAD-box family of RNA helicases and found that these proteins localize to the nucleolus and, to a lesser degree, the nucleus. Consistent with their localization patterns, we found that these helicases are required for rRNA processing and regulation of gene expression. Surprisingly, depletion of these helicases resulted in misregulation of highly overlapping sets of protein-coding genes, including many genes that function in differentiation and development. We conclude that R-loop-interacting DEAD-box helicases have nonredundant roles that are critical for maintaining the normal embryonic stem cell transcriptome.


Assuntos
RNA Helicases DEAD-box/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Estruturas R-Loop , Animais , Células Cultivadas , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica , Camundongos , Proteômica/métodos , RNA/metabolismo , Processamento Pós-Transcricional do RNA
3.
Nature ; 538(7625): 397-401, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27706135

RESUMO

Transient, multi-protein complexes are important facilitators of cellular functions. This includes the chaperome, an abundant protein family comprising chaperones, co-chaperones, adaptors, and folding enzymes-dynamic complexes of which regulate cellular homeostasis together with the protein degradation machinery. Numerous studies have addressed the role of chaperome members in isolation, yet little is known about their relationships regarding how they interact and function together in malignancy. As function is probably highly dependent on endogenous conditions found in native tumours, chaperomes have resisted investigation, mainly due to the limitations of methods needed to disrupt or engineer the cellular environment to facilitate analysis. Such limitations have led to a bottleneck in our understanding of chaperome-related disease biology and in the development of chaperome-targeted cancer treatment. Here we examined the chaperome complexes in a large set of tumour specimens. The methods used maintained the endogenous native state of tumours and we exploited this to investigate the molecular characteristics and composition of the chaperome in cancer, the molecular factors that drive chaperome networks to crosstalk in tumours, the distinguishing factors of the chaperome in tumours sensitive to pharmacologic inhibition, and the characteristics of tumours that may benefit from chaperome therapy. We find that under conditions of stress, such as malignant transformation fuelled by MYC, the chaperome becomes biochemically 'rewired' to form a network of stable, survival-facilitating, high-molecular-weight complexes. The chaperones heat shock protein 90 (HSP90) and heat shock cognate protein 70 (HSC70) are nucleating sites for these physically and functionally integrated complexes. The results indicate that these tightly integrated chaperome units, here termed the epichaperome, can function as a network to enhance cellular survival, irrespective of tissue of origin or genetic background. The epichaperome, present in over half of all cancers tested, has implications for diagnostics and also provides potential vulnerability as a target for drug intervention.


Assuntos
Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Descoberta de Drogas , Feminino , Genes myc/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Camundongos , Chaperonas Moleculares/antagonistas & inibidores , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/química , Neoplasias/tratamento farmacológico , Neoplasias/genética , Especificidade de Órgãos
4.
J Biol Chem ; 294(51): 19486-19497, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31690623

RESUMO

Photoreceptor phosphodiesterase 6 (PDE6) is the central effector of the visual excitation pathway in both rod and cone photoreceptors, and PDE6 mutations that alter PDE6 structure or regulation can result in several human retinal diseases. The rod PDE6 holoenzyme consists of two catalytic subunits (Pαß) whose activity is suppressed in the dark by binding of two inhibitory γ-subunits (Pγ). Upon photoactivation of rhodopsin, the heterotrimeric G protein (transducin) is activated, resulting in binding of the activated transducin α-subunit (Gtα) to PDE6, displacement of Pγ from the PDE6 active site, and enzyme activation. Although the biochemistry of this pathway is understood, a lack of detailed structural information about the PDE6 activation mechanism hampers efforts to develop therapeutic interventions for managing PDE6-associated retinal diseases. To address this gap, here we used a cross-linking MS-based approach to create a model of the entire interaction surface of Pγ with the regulatory and catalytic domains of Pαß in its nonactivated state. Following reconstitution of PDE6 and activated Gtα with liposomes and identification of cross-links between Gtα and PDE6 subunits, we determined that the PDE6-Gtα protein complex consists of two Gtα-binding sites per holoenzyme. Each Gtα interacts with the catalytic domains of both catalytic subunits and induces major changes in the interaction sites of the Pγ subunit with the catalytic subunits. These results provide the first structural model for the activated state of the transducin-PDE6 complex during visual excitation, enhancing our understanding of the molecular etiology of inherited retinal diseases.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/química , Proteínas de Ligação ao GTP/química , Visão Ocular , Animais , Sítios de Ligação , Domínio Catalítico , Bovinos , Reagentes de Ligações Cruzadas , Microscopia Crioeletrônica , Holoenzimas/química , Espectrometria de Massas , Mutação , Ligação Proteica , Retina/enzimologia , Rodopsina/química , Transducina/química
5.
Methods ; 144: 53-63, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29857191

RESUMO

For decades, chemical cross-linking of proteins has been an established method to study protein interaction partners. The chemical cross-linking approach has recently been revived by mass spectrometric analysis of the cross-linking reaction products. Chemical cross-linking and mass spectrometric analysis (CXMS) enables the identification of residues that are close in three-dimensional (3D) space but not necessarily close in primary sequence. Therefore, this approach provides medium resolution information to guide de novo structure prediction, protein interface mapping and protein complex model building. The robustness and compatibility of the CXMS approach with multiple biochemical methods have made it especially appealing for challenging systems with multiple biochemical compositions and conformation states. This review provides an overview of the CXMS approach, describing general procedures in sample processing, data acquisition and analysis. Selection of proper chemical cross-linking reagents, strategies for cross-linked peptide identification, and successful application of CXMS in structural characterization of proteins and protein complexes are discussed.


Assuntos
Reagentes de Ligações Cruzadas , Espectrometria de Massas/métodos , Conformação Proteica , Proteínas/metabolismo , Modelos Moleculares , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas/química
6.
BMC Genomics ; 18(1): 633, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821232

RESUMO

BACKGROUND: Soil salinization is a worldwide problem that is intensifying because of the effects of climate change. An effective method for the reclamation of salt-affected soils involves initiating plant succession using fast growing, nitrogen fixing actinorhizal trees such as the Casuarina. The salt tolerance of Casuarina is enhanced by the nitrogen-fixing symbiosis that they form with the actinobacterium Frankia. Identification and molecular characterization of salt-tolerant Casuarina species and associated Frankia is imperative for the successful utilization of Casuarina trees in saline soil reclamation efforts. In this study, salt-tolerant and salt-sensitive Casuarina associated Frankia strains were identified and comparative genomics, transcriptome profiling, and proteomics were employed to elucidate the molecular mechanisms of salt and osmotic stress tolerance. RESULTS: Salt-tolerant Frankia strains (CcI6 and Allo2) that could withstand up to 1000 mM NaCl and a salt-sensitive Frankia strain (CcI3) which could withstand only up to 475 mM NaCl were identified. The remaining isolates had intermediate levels of salt tolerance with MIC values ranging from 650 mM to 750 mM. Comparative genomic analysis showed that all of the Frankia isolates from Casuarina belonged to the same species (Frankia casuarinae). Pangenome analysis revealed a high abundance of singletons among all Casuarina isolates. The two salt-tolerant strains contained 153 shared single copy genes (most of which code for hypothetical proteins) that were not found in the salt-sensitive(CcI3) and moderately salt-tolerant (CeD) strains. RNA-seq analysis of one of the two salt-tolerant strains (Frankia sp. strain CcI6) revealed hundreds of genes differentially expressed under salt and/or osmotic stress. Among the 153 genes, 7 and 7 were responsive to salt and osmotic stress, respectively. Proteomic profiling confirmed the transcriptome results and identified 19 and 8 salt and/or osmotic stress-responsive proteins in the salt-tolerant (CcI6) and the salt-sensitive (CcI3) strains, respectively. CONCLUSION: Genetic differences between salt-tolerant and salt-sensitive Frankia strains isolated from Casuarina were identified. Transcriptome and proteome profiling of a salt-tolerant strain was used to determine molecular differences correlated with differential salt-tolerance and several candidate genes were identified. Mechanisms involving transcriptional and translational regulation, cell envelop remodeling, and previously uncharacterized proteins appear to be important for salt tolerance. Physiological and mutational analyses will further shed light on the molecular mechanism of salt tolerance in Casuarina associated Frankia isolates.


Assuntos
Fagales/microbiologia , Frankia/genética , Frankia/fisiologia , Perfilação da Expressão Gênica , Proteômica , Tolerância ao Sal/genética , Árvores/microbiologia , Membrana Celular/metabolismo , Frankia/citologia , Frankia/metabolismo , Nitrogênio/farmacologia , Nucleotídeos/metabolismo , Pressão Osmótica , Fenótipo , Regulação para Cima
7.
Langmuir ; 32(15): 3754-9, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27049640

RESUMO

Understanding the structure-function relationships of pigment-based nanostructures can provide insight into the molecular mechanisms behind biological signaling, camouflage, or communication experienced in many species. In squid Doryteuthis pealeii, combinations of phenoxazone-based pigments are identified as the source of visible color within the nanostructured granules that populate dermal chromatophore organs. In the absence of the pigments, granules experience a reduction in diameter with the loss of visible color, suggesting important structural and functional features. Energy gaps are estimated from electronic absorption spectra, revealing highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energies that are dependent upon the varying carboxylated states of the pigment. These results implicate a hierarchical mechanism for the bulk coloration in cephalopods originating from the molecular components confined within in the nanostructured granules of chromatophore organs.


Assuntos
Cromatóforos/ultraestrutura , Decapodiformes/química , Oxazinas/química , Pigmentos Biológicos/química , Xantenos/química , Animais , Espectrometria de Massas , Modelos Químicos , Oxazinas/isolamento & purificação , Pigmentos Biológicos/isolamento & purificação , Xantenos/isolamento & purificação
8.
Can J Microbiol ; 61(4): 281-92, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25742598

RESUMO

The Frankia-actinorhizal plant symbiosis plays a significant role in plant colonization in soils contaminated with heavy metals and toxic aromatic hydrocarbons. The molecular response of Frankia upon exposure to soil contaminants is not well understood. To address this issue, we subjected Frankia sp. strain QA3 to naphthalene stress and showed that it could grow on naphthalene as a sole carbon source. Bioinformatic analysis of the Frankia QA3 genome identified a potential operon for aromatic compound degradation as well as several ring-hydroxylating dioxygenases. Under naphthalene stress, the expression of these genes was upregulated. Proteome analysis showed a differential protein profile for cells under naphthalene stress. Several protein spots were analyzed and used to identify proteins involved in stress response, metabolism, and energy production, including a lignostilbene dioxygenase. These results provide a model for understanding the molecular response of Frankia to common soil pollutants, which may be required for survival and proliferation of the bacterium and their hosts in polluted environments.


Assuntos
Proteínas de Bactérias/genética , Frankia/genética , Naftalenos/metabolismo , Poluentes do Solo/metabolismo , Proteínas de Bactérias/metabolismo , Frankia/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteoma/genética , Proteoma/metabolismo
9.
J Cell Sci ; 125(Pt 17): 4126-36, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22623724

RESUMO

Microtubules are a vital part of the cytoskeleton of eukaryotic cells and are involved in various cellular processes. The cytoskeleton of Trypanosoma brucei is characterized by an array of subpellicular microtubules and is essential for maintenance of cell shape and polarity, but little is known about the regulation of the assembly and organization of the subpellicular microtubule corset. Here, we report that the orphan kinesin TbKIN-D regulates the organization of subpellicular microtubules and is required for maintaining cell morphology. TbKIN-D possesses in vitro ATPase activity, associates with cytoskeletal microtubules and is distributed throughout the cytoskeleton at all cell cycle stages. RNAi of TbKIN-D disrupts the organization of the subpellicular microtubule corset and distorts cell morphology, resulting in round cells with an elongated posterior filled with newly assembled microtubules. Depletion of TbKIN-D also abolishes the segregation of organelles and cytoskeletal structures, suggesting that cellular morphogenesis is essential for proper organelle segregation. Moreover, TbKIN-D deficiency impairs the attachment of the new flagellum without compromising the formation of the flagellum attachment zone. Finally, we identified TbKIN-C, a kinetoplastid-specific kinesin known to regulate subpellicular microtubules and cell morphogenesis in T. brucei, as a partner of TbKIN-D. Further, we demonstrate that interaction between TbKIN-C and TbKIN-D requires the coiled-coil motifs in the C-termini of both proteins. Altogether, our results suggest that TbKIN-D cooperates with TbKIN-C to maintain cell morphology by regulating the organization of the subpellicular microtubule corset.


Assuntos
Forma Celular , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Morte Celular , Proliferação de Células , Cromatografia de Afinidade , Flagelos/metabolismo , Flagelos/ultraestrutura , Cinesinas/química , Microtúbulos/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Dados de Sequência Molecular , Coloração Negativa , Especificidade de Órgãos , Ligação Proteica , Proteínas de Protozoários/química , Interferência de RNA , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/ultraestrutura , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo
10.
Appl Microbiol Biotechnol ; 98(18): 8005-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24903815

RESUMO

Several Frankia strains have been shown to be copper-tolerant. The mechanism of their copper tolerance was investigated for Frankia sp. strain EuI1c. Copper binding was shown by binding studies. Unusual globular structures were observed on the surface of the bacterium. These globular structures were composed of aggregates containing many relatively smaller "leaf-like" structures. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDAX) analysis of these structures indicated elevated copper and phosphate levels compared to the control cells. Fourier transform infrared spectroscopy (FTIR) analysis indicated an increase in extracellular phosphate on the cell surface of copper-stressed cells. Bioinformatics' analysis of the Frankia sp. strain EuI1c genome revealed five potential cop genes: copA, copZ, copC, copCD, and copD. Experiments with Frankia sp. strain EuI1c using qRT-PCR indicated an increase in messenger RNA (mRNA) levels of the five cop genes upon Cu(2+) stress. After 5 days of Cu(2+) stress, the copA, copZ, copC, copCD, and copD mRNA levels increased 25-, 8-, 18-, 18-, and 25-fold, respectively. The protein profile of Cu(2+)-stressed Frankia sp. strain EuI1c cells revealed the upregulation of a 36.7 kDa protein that was identified as FraEuI1c_1092 (sulfate-binding periplasmic transport protein). Homologues of this gene were only present in the genomes of the Cu(2+)-resistant Frankia strains (EuI1c, DC12, and CN3). These data indicate that copper tolerance by Frankia sp. strain EuI1c involved the binding of copper to the cell surface and transport proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Frankia/metabolismo , Proteínas de Bactérias/genética , Frankia/genética , Regulação Bacteriana da Expressão Gênica
11.
Curr Opin Struct Biol ; 87: 102872, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936319

RESUMO

Structural information on protein-protein interactions (PPIs) is essential for improved understanding of regulatory interactome networks that confer various physiological and pathological responses. Additionally, maladaptive PPIs constitute desirable therapeutic targets due to inherently high disease state specificity. Recent advances in chemical cross-linking strategies coupled with mass spectrometry (XL-MS) have positioned XL-MS as a promising technology to not only elucidate the molecular architecture of individual protein assemblies, but also to characterize proteome-wide PPI networks. Moreover, quantitative in vivo XL-MS provides a new capability for the visualization of cellular interactome dynamics elicited by drug treatments, disease states, or aging effects. The emerging field of XL-MS based complexomics enables unique insights on protein moonlighting and protein complex remodeling. These techniques provide complimentary information necessary for in-depth structural interactome studies to better comprehend how PPIs mediate function in living systems.


Assuntos
Reagentes de Ligações Cruzadas , Espectrometria de Massas , Reagentes de Ligações Cruzadas/química , Espectrometria de Massas/métodos , Humanos , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Biologia de Sistemas/métodos , Mapas de Interação de Proteínas , Animais , Proteômica/métodos
12.
Sci Adv ; 10(23): eadn5175, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838138

RESUMO

Inheritance of epigenetic information is critical for maintaining cell identity. The transfer of parental histone H3-H4 tetramers, the primary carrier of epigenetic modifications on histone proteins, represents a crucial yet poorly understood step in the inheritance of epigenetic information. Here, we show the lagging strand DNA polymerase, Pol δ, interacts directly with H3-H4 and that the interaction between Pol δ and the sliding clamp PCNA regulates parental histone transfer to lagging strands, most likely independent of their roles in DNA synthesis. When combined, mutations at Pol δ and Mcm2 that compromise parental histone transfer result in a greater reduction in nucleosome occupancy at nascent chromatin than mutations in either alone. Last, PCNA contributes to nucleosome positioning on nascent chromatin. On the basis of these results, we suggest that the PCNA-Pol δ complex couples lagging strand DNA synthesis to parental H3-H4 transfer, facilitating epigenetic inheritance.


Assuntos
DNA Polimerase III , Replicação do DNA , Epigênese Genética , Histonas , Antígeno Nuclear de Célula em Proliferação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Histonas/metabolismo , DNA Polimerase III/metabolismo , DNA Polimerase III/genética , Nucleossomos/metabolismo , Nucleossomos/genética , DNA/metabolismo , Humanos , Ligação Proteica , Mutação , Cromatina/metabolismo , Cromatina/genética
13.
Nat Commun ; 15(1): 8912, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39414766

RESUMO

The intricate network of protein-chaperone interactions is crucial for maintaining cellular function. Recent discoveries have unveiled the existence of specialized chaperone assemblies, known as epichaperomes, which serve as scaffolding platforms that orchestrate the reconfiguration of protein-protein interaction networks, thereby enhancing cellular adaptability and proliferation. This study explores the structural and regulatory aspects of epichaperomes, with a particular focus on the role of post-translational modifications (PTMs) in their formation and function. A key finding is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 within an intrinsically disordered region, as critical determinants of epichaperome assembly. Our data demonstrate that phosphorylation of these serine residues enhances HSP90's interactions with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Moreover, we establish a direct link between epichaperome function and cellular physiology, particularly in contexts where robust proliferation and adaptive behavior are essential, such as in cancer and pluripotent stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone assemblies in diseases characterized by epichaperome dysregulation, thereby bridging the gap between fundamental research and precision medicine.


Assuntos
Proliferação de Células , Proteínas de Choque Térmico HSP90 , Chaperonas Moleculares , Processamento de Proteína Pós-Traducional , Humanos , Fosforilação , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Animais , Mapas de Interação de Proteínas , Camundongos , Serina/metabolismo , Linhagem Celular Tumoral
14.
Res Sq ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38645031

RESUMO

The intricate protein-chaperone network is vital for cellular function. Recent discoveries have unveiled the existence of specialized chaperone complexes called epichaperomes, protein assemblies orchestrating the reconfiguration of protein-protein interaction networks, enhancing cellular adaptability and proliferation. This study delves into the structural and regulatory aspects of epichaperomes, with a particular emphasis on the significance of post-translational modifications in shaping their formation and function. A central finding of this investigation is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 situated within an intrinsically disordered region, as critical determinants in epichaperome assembly. Our data demonstrate that the phosphorylation of these serine residues enhances HSP90's interaction with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Furthermore, this study establishes a direct link between epichaperome function and cellular physiology, especially in contexts where robust proliferation and adaptive behavior are essential, such as cancer and stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone complexes in diseases characterized by epichaperome dysregulation, bridging the gap between fundamental research and precision medicine.

15.
mBio ; 14(4): e0357322, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37350586

RESUMO

The protozoan pathogen Toxoplasma gondii relies on tight regulation of gene expression to invade and establish infection in its host. The divergent gene regulatory mechanisms of Toxoplasma and related apicomplexan pathogens rely heavily on regulators of chromatin structure and histone modifications. The important contribution of histone acetylation for Toxoplasma in both acute and chronic infection has been demonstrated, where histone acetylation increases at active gene loci. However, the direct consequences of specific histone acetylation marks and the chromatin pathway that influences transcriptional regulation in response to the modification are unclear. As a reader of lysine acetylation, the bromodomain serves as a mediator between the acetylated histone and transcriptional regulators. Here we show that the bromodomain protein, TgBDP1, which is conserved among Apicomplexa and within the Alveolata superphylum, is essential for Toxoplasma asexual proliferation. Using cleavage under targets and tagmentation, we demonstrate that TgBDP1 is recruited to transcriptional start sites of a large proportion of parasite genes. Transcriptional profiling during TgBDP1 knockdown revealed that loss of TgBDP1 leads to major dysregulation of gene expression, implying multiple roles for TgBDP1 in both gene activation and repression. This is supported by interactome analysis of TgBDP1 demonstrating that TgBDP1 forms a core complex with two other bromodomain proteins and an ApiAP2 factor. This core complex appears to interact with other epigenetic factors such as nucleosome remodeling complexes. We conclude that TgBDP1 interacts with diverse epigenetic regulators to exert opposing influences on gene expression in the Toxoplasma tachyzoite. IMPORTANCE Histone acetylation is critical for proper regulation of gene expression in the single-celled eukaryotic pathogen Toxoplasma gondii. Bromodomain proteins are "readers" of histone acetylation and may link the modified chromatin to transcription factors. Here, we show that the bromodomain protein TgBDP1 is essential for parasite survival and that loss of TgBDP1 results in global dysregulation of gene expression. TgBDP1 is recruited to the promoter region of a large proportion of parasite genes, forms a core complex with two other bromodomain proteins, and interacts with different transcriptional regulatory complexes. We conclude that TgBDP1 is a key factor for sensing specific histone modifications to influence multiple facets of transcriptional regulation in Toxoplasma gondii.


Assuntos
Parasitos , Toxoplasma , Animais , Toxoplasma/metabolismo , Histonas/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica , Parasitos/genética , Epigênese Genética , Acetilação , Proteínas de Protozoários/metabolismo
16.
Mol Cell Proteomics ; 9(1): 25-31, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19809093

RESUMO

Chemical cross-linking, followed by identification of the cross-linked residues, is a powerful approach to probe the topologies and interacting surfaces of protein assemblies. In this work, we demonstrate a new bioinformatics approach using multiple program modules within the software package "Protein Prospector" that greatly facilitates the discovery of cross-linked peptides in chemical cross-linking studies. Examples are given for how this approach has been used for defining interfaces in heterodimeric and homodimeric protein complexes, both of which provide results in close agreement with crystal structures, verifying the reliability of the approach.


Assuntos
Proteínas de Bactérias/química , Reagentes de Ligações Cruzadas/química , Proteínas Recombinantes de Fusão/química , Software , Proteínas de Bactérias/genética , Biologia Computacional/métodos , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Estrutura Molecular , Mutação , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética
17.
EMBO J ; 26(24): 4946-55, 2007 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18034155

RESUMO

Eisosomes help sequester a subgroup of plasma membrane proteins into discrete membrane domains that colocalize with sites of endocytosis. Here we show that the major eisosome component Pil1 in vivo is a target of the long-chain base (LCB, the biosynthetic precursors to sphingolipids)-signaling pathway mediated by the Pkh-kinases. Eisosomes disassemble if Pil1 is hyperphosphorylated (i) upon overexpression of Pkh-kinases, (ii) upon reducing LCB concentrations by inhibiting serine-palmitoyl transferase in lcb1-mutant cells or by poisoning the enzyme with myriocin, and (iii) upon mimicking hyperphosphorylation in pil1-mutant cells. Conversely, more Pil1 assembles into eisosomes if Pil1 is hypophosphorylated (i) upon reducing Pkh-kinase activity in pkh1 pkh2-mutant cells, (ii) upon activating Pkh-kinases by addition of LCBs, and (iii) upon mimicking hypophosphorylation in pil1-mutant cells. The resulting enlarged eisosomes show altered organization. Other data suggest that Pkh signaling and sphingolipids are important for endocytosis. Taken together with our previous results that link eisosomes to endocytosis, these observations suggest that Pkh-kinase signaling relayed to Pil1 may help regulate endocytic events to modulate the organization of the plasma membrane.


Assuntos
Membrana Celular , Endocitose/fisiologia , Fosfoproteínas/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Fosfoproteínas/genética , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Esfingolipídeos/química , Esfingolipídeos/metabolismo
18.
Anal Biochem ; 410(2): 257-65, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21146485

RESUMO

Cyclophilin-40 (CyP40) is part of the immunophilin family and is found in Hsp90-containing protein complexes. We were interested in identifying proteins that interact with CyP40. CyP40-interacting proteins in HeLa cells were identified using the tandem affinity purification approach. Adenovirus expressing human CyP40 protein (Ad-CyP40), fused with streptavidin and calmodulin binding peptides at the N terminus, was generated. Proteins were separated on a sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel after tandem affinity purification. Here 10 silver-stained protein bands that were enriched in the Ad-CyP40-infected lysate and the corresponding regions in the control lysate were excised, digested by trypsin, and identified by tandem mass spectrometric analysis. Of 11 interacting proteins that were identified, 4 (RACK1, Ku70, RPS3, and NF45) were expressed in rabbit reticulocyte lysate, bacteria, and MCF-7 cells. We confirmed that these proteins interact with CyP40. We observed that RACK1 suppressed the cobalt chloride-induced, hypoxia response element-dependent luciferase activity in MCF-7 cells but not in MCF-7 stable cells expressing approximately 10% of the cellular CyP40 content. In addition, RACK1 reduced the HIF-1α protein accumulation after cobalt chloride treatment, which was not observed when the CyP40 content was down-regulated. Collectively, we conclude that reduction of the HIF-1 α protein by RACK1 is CyP40-mediated.


Assuntos
Proteínas de Arabidopsis/química , Ciclofilinas/química , Ciclofilinas/metabolismo , Proteínas de Ligação a DNA/química , Proteína do Fator Nuclear 45/química , Peptídeos/química , Proteínas Ribossômicas/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/metabolismo , Linhagem Celular , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Ciclofilinas/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Proteína do Fator Nuclear 45/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Coelhos , Receptores de Quinase C Ativada , Reticulócitos , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem/métodos
19.
Front Mol Biosci ; 8: 653148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041264

RESUMO

The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium's collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.

20.
J Mol Biol ; 432(21): 5765-5783, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32898583

RESUMO

Regulation of photoreceptor phosphodiesterase (PDE6) activity is responsible for the speed, sensitivity, and recovery of the photoresponse during visual signaling in vertebrate photoreceptor cells. It is hypothesized that physiological differences in the light responsiveness of rods and cones may result in part from differences in the structure and regulation of the distinct isoforms of rod and cone PDE6. Although rod and cone PDE6 catalytic subunits share a similar domain organization consisting of tandem GAF domains (GAFa and GAFb) and a catalytic domain, cone PDE6 is a homodimer whereas rod PDE6 consists of two homologous catalytic subunits. Here we provide the x-ray crystal structure of cone GAFab regulatory domain solved at 3.3 Šresolution, in conjunction with chemical cross-linking and mass spectrometric analysis of conformational changes to GAFab induced upon binding of cGMP and the PDE6 inhibitory γ-subunit (Pγ). Ligand-induced changes in cross-linked residues implicate multiple conformational changes in the GAFa and GAFb domains in forming an allosteric communication network. Molecular dynamics simulations of cone GAFab revealed differences in conformational dynamics of the two subunits forming the homodimer and allosteric perturbations on cGMP binding. Cross-linking of Pγ to GAFab in conjunction with solution NMR spectroscopy of isotopically labeled Pγ identified the central polycationic region of Pγ interacting with the GAFb domain. These results provide a mechanistic basis for developing allosteric activators of PDE6 with therapeutic implications for halting the progression of several retinal degenerative diseases.


Assuntos
Proteínas Aviárias/metabolismo , Galinhas/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Regulação Alostérica , Animais , Proteínas Aviárias/química , Domínio Catalítico , Cristalografia por Raios X , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA