RESUMO
Herein, the absorption and oxidation reactions of SO2 on TiO2 nanoparticles (TiO2 NPs) at 296 K under various environmental conditions (humidity, UV irradiation, and ozone copresence) were investigated by using a flow chamber reaction system, synchrotron X-ray absorption near-edge structure (XANES) and high resolution synchrotron X-ray photoelectron spectroscopy (XPS) measurements. The results showed that oxidation of SO2 to sulfate via TiO2 NP catalysis happened at a very rapid rate. The appropriate relative humidity, UV irradiation and co-presence of ozone all markedly promoted SO2 oxidation on TiO2 NPs. High resolution XPS unraveled that the terminal hydroxyl (OHt) and oxygen vacancy (VO)-Ti3+ states on TiO2 NPs were the active sites for SO2 adsorption and oxidation. The data of XPS measurements suggest that SO2 was adsorbed on a OHt next to a Ti3+ VO and reacted to form HSO3-. HSO3- can then transform into SO32-via transfer of a proton. The resulting adsorbed SO32- could bind to a surface bridging O (Ob) atom and transform into SO42-. A H2O molecule could dissociate on VO-Ti3+ into two bridging hydroxyl (OHb) groups, subsequently forming new Ob, which provides an active O site for the adsorbed HSO3-/SO32- and oxidizes them into HSO4-/SO42- on the surface of the TiO2 NPs. The copresence of O3 could promote H2O dissociation into OHb, promoting the formation of Ob. The copresence of O3 may also promote the dissociation of adsorbed H2O into TiO2-O2- and hydroxyl radicals (ËOH) on VOs, facilitating the oxidation of adsorbed HSO3-/SO32-. Under UV irradiation, new VOs were created via oxidation of lattice O by photo-generated holes, resulting in increased Ob and subsequently enhanced oxidation of adsorbed HSO3-/SO32- on TiO2 NPs.
RESUMO
BACKGROUND: To effectively applied nanomaterials (NMs) in medicine, one of the top priorities is to address a better understanding of the possible sub-organ transfer, clearance routes, and potential toxicity of the NMs in the liver and kidney. RESULTS: Here we explored how the surface chemistry of polyethylene glycol (PEG), chitosan (CS), and polyethylenimine (PEI) capped gold nanoparticles (GNPs) governs their sub-organ biodistribution, transfer, and clearance profiles in the liver and kidney after intravenous injection in mice. The PEG-GNPs maintained dispersion properties in vivo, facilitating passage through the liver sinusoidal endothelium and Disse space, and were captured by hepatocytes and eliminated via the hepatobiliary route. While, the agglomeration/aggregation of CS-GNPs and PEI-GNPs in hepatic Kupffer and endothelial cells led to their long-term accumulation, impeding their elimination. The gene microarray analysis shows that the accumulation of CS-GNPs and PEI-GNPs in the liver induced obvious down-regulation of Cyp4a or Cyp2b related genes, suggesting CS-GNP and PEI-GNP treatment impacted metabolic processes, while the PEI-GNP treatment is related with immune responses. CONCLUSIONS: This study demonstrates that manipulation of nanoparticle surface chemistry can help NPs selectively access distinct cell types and elimination pathways, which help to clinical potential of non-biodegradable NPs.
Assuntos
Ouro/metabolismo , Ouro/toxicidade , Rim/metabolismo , Fígado/metabolismo , Nanopartículas Metálicas/toxicidade , Animais , Quitosana/metabolismo , Citosol , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Ouro/sangue , Rim/patologia , Cinética , Fígado/patologia , Masculino , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos ICR , Tamanho da Partícula , Polietilenoglicóis/metabolismo , Polietilenoimina/metabolismo , Ratos , Ratos Wistar , Distribuição Tecidual , TranscriptomaRESUMO
The liver, a complex and vital organ in the human body, is susceptible to various diseases, including metabolic disorders, acute hepatitis, cirrhosis, and hepatocellular carcinoma. In recent decades, these diseases have significantly contributed to global morbidity and mortality. Currently, liver transplantation remains the most effective treatment for hepatic disorders. Nucleic acid therapeutics offer a selective approach to disease treatment through diverse mechanisms, enabling the regulation of relevant genes and providing a novel therapeutic avenue for hepatic disorders. It is expected that nucleic acid drugs will emerge as the third generation of pharmaceuticals, succeeding small molecule drugs and antibody drugs. Lipid nanoparticles (LNPs) represent a crucial technology in the field of drug delivery and constitute a significant advancement in gene therapies. Nucleic acids encapsulated in LNPs are shielded from the degradation of enzymes and effectively delivered to cells, where they are released and regulate specific genes. This paper provides a comprehensive review of the structure, composition, and applications of LNPs in the treatment of hepatic disorders and offers insights into prospects and challenges in the future development of LNPs.
Assuntos
Portadores de Fármacos , Lipídeos , Hepatopatias , Nanopartículas , Humanos , Nanopartículas/química , Portadores de Fármacos/química , Hepatopatias/tratamento farmacológico , Hepatopatias/metabolismo , Hepatopatias/terapia , Lipídeos/química , Animais , Sistemas de Liberação de MedicamentosRESUMO
Artificial organelles (AOs) encapsulating enzymes are engineered to facilitate biocatalytic reactions for exerting therapeutic effects in various diseases. Exploiting the confinement effect, these catalytic properties exhibit significant enhancements without being influenced by the surrounding medium, enabling more efficient cascade reactions. In this study, we present a novel approach for synergistic tumor starvation therapy by developing multicomponent artificial organelles that combine enzymatic oncotherapy with chemotherapy. The construction process involves a microfluidic-based approach that enables the encapsulation of cationic cores containing doxorubicin (DOX), electrostatic adsorption of cascade enzymes, and surface assembly of the protective lipid membrane. Additionally, these multicomponent AOs possess multicompartment structures that enable the separation and sequential release of each component. By coencapsulating enzymes and chemotherapeutic agent DOX within AOs, we achieve enhanced enzymatic cascade reactions (ECR) and improved intrinsic permeability of DOX due to spatial confinement. Furthermore, exceptional therapeutic effects on 4T1 xenograft tumors are observed, demonstrating the feasibility of utilizing AOs as biomimetic implants in living organisms. This innovative approach that combines starvation therapy with chemotherapy using multicompartment AOs represents a promising paradigm in the field of precise cancer therapy.
Assuntos
Doxorrubicina , Doxorrubicina/química , Doxorrubicina/farmacologia , Animais , Camundongos , Linhagem Celular Tumoral , Humanos , Feminino , Organelas/metabolismo , Organelas/química , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/terapiaRESUMO
Ischemic stroke is one of the major causes of death and disability worldwide, and an effective and timely treatment of ischemic stroke has been a challenge because of the narrow therapeutic window and the poor affinity with thrombus of the thrombolytic agent. In this study, rPZDCu, a multifunctional nanoparticle (NP) with the effects of thrombolysis, reactive oxygen species (ROS) scavenging, and neuroprotection, was synthesized based on an ultrasmall Cu4.6O NP, the thrombolytic agent rt-PA, and docosahexaenoic acid (DHA), which is a major component of the neuronal membrane. rPZDCu showed strong thrombus-targeting ability, which was achieved by the platelet cell membrane coating on the NP surface, and a good thrombolytic effect in both the common carotid artery clot model and embolic middle cerebral artery occlusion (MCAO) model of rats. Furthermore, rPZDCu exhibited a good escape from the phagocytosis of macrophages, effective promotion of the polarization of microglia, and efficient recovery of neurobiological and behavioral functions in the embolic MCAO model of rats. This is a heuristic report of (1) the Cu0/Cu+ NP for the treatments of brain diseases, (2) the integration of DHA and ROS scavengers for central nervous system therapies, and (3) diselenide-based ROS-responsive NPs for ischemic stroke treatments. This study also offers an example of cell membrane-camouflaged stimuli-responsive nanomedicine for brain-targeting drug delivery.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Nanopartículas , Acidente Vascular Cerebral , Trombose , Ratos , Animais , Fibrinolíticos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Trombose/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológicoRESUMO
Treatment of diabetic wounds is a significant clinical challenge due to the massive infections caused by bacteria. In this study, multifunctional glycol chitosan and polydopamine-coated BiO1-x I (GPBO) nanoparticles (NPs) with near-infrared (NIR) photothermal and photocatalytic abilities are prepared. When infection occurs, the local microenvironment becomes acidic, and the pH-switchable GPBO can target the bacteria of the wound site. The NIR-assisted GPBO treatment exhibits anti-bacterial effects with fast response, high efficiency, and long duration to Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. GPBO achieves excellent photothermal imaging and CT imaging of the mouse subcutaneous abscess model. With the assistance of NIR irradiation, the GPBO promotes the healing of the diabetic wound model with the effects of anti-bacteria, anti-inflammation, the M2 polarization promotion of macrophages, and angiogenesis. This is the first-time report of nano-sized BiO1-x I. The synthesis and selected application for the imaging and targeted therapy of diabetic wounds are presented. This study offers an example of the NP-assisted precise diagnosis and therapy of bacterial infection diseases.
Assuntos
Quitosana , Diabetes Mellitus , Indóis , Nanopartículas , Polímeros , Camundongos , Animais , Bismuto , Oxigênio/farmacologia , Nanopartículas/uso terapêutico , Bactérias , Escherichia coliRESUMO
Intelligent packaging not only protects food from environmental hazards but intuitively monitors the changes of food quality and safety. A novel intelligent packaging film with pH sensitivity and antibacterial and antioxidant effects was developed based on the highly cross-linked zein. The composite film with 0.05 g/g crosslinking agent had the best mechanical properties. The tensile strength (TS) and elongation-at-break (EBA) were 2.42 and 1.53 times of that of zein film, respectively. Moreover, the intelligent packaging showed longstanding antimicrobial and antioxidant effects because of the addition of the tea tree essential oil (TTEO)-loaded mesoporous silica nanoparticles (MSNs). The blueberry anthocyanin as colorimetric indicator was added in the packaging film to monitor the safety of meat products using a mobile phone. The color of the composite film as the packaging of the pork products changed from colorless to brown after 9-day storage to show the spoilage of the pork. To the best of our knowledge, this is the first-time report of 1) the application of TTEO-loaded MSNs for food packing, 2) the addition of TTEO as the antimicrobial agent for zein film, and 3) using the applications of mobile phone to measure the RBG value of the zein-based film. This study offers an example of the highly promising biodegradable intelligent packaging with multi-functions for the enhancement of food safety.
Assuntos
Carne de Porco , Carne Vermelha , Zeína , Animais , Suínos , Zeína/química , Carne Vermelha/análise , Antioxidantes , Embalagem de Alimentos , Antocianinas/química , Antibacterianos/farmacologia , Antibacterianos/química , Concentração de Íons de HidrogênioRESUMO
Nonalcoholic fatty liver disease (NAFLD) is the leading hepatic manifestation of metabolic syndrome worldwide, and is clinically accompanied by iron overload. As the increasing application of iron oxide nanoparticles (IONPs) on the imaging and diagnosis in NAFLD, the potential hepatic effect and mechanism of IONPs on NAFLD should be well studied. Here, we demonstrate that carboxyl-modified (COOH-IONPs) and amino-coated IONPs (NH2-IONPs) exhibit no significant hepatic toxicity in normal mice at the clinical injection dose, but aggravate SREBP-1c-mediated de novo lipogenesis (DNL) in the livers of mice with NAFLD induced by high-fat diet (HFD) and in HepG2 cells incubated with oleic acid (OA), especially in those treated by the positive NH2-IONPs. In the present study, mice receiving IONPs for 7 day show mild iron overload in the liver and exhibit enhanced hepatic inflammation in NAFLD. The BMP-SMAD pathway is initiated by hepatic iron overload and is aggravated in NAFLD. In conclusion, BMP-SMAD-mediated hepatic iron overload aggravated lipid accumulation in the liver and hepatic inflammatory responses, implying that effective measures in addition to hepatic iron overload are needed for individuals at the risk of IONPs in NAFLD.
Assuntos
Sobrecarga de Ferro , Hepatopatia Gordurosa não Alcoólica , Animais , Fígado , Nanopartículas Magnéticas de Óxido de Ferro , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/induzido quimicamenteRESUMO
High spatial resolution imaging analysis is urgently needed to explore the biodistribution, transfer and clearance profiles, and biological impact of nanoparticles in the body, which will be helpful to clarify the efficacy of nanomedicine in clinical applications. Herein, by combination with multiscale synchrotron-based imaging techniques, including X-ray fluorescence (XRF) spectrometry, Fourier transform infrared (FTIR) spectroscopy, and micro X-ray phase contrast computed tomography (micro-XPCT), we visually displayed the transfer patterns and site-specific distribution of PEGylated gold nanoparticles (PEG-GNPs) in the suborgans of the liver, spleen, and kidney after an intravenous injection in mice. A combination of XRF and FTIR imaging analysis showed that the PEG bands presented similar distribution patterns with Au in the intraorgans, suggesting the stability of PEGylation on GNPs. We show that the PEG-GNPs presented heterogeneous distribution in the hepatic lobules with a large amount around the portal vein zone and then a gradient decrease in the sinusoidal region and the CV zone; in the spleen, it gradually accumulated in the splenic red pulp over time; and in the kidney, it quickly transported via the bloodstream to the renal pyramids and renal pelvis, and parts of PEG-GNPs finally accumulated in the renal medulla and renal cortex. Multidimensional micro-XPCT images further show that the PEG-GNP transfer in the liver induced hepatic blood vessel dilatation while they transferred in the liver, providing evidence of GNP transport across the blood vessel endothelial barrier.
Assuntos
Ouro , Nanopartículas Metálicas , Animais , Camundongos , Polietilenoglicóis , Síncrotrons , Distribuição TecidualRESUMO
Graphene oxide (GO) sheets attracted great attention as effectively antibacterial agents in water treatment and environmental remediation applications. In the study, the interaction of humic acid (HA) as the model of natural organic matter (NOM) with GO and their antibacterial activities against Escherichia coli (E. coli) was investigated. The interaction between GO and HA molecules was analyzed by isothermal titration calorimetry (ITC) and fluorescence spectroscopy analysis. The study demonstrated that GO reaction with HA was a spontaneously exothermic process, which enabled formation of stable and well dispersed GO-HA complex in aqueous solution. Both GO and GO-HA could significantly inhibit the growth of E. coli and present dose-dependent bactericidal property. GO and GO-HA showed more obvious antibacterial activity in saline solution than in LB broth. We suggest the surface wrinkles of GO and GO-HA could contribute to the firm wrapping of E. coli, which is the principle factor for the antibacterial activity of GO and GO-HA. Especially, GO-HA exhibit less surface wrinkles in comparison with GO, corresponding to its reduced antibacterial activity in saline solution.
Assuntos
Escherichia coli , Grafite , Antibacterianos/farmacologia , Substâncias Húmicas , Óxidos/farmacologiaRESUMO
Two-dimensional (2D) nanosheets (NSs) have a large surface area, high surface free energy, and ultrathin structure, which enable them to more easily penetrate biological membranes and promote adsorption of drugs and proteins. NSs are capable of adsorbing a large amount of blood proteins to form NSs-protein corona complexes; however, their inflammatory effects are still unknown. Therefore, we investigated the pro-inflammatory effect of 2D model nanosheet structures, molybdenum disulfide (MoS2), and the MoS2 NSs-protein complexes with four abundant proteins in human blood, i.e., human serum albumin (HSA), transferrin (Tf), fibrinogen (Fg), and immunoglobulin G (IgG). The interactions between the NSs and the proteins were analyzed by quantifying protein adsorption, determining binding affinity, and correlating structural changes in the protein corona with the uptake of NSs by macrophages and the subsequent inflammatory response. Although all of the NSs-protein complexes induced inflammation, IgG-coated and Fg-coated NSs triggered much stronger inflammatory effects by producing and releasing more cytokines. Among the four proteins, IgG possessed the highest proportion of ß-sheets and led to fewer secondary structure changes on the MoS2 nanosheets. This can facilitate uptake and produce a stronger pro-inflammatory response in macrophages due to the recognition of an NSs-IgG complex by Fc gamma receptors and the subsequent activation of the NF-κB pathways. Our results demonstrate that the blood protein components contribute to the inflammatory effects of nanosheets and provide important insights for the nanosafety evaluation and the rational design of nanomedicines in the future.