Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nat Methods ; 20(11): 1748-1758, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770712

RESUMO

The inhomogeneous refractive indices of biological tissues blur and distort single-molecule emission patterns generating image artifacts and decreasing the achievable resolution of single-molecule localization microscopy (SMLM). Conventional sensorless adaptive optics methods rely on iterative mirror changes and image-quality metrics. However, these metrics result in inconsistent metric responses and thus fundamentally limit their efficacy for aberration correction in tissues. To bypass iterative trial-then-evaluate processes, we developed deep learning-driven adaptive optics for SMLM to allow direct inference of wavefront distortion and near real-time compensation. Our trained deep neural network monitors the individual emission patterns from single-molecule experiments, infers their shared wavefront distortion, feeds the estimates through a dynamic filter and drives a deformable mirror to compensate sample-induced aberrations. We demonstrated that our method simultaneously estimates and compensates 28 wavefront deformation shapes and improves the resolution and fidelity of three-dimensional SMLM through >130-µm-thick brain tissue specimens.


Assuntos
Aprendizado Profundo , Microscopia , Óptica e Fotônica , Encéfalo
2.
Nat Methods ; 17(5): 531-540, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371980

RESUMO

Single-molecule localization microscopy is a powerful tool for visualizing subcellular structures, interactions and protein functions in biological research. However, inhomogeneous refractive indices inside cells and tissues distort the fluorescent signal emitted from single-molecule probes, which rapidly degrades resolution with increasing depth. We propose a method that enables the construction of an in situ 3D response of single emitters directly from single-molecule blinking datasets, and therefore allows their locations to be pinpointed with precision that achieves the Cramér-Rao lower bound and uncompromised fidelity. We demonstrate this method, named in situ PSF retrieval (INSPR), across a range of cellular and tissue architectures, from mitochondrial networks and nuclear pores in mammalian cells to amyloid-ß plaques and dendrites in brain tissues and elastic fibers in developing cartilage of mice. This advancement expands the routine applicability of super-resolution microscopy from selected cellular targets near coverslips to intra- and extracellular targets deep inside tissues.


Assuntos
Encéfalo/metabolismo , Cartilagem/metabolismo , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Placa Amiloide/metabolismo , Imagem Individual de Molécula/métodos , Animais , Encéfalo/patologia , Cartilagem/patologia , Núcleo Celular/metabolismo , Células Cultivadas , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Camundongos , Mitocôndrias/metabolismo , Imagem Molecular/métodos , Poro Nuclear/metabolismo , Placa Amiloide/patologia
3.
J Neurosci ; 41(12): 2656-2667, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33563727

RESUMO

Neural oscillations play critical roles in information processing, communication between brain areas, learning, and memory. We have recently discovered that familiar visual stimuli can robustly induce 5-Hz oscillations in the primary visual cortex (V1) of awake mice after the visual experience. To gain more mechanistic insight into this phenomenon, we used in vivo patch-clamp recordings to monitor the subthreshold activity of individual neurons during these oscillations. We analyzed the visual tuning properties of V1 neurons in naive and experienced mice to assess the effect of visual experience on the orientation and direction selectivity. Using optogenetic stimulation through the patch pipette in vivo, we measured the synaptic strength of specific intracortical and thalamocortical projections in vivo in the visual cortex before and after the visual experience. We found 5-Hz oscillations in membrane potential (Vm) and firing rates evoked in single neurons in response to the familiar stimulus, consistent with previous studies. Following the visual experience, the average firing rates of visual responses were reduced while the orientation and direction selectivities were increased. Light-evoked EPSCs were significantly increased for layer 5 (L5) projections to other layers of V1 after the visual experience, while the thalamocortical synaptic strength was decreased. In addition, we developed a computational model that could reproduce 5-Hz oscillations with enhanced neuronal selectivity following synaptic plasticity within the recurrent network and decreased feedforward input.SIGNIFICANCE STATEMENT Neural oscillations at around 5 Hz are involved in visual working memory and temporal expectations in primary visual cortex (V1). However, how the oscillations modulate the visual response properties of neurons in V1 and their underlying mechanism is poorly understood. Here, we show that these oscillations may alter the orientation and direction selectivity of the layer 2/3 (L2/3) neurons and correlate with the synaptic plasticity within V1. Our computational recurrent network model reproduces all these observations and provides a mechanistic framework for studying the role of 5-Hz oscillations in visual familiarity.


Assuntos
Potenciais da Membrana/fisiologia , Orientação/fisiologia , Reconhecimento Psicológico/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética/métodos , Estimulação Luminosa/métodos , Córtex Visual/química
4.
IEEE Microw Wirel Compon Lett ; 32(6): 772-775, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36338547

RESUMO

This work presents a single-chip battery-less neural recorder with 12 on-die microelectrodes. It can be powered wirelessly up to 16 cm away from a horn antenna at 915 MHz and only consumes 104 µW dc power for accessing 10 enabled recording sites simultaneously, transmitting at 5 Mbps. The implantable device integrated with a flexible antenna weighs only 0.43 gram. In vivo measurements on an unrestricted mouse have been successfully conducted, showing response to visual stimuli.

5.
J Neurosci ; 40(3): 648-660, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31792152

RESUMO

Visual systems have evolved to recognize and extract features from complex scenes using limited sensory information. Contour perception is essential to this process and can occur despite breaks in the continuity of neighboring features. Such robustness of the animal visual system to degraded or occluded shapes may also give rise to an interesting phenomenon of optical illusions. These illusions provide a great opportunity to decipher neural computations underlying contour integration and object detection. Kanizsa illusory contours have been shown to evoke responses in the early visual cortex despite the lack of direct receptive field activation. Recurrent processing between visual areas has been proposed to be involved in this process. However, it is unclear whether higher visual areas directly contribute to the generation of illusory responses in the early visual cortex. Using behavior, in vivo electrophysiology, and optogenetics, we first show that the primary visual cortex (V1) of male mice responds to Kanizsa illusory contours. Responses to Kanizsa illusions emerge later than the responses to the contrast-defined real contours in V1. Second, we demonstrate that illusory responses are orientation-selective. Finally, we show that top-down feedback controls the neural correlates of illusory contour perception in V1. Our results suggest that higher-order visual areas may fill in the missing information in the early visual cortex necessary for illusory contour perception.SIGNIFICANCE STATEMENT Perception of the Kanizsa illusory contours is impaired in neurodevelopmental disorders such as schizophrenia, autism, and Williams syndrome. However, the mechanism of the illusory contour perception is poorly understood. Here we describe the behavioral and neural correlates of Kanizsa illusory contours perception in mice, a genetically tractable model system. We show that top-down feedback controls the neural responses to Kanizsa illusion in V1. To our knowledge, this is the first description of the neural correlates of the Kanizsa illusion in mice and the first causal demonstration of their regulation by top-down feedback.


Assuntos
Retroalimentação Sensorial/fisiologia , Percepção de Forma/fisiologia , Ilusões Ópticas/fisiologia , Córtex Visual/fisiologia , Animais , Mapeamento Encefálico , Condicionamento Operante , Fenômenos Eletrofisiológicos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Orientação/fisiologia , Estimulação Luminosa , Transferência de Experiência
6.
J Neurosci ; 38(27): 6223-6240, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29915138

RESUMO

Familiarity of the environment changes the way we perceive and encode incoming information. However, the neural substrates underlying this phenomenon are poorly understood. Here we describe a new form of experience-dependent low-frequency oscillations in the primary visual cortex (V1) of awake adult male mice. The oscillations emerged in visually evoked potentials and single-unit activity following repeated visual stimulation. The oscillations were sensitive to the spatial frequency content of a visual stimulus and required the mAChRs for their induction and expression. Finally, ongoing visually evoked θ (4-8 Hz) oscillations boost the visually evoked potential amplitude of incoming visual stimuli if the stimuli are presented at the high excitability phase of the oscillations. Our results demonstrate that an oscillatory code can be used to encode familiarity and serves as a gate for oncoming sensory inputs.SIGNIFICANCE STATEMENT Previous experience can influence the processing of incoming sensory information by the brain and alter perception. However, the mechanistic understanding of how this process takes place is lacking. We have discovered that persistent low-frequency oscillations in the primary visual cortex encode information about familiarity and the spatial frequency of the stimulus. These familiarity evoked oscillations influence neuronal responses to the oncoming stimuli in a way that depends on the oscillation phase. Our work demonstrates a new mechanism of visual stimulus feature detection and learning.


Assuntos
Reconhecimento Psicológico/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia
7.
J Neurophysiol ; 116(4): 1564-1578, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27385800

RESUMO

Patch clamp is the main technique for measuring electrical properties of individual cells. Since its discovery in 1976 by Neher and Sakmann, patch clamp has been instrumental in broadening our understanding of the fundamental properties of ion channels and synapses in neurons. The conventional patch-clamp method requires manual, precise positioning of a glass micropipette against the cell membrane of a visually identified target neuron. Subsequently, a tight "gigaseal" connection between the pipette and the cell membrane is established, and suction is applied to establish the whole cell patch configuration to perform electrophysiological recordings. This procedure is repeated manually for each individual cell, making it labor intensive and time consuming. In this article we describe the development of a new automatic patch-clamp system for brain slices, which integrates all steps of the patch-clamp process: image acquisition through a microscope, computer vision-based identification of a patch pipette and fluorescently labeled neurons, micromanipulator control, and automated patching. We validated our system in brain slices from wild-type and transgenic mice expressing channelrhodopsin 2 under the Thy1 promoter (line 18) or injected with a herpes simplex virus-expressing archaerhodopsin, ArchT. Our computer vision-based algorithm makes the fluorescent cell detection and targeting user independent. Compared with manual patching, our system is superior in both success rate and average trial duration. It provides more reliable trial-to-trial control of the patching process and improves reproducibility of experiments.


Assuntos
Algoritmos , Automação Laboratorial , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Técnicas de Patch-Clamp/métodos , Animais , Automação Laboratorial/instrumentação , Calibragem , Gráficos por Computador , Feminino , Corantes Fluorescentes , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Neurônios/citologia , Neurônios/fisiologia , Técnicas de Patch-Clamp/instrumentação , Fatores de Tempo , Técnicas de Cultura de Tecidos , Interface Usuário-Computador , Córtex Visual/citologia , Córtex Visual/fisiologia
8.
J Neurophysiol ; 113(4): 1275-82, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25429119

RESUMO

Patch clamping is a gold-standard electrophysiology technique that has the temporal resolution and signal-to-noise ratio capable of reporting single ion channel currents, as well as electrical activity of excitable single cells. Despite its usefulness and decades of development, the amplifiers required for patch clamping are expensive and bulky. This has limited the scalability and throughput of patch clamping for single-ion channel and single-cell analyses. In this work, we have developed a custom patch-clamp amplifier microchip that can be fabricated using standard commercial silicon processes capable of performing both voltage- and current-clamp measurements. A key innovation is the use of nonlinear feedback elements in the voltage-clamp amplifier circuit to convert measured currents into logarithmically encoded voltages, thereby eliminating the need for large high-valued resistors, a factor that has limited previous attempts at integration. Benchtop characterization of the chip shows low levels of current noise [1.1 pA root mean square (rms) over 5 kHz] during voltage-clamp measurements and low levels of voltage noise (8.2 µV rms over 10 kHz) during current-clamp measurements. We demonstrate the ability of the chip to perform both current- and voltage-clamp measurement in vitro in HEK293FT cells and cultured neurons. We also demonstrate its ability to perform in vivo recordings as part of a robotic patch-clamping system. The performance of the patch-clamp amplifier microchip compares favorably with much larger commercial instrumentation, enabling benchtop commoditization, miniaturization, and scalable patch-clamp instrumentation.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas de Patch-Clamp/instrumentação , Animais , Automação Laboratorial/instrumentação , Automação Laboratorial/métodos , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Sensibilidade e Especificidade
9.
Cell Rep ; 42(12): 113482, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37999977

RESUMO

Visual perceptual experience induces persistent 4-8 Hz oscillations in the mouse primary visual cortex (V1), encoding visual familiarity. Recent studies suggest that higher-order visual areas (HVAs) are functionally specialized and segregated into information streams processing distinct visual features. However, whether visual memories are processed and stored within the distinct streams is not understood. We report here that V1 and lateromedial (LM), but not V1 and anterolateral, become more phase synchronized in 4-8 Hz after the entrainment of visual stimulus that maximally induces responses in LM. Directed information analysis reveals changes in the top-down functional connectivity between V1 and HVAs. Optogenetic inactivation of LM reduces post-stimulus oscillation peaks in V1 and impairs visual discrimination behavior. Our results demonstrate that 4-8 Hz familiarity-evoked oscillations are specific for the distinct visual features and are present in the corresponding HVAs, where they may be used for the inter-areal communication with V1 during memory-related behaviors.


Assuntos
Córtex Visual , Camundongos , Animais , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Reconhecimento Psicológico , Estimulação Luminosa/métodos
10.
Adv Mater ; 35(37): e2203352, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35723973

RESUMO

The fields of brain-inspired computing, robotics, and, more broadly, artificial intelligence (AI) seek to implement knowledge gleaned from the natural world into human-designed electronics and machines. In this review, the opportunities presented by complex oxides, a class of electronic ceramic materials whose properties can be elegantly tuned by doping, electron interactions, and a variety of external stimuli near room temperature, are discussed. The review begins with a discussion of natural intelligence at the elementary level in the nervous system, followed by collective intelligence and learning at the animal colony level mediated by social interactions. An important aspect highlighted is the vast spatial and temporal scales involved in learning and memory. The focus then turns to collective phenomena, such as metal-to-insulator transitions (MITs), ferroelectricity, and related examples, to highlight recent demonstrations of artificial neurons, synapses, and circuits and their learning. First-principles theoretical treatments of the electronic structure, and in situ synchrotron spectroscopy of operating devices are then discussed. The implementation of the experimental characteristics into neural networks and algorithm design is then revewed. Finally, outstanding materials challenges that require a microscopic understanding of the physical mechanisms, which will be essential for advancing the frontiers of neuromorphic computing, are highlighted.

11.
iScience ; 26(10): 107842, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766983

RESUMO

Auxilin (DNAJC6/PARK19), an endocytic co-chaperone, is essential for maintaining homeostasis in the readily releasable pool (RRP) by aiding clathrin-mediated uncoating of synaptic vesicles. Its loss-of-function mutations, observed in familial Parkinson's disease (PD), lead to basal ganglia motor deficits and cortical dysfunction. We discovered that auxilin-knockout (Aux-KO) mice exhibited impaired pre-synaptic plasticity in layer 4 to layer 2/3 pyramidal cell synapses in the primary visual cortex (V1), including reduced short-term facilitation and depression. Computational modeling revealed increased RRP refilling during short repetitive stimulation, which diminished during prolonged stimulation. Silicon probe recordings in V1 of Aux-KO mice demonstrated disrupted visual cortical circuit responses, including reduced orientation selectivity, compromised visual mismatch negativity, and shorter visual familiarity-evoked theta oscillations. Pupillometry analysis revealed an impaired optokinetic response. Auxilin-dependent pre-synaptic endocytosis dysfunction was associated with deficits in pre-synaptic plasticity, visual cortical functions, and eye movement prodromally or at the early stage of motor symptoms.

12.
Neuron ; 54(6): 919-31, 2007 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-17582332

RESUMO

Neuroligins enhance synapse formation in vitro, but surprisingly are not required for the generation of synapses in vivo. We now show that in cultured neurons, neuroligin-1 overexpression increases excitatory, but not inhibitory, synaptic responses, and potentiates synaptic NMDAR/AMPAR ratios. In contrast, neuroligin-2 overexpression increases inhibitory, but not excitatory, synaptic responses. Accordingly, deletion of neuroligin-1 in knockout mice selectively decreases the NMDAR/AMPAR ratio, whereas deletion of neuroligin-2 selectively decreases inhibitory synaptic responses. Strikingly, chronic inhibition of NMDARs or CaM-Kinase II, which signals downstream of NMDARs, suppresses the synapse-boosting activity of neuroligin-1, whereas chronic inhibition of general synaptic activity suppresses the synapse-boosting activity of neuroligin-2. Taken together, these data indicate that neuroligins do not establish, but specify and validate, synapses via an activity-dependent mechanism, with different neuroligins acting on distinct types of synapses. This hypothesis reconciles the overexpression and knockout phenotypes and suggests that neuroligins contribute to the use-dependent formation of neural circuits.


Assuntos
Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Inibição Neural/fisiologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Benzilaminas/farmacologia , Moléculas de Adesão Celular Neuronais , Células Cultivadas , Relação Dose-Resposta à Radiação , Interações Medicamentosas , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Regulação da Expressão Gênica/fisiologia , Hipocampo/citologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Potenciais Pós-Sinápticos Inibidores/efeitos da radiação , Proteínas de Membrana/deficiência , Proteínas do Tecido Nervoso/deficiência , Inibição Neural/efeitos dos fármacos , Inibição Neural/efeitos da radiação , Neurônios/citologia , Neurônios/fisiologia , Técnicas de Patch-Clamp , Inibidores de Proteínas Quinases/farmacologia , Ratos , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sulfonamidas/farmacologia , Sinapses/classificação , Sinapses/efeitos dos fármacos
13.
Front Cell Neurosci ; 15: 668230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093132

RESUMO

Both adaptation and novelty detection are an integral part of sensory processing. Recent animal oddball studies have advanced our understanding of circuitry underlying contextual processing in early sensory areas. However, it is unclear how adaptation and mismatch (MM) responses depend on the tuning properties of neurons and their laminar position. Furthermore, given that reduced habituation and sensory overload are among the hallmarks of altered sensory perception in autism, we investigated how oddball processing might be altered in a mouse model of fragile X syndrome (FX). Using silicon probe recordings and a novel spatial frequency (SF) oddball paradigm, we discovered that FX mice show reduced adaptation and enhanced MM responses compared to control animals. Specifically, we found that adaptation is primarily restricted to neurons with preferred oddball SF in FX compared to WT mice. Mismatch responses, on the other hand, are enriched in the superficial layers of WT animals but are present throughout lamina in FX animals. Last, we observed altered neural dynamics in FX mice in response to stimulus omissions. Taken together, we demonstrated that reduced feature adaptation coexists with impaired laminar processing of oddball responses, which might contribute to altered sensory perception in FX syndrome and autism.

14.
Front Cell Dev Biol ; 9: 720078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490268

RESUMO

Neural circuits underlying brain functions are vulnerable to damage, including ischemic injury, leading to neuronal loss and gliosis. Recent technology of direct conversion of endogenous astrocytes into neurons in situ can simultaneously replenish the neuronal population and reverse the glial scar. However, whether these newly reprogrammed neurons undergo normal development, integrate into the existing neuronal circuit, and acquire functional properties specific for this circuit is not known. We investigated the effect of NeuroD1-mediated in vivo direct reprogramming on visual cortical circuit integration and functional recovery in a mouse model of ischemic injury. After performing electrophysiological extracellular recordings and two-photon calcium imaging of reprogrammed cells in vivo and mapping the synaptic connections formed onto these cells ex vivo, we discovered that NeuroD1 reprogrammed neurons were integrated into the cortical microcircuit and acquired direct visual responses. Furthermore, following visual experience, the reprogrammed neurons demonstrated maturation of orientation selectivity and functional connectivity. Our results show that NeuroD1-reprogrammed neurons can successfully develop and integrate into the visual cortical circuit leading to vision recovery after ischemic injury.

15.
Cereb Cortex Commun ; 1(1): tgaa066, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134928

RESUMO

Serotonin (5-hydroxytryptamine) is crucial for the proper development of neuronal circuits early in life and their refinement throughout adulthood. Its signaling is tightly regulated by the serotonin transporter (SERT), alterations of which were implicated in various neurological and psychiatric disorders. Animal models lacking a functional SERT variant display diverse phenotypes, including increased anxiety, social communication deficits, and altered cortical development. However, it remains unclear how SERT disruption affects sensory processing and experience-dependent learning in adulthood. It has been previously shown that perceptual experience leads to the development of visual familiarity-evoked theta oscillations in mouse V1. Here, we discovered that familiarity-evoked theta oscillations were longer and less stimulus specific in SERT knockout (KO) compared with wild-type (WT) mice. Interestingly, while the overall visual response properties were similar in naive mice, orientation and spatial frequency processing were significantly impaired in SERT KO compared with WT or SERT heterozygous mice following perceptual experience. Our findings shed more light on the mechanism of familiarity-evoked oscillations and highlight the importance of serotonin signaling in perceptual learning.

16.
Cell Rep ; 31(1): 107486, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268079

RESUMO

Fragile X syndrome (FX), the most common inherited form of autism and intellectual disability, is a condition associated with visual perceptual learning deficits. We recently discovered that perceptual experience can encode visual familiarity via persistent low-frequency oscillations in the mouse primary visual cortex (V1). Here, we combine this paradigm with a multifaceted experimental approach to identify neurophysiological impairments of these oscillations in FX mice. Extracellular recordings reveal shorter durations, lower power, and lower frequencies of peak oscillatory activity in FX mice. Directed information analysis of extracellularly recorded spikes reveals differences in functional connectivity from multiple layers in FX mice after the perceptual experience. Channelrhodopsin-2 assisted circuit mapping (CRACM) reveals increased synaptic strength from L5 pyramidal onto L4 fast-spiking cells after experience in wild-type (WT), but not FX, mice. These results suggest differential encoding of visual stimulus familiarity in FX via persistent oscillations and identify circuit connections that may underlie these changes.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Percepção Visual/genética
17.
ACS Appl Mater Interfaces ; 12(22): 24564-24574, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32383375

RESUMO

Glutamate, one of the main neurotransmitters in the brain, plays a critical role in communication between neurons, neuronal development, and various neurological disorders. Extracellular measurement of neurotransmitters such as glutamate in the brain is important for understanding these processes and developing a new generation of brain-machine interfaces. Here, we demonstrate the use of a perovskite nickelate-Nafion heterostructure as a promising glutamate sensor with a low detection limit of 16 nM and a response time of 1.2 s via amperometric sensing. We have designed and successfully tested novel perovskite nickelate-Nafion electrodes for recording of glutamate release ex vivo in electrically stimulated brain slices and in vivo from the primary visual cortex (V1) of awake mice exposed to visual stimuli. These results demonstrate the potential of perovskite nickelates as sensing media for brain-machine interfaces.


Assuntos
Encéfalo/metabolismo , Ácido Glutâmico/análise , Neurotransmissores/análise , Aminoácido Oxirredutases/química , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas , Eletrodos , Enzimas Imobilizadas/química , Feminino , Polímeros de Fluorcarboneto/química , Ácido Glutâmico/química , Peróxido de Hidrogênio/química , Limite de Detecção , Camundongos Endogâmicos C57BL , Neodímio/química , Neurotransmissores/química , Níquel/química
18.
Genetics ; 215(4): 1067-1084, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32546498

RESUMO

The roles of bioelectric signaling in developmental patterning remain largely unknown, although recent work has implicated bioelectric signals in cellular processes such as proliferation and migration. Here, we report a mutation in the inwardly rectifying potassium channel (kir) gene, kcnj13/kir7.1, that causes elongation of the fins in the zebrafish insertional mutant Dhi2059. A viral DNA insertion into the noncoding region of kcnj13 results in transient activation and ectopic expression of kcnj13 in the somite and dermomyotome, from which the fin ray progenitors originate. We made an allele-specific loss-of-function kcnj13 mutant by CRISPR (clustered regularly interspaced short palindromic repeats) and showed that it could reverse the long-finned phenotype, but only when located on the same chromosome as the Dhi2059 viral insertion. Also, we showed that ectopic expression of kcnj13 in the dermomyotome of transgenic zebrafish produces phenocopies of the Dhi2059 mutant in a gene dosage-sensitive manner. Finally, to determine whether this developmental function is specific to kcnj13, we ectopically expressed three additional potassium channel genes: kcnj1b, kcnj10a, and kcnk9 We found that all induce the long-finned phenotype, indicating that this function is conserved among potassium channel genes. Taken together, our results suggest that dermomyotome bioelectricity is a new fin-patterning mechanism, and we propose a two-stage bioelectricity model for zebrafish fin patterning. This ion channel-regulated bioelectric developmental patterning mechanism may provide with us new insight into vertebrate morphological evolution and human congenital malformations.


Assuntos
Nadadeiras de Animais/fisiologia , Animais Geneticamente Modificados/fisiologia , Padronização Corporal , Eletricidade , Regulação da Expressão Gênica , Canais de Potássio/metabolismo , Peixe-Zebra/fisiologia , Animais , Fontes de Energia Bioelétrica , Células Epiteliais/metabolismo , Músculos/metabolismo , Canais de Potássio/genética , Somitos/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-32489342

RESUMO

As one of the most abundant neurotransmitters in the brain and the spinal cord, glutamate plays many important roles in the nervous system. Precise information about the level of glutamate in the extracellular space of living brain tissue may provide new insights on fundamental understanding of the role of glutamate in neurological disorders as well as neurophysiological phenomena. Electrochemical sensor has emerged as a promising solution that can satisfy the requirement for highly reliable and continuous monitoring method with good spatiotemporal resolution for characterization of extracellular glutamate concentration. Recently, we published a method to create a simple printable glutamate biosensor using platinum nanoparticles. In this work, we introduce an even simpler and lower cost conductive polymer composite using commercially available activated carbon with platinum microparticles to easily fabricate highly sensitive glutamate biosensor using direct ink writing method. The fabricated biosensors are functionality superior than previously reported with the sensitivity of 5.73 ± 0.078 nA µM-1 mm-2, detection limit of 0.03 µM, response time less than or equal to 1 s, and a linear range from 1 µM up to 925 µM. In this study, we utilize astrocyte cell culture to demonstrate our biosensor's ability to monitor glutamate uptake process. We also demonstrate direct measurement of glutamate release from optogenetic stimulation in mouse primary visual cortex (V1) brain slices.

20.
Neuron ; 48(2): 229-36, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16242404

RESUMO

Previous studies suggested that postsynaptic neuroligins form a trans-synaptic complex with presynaptic beta-neurexins, but not with presynaptic alpha-neurexins. Unexpectedly, we now find that neuroligins also bind alpha-neurexins and that alpha- and beta-neurexin binding by neuroligin 1 is regulated by alternative splicing of neuroligin 1 (at splice site B) and of neurexins (at splice site 4). In neuroligin 1, splice site B is a master switch that determines alpha-neurexin binding but leaves beta-neurexin binding largely unaffected, whereas alternative splicing of neurexins modulates neuroligin binding. Moreover, neuroligin 1 splice variants with distinct neurexin binding properties differentially regulate synaptogenesis: neuroligin 1 that binds only beta-neurexins potently stimulates synapse formation, whereas neuroligin 1 that binds to both alpha- and beta-neurexins more effectively promotes synapse expansion. These findings suggest that neuroligin binding to alpha- and beta-neurexins mediates trans-synaptic cell adhesion but has distinct effects on synapse formation, indicating that expression of different neuroligin and neurexin isoforms specifies a trans-synaptic signaling code.


Assuntos
Processamento Alternativo , Glicoproteínas/metabolismo , Hipocampo/citologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Sinapses/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting/métodos , Adesão Celular/fisiologia , Moléculas de Adesão Celular Neuronais , Células Cultivadas , Cromatografia de Afinidade/métodos , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Glicoproteínas/classificação , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imuno-Histoquímica/métodos , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutagênese/fisiologia , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/classificação , Ligação Proteica/fisiologia , Ratos , Proteínas Recombinantes/biossíntese , Sinapsinas/metabolismo , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA