Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Allergy ; 78(7): 1866-1877, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36883528

RESUMO

BACKGROUND: Allergic inflammation affects the epithelial cell populations resulting in goblet cell hyperplasia and decreased ciliated cells. Recent advances in single-cell RNA sequencing (scRNAseq) have enabled the identification of new cell subtypes and genomic features of single cells. In this study, we aimed to investigate the effect of allergic inflammation in nasal epithelial cell transcriptomes at the single-cell level. METHODS: We performed scRNAseq in cultured primary human nasal epithelial (HNE) cells and in vivo nasal epithelium. The transcriptomic features and epithelial cell subtypes were determined under IL-4 stimulation, and cell-specific marker genes and proteins were identified. RESULTS: We confirmed that cultured HNE cells were similar to in vivo epithelial cells through scRNAseq. Cell-specific marker genes were utilized to cluster the cell subtypes, and FOXJ1+ -ciliated cells were sub-classified into multiciliated and deuterosomal cells. PLK4 and CDC20B were specific for deuterosomal cells, and SNTN, CPASL, and GSTA2 were specific for multiciliated cells. IL-4 altered the proportions of cell subtypes, resulting in a decrease in multiciliated cells and loss of deuterosomal cells. The trajectory analysis revealed deuterosomal cells as precursor cells of multiciliated cells and deuterosomal cells function as a bridge between club and multiciliated cells. A decrease in deuterosomal cell marker genes was observed in nasal tissue samples with type 2 inflammation. CONCLUSION: The effects of IL-4 appear to be mediated through the loss of the deuterosomal population, resulting in the reduction in multiciliated cells. This study also newly suggests cell-specific markers that might be pivotal for investigating respiratory inflammatory diseases.


Assuntos
Células Epiteliais , Interleucina-4 , Humanos , Diferenciação Celular/genética , Células Cultivadas , Células Epiteliais/metabolismo , Inflamação/metabolismo , Interleucina-4/metabolismo , Mucosa Nasal , Proteínas Serina-Treonina Quinases/metabolismo
2.
Cell Mol Life Sci ; 77(12): 2367-2386, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31471680

RESUMO

Selenoprotein P (SELENOP), secreted from the liver, functions as a selenium (Se) supplier to other tissues. In the brain, Se homeostasis is critical for physiological function. Previous studies have reported that SELENOP co-localizes with the apolipoprotein E receptor 2 (ApoER2) along the blood-brain barrier (BBB). However, the mechanism underlying SELENOP transportation from hepatocytes to neuronal cells remains unclear. Here, we found that SELENOP was secreted from hepatocytes as an exosomal component protected from plasma kallikrein-mediated cleavage. SELENOP was interacted with apolipoprotein E (ApoE) through heparin-binding sites of SELENOP, and the interaction regulated the secretion of exosomal SELENOP. Using in vitro BBB model of transwell cell culture, exosomal SELENOP was found to supply Se to brain endothelial cells and neuronal cells, which synthesized selenoproteins by a process regulated by ApoE and ApoER2. The regulatory role of ApoE in SELENOP transport was also observed in vivo using ApoE-/- mice. Exosomal SELENOP transport protected neuronal cells from amyloid ß (Aß)-induced cell death. Taken together, our results suggest a new delivery mechanism for Se to neuronal cells by exosomal SELENOP.


Assuntos
Apolipoproteínas E/metabolismo , Exossomos/metabolismo , Transporte Proteico/fisiologia , Selenoproteína P/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Células HEK293 , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
3.
J Am Soc Nephrol ; 31(6): 1191-1211, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32381600

RESUMO

BACKGROUND: Mutations in ADCK4 (aarF domain containing kinase 4) generally manifest as steroid-resistant nephrotic syndrome and induce coenzyme Q10 (CoQ10) deficiency. However, the molecular mechanisms underlying steroid-resistant nephrotic syndrome resulting from ADCK4 mutations are not well understood, largely because the function of ADCK4 remains unknown. METHODS: To elucidate the ADCK4's function in podocytes, we generated a podocyte-specific, Adck4-knockout mouse model and a human podocyte cell line featuring knockout of ADCK4. These knockout mice and podocytes were then treated with 2,4-dihydroxybenzoic acid (2,4-diHB), a CoQ10 precursor analogue, or with a vehicle only. We also performed proteomic mass spectrometry analysis to further elucidate ADCK4's function. RESULTS: Absence of Adck4 in mouse podocytes caused FSGS and albuminuria, recapitulating features of nephrotic syndrome caused by ADCK4 mutations. In vitro studies revealed that ADCK4-knockout podocytes had significantly reduced CoQ10 concentration, respiratory chain activity, and mitochondrial potential, and subsequently displayed an increase in the number of dysmorphic mitochondria. However, treatment of 3-month-old knockout mice or ADCK4-knockout cells with 2,4-diHB prevented the development of renal dysfunction and reversed mitochondrial dysfunction in podocytes. Moreover, ADCK4 interacted with mitochondrial proteins such as COQ5, as well as cytoplasmic proteins such as myosin and heat shock proteins. Thus, ADCK4 knockout decreased the COQ complex level, but overexpression of ADCK4 in ADCK4-knockout podocytes transfected with wild-type ADCK4 rescued the COQ5 level. CONCLUSIONS: Our study shows that ADCK4 is required for CoQ10 biosynthesis and mitochondrial function in podocytes, and suggests that ADCK4 in podocytes stabilizes proteins in complex Q in podocytes. Our study also suggests a potential treatment strategy for nephrotic syndrome resulting from ADCK4 mutations.


Assuntos
Hidroxibenzoatos/farmacologia , Proteínas Quinases/fisiologia , Ubiquinona/análogos & derivados , Animais , Estabilidade Enzimática , Glomerulosclerose Segmentar e Focal/etiologia , Células HEK293 , Humanos , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Podócitos/enzimologia , Ubiquinona/metabolismo
4.
Am J Respir Cell Mol Biol ; 62(1): 23-34, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31194918

RESUMO

No previously suggested biomarkers of nasal mucosal inflammation have been practically applied in clinical fields, and nasal epithelium-derived secreted proteins as biomarkers have not specifically been investigated. The goal of this study was to identify secreted proteins that dynamically change during the differentiation from basal cells to fully differentiated cells and examine whether nasal epithelium-derived proteins can be used as biomarkers of nasal mucosal inflammation, such as chronic rhinosinusitis. To achieve this goal, we analyzed two secretomes using the isobaric tag for relative and absolute quantification technique. From in vitro secretomes, we identified the proteins altered in apical secretions of primary human nasal epithelial cells according to the degree of differentiation; from in vivo secretomes, we identified the increased proteins in nasal lavage fluids obtained from patients 2 weeks after endoscopic sinus surgery for chronic sinusitis. We then used a parallel approach to identify specific biomarkers of nasal mucosal inflammation; first, we selected apolipoprotein E as a nasal epithelial cell-derived biomarker through screening proteins that were upregulated in both in vitro and in vivo secretomes, and verified highly secreted apolipoprotein E in nasal lavage fluids of the patients by Western blotting. Next, we selected periostin as an inflammatory mediator-inducible biomarker from in vivo secretomes, the secretion of which was not induced under in vitro culture conditions. We demonstrated that those two nasal epithelium-derived proteins are possible biomarkers of nasal mucosal inflammation.


Assuntos
Apolipoproteínas E/metabolismo , Biomarcadores/metabolismo , Moléculas de Adesão Celular/metabolismo , Inflamação/metabolismo , Mucosa Nasal/metabolismo , Doença Crônica , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Líquido da Lavagem Nasal , Pólipos Nasais/metabolismo , Rinite/metabolismo , Sinusite/metabolismo
5.
J Cell Biochem ; 119(1): 998-1007, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28681938

RESUMO

ω-Hydroxyundec-9-enoic acid (ω-HUA), a plant secondary metabolite, exhibits anti-fungal activity. However, its effect on breast cancer cells is unknown. Here, we investigated the anti- breast cancer activity of ω-HUA and its underlying mechanism. Treatment of human breast cancer cell lines, MDA-MB-231 and MDA-MB-435, with ω-HUA induced apoptotic cell death with increased cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) levels, and p38 and JNK phosphorylation. Inhibition of these mitogen-activated protein kinase (MAPK) pathways using specific inhibitors or siRNA, for p38 and JNK, respectively, blocked the ω-HUA-induced apoptosis in a dose-dependent manner. Moreover, pretreatment of the cells with antioxidant N-acetyl cysteine (NAC) inhibited ω-HUA-induced increased reactive oxygen species (ROS) levels, cleaved caspase-3 and cleaved PARP, and phosphorylated JNK, phosphorylated p38, and increased cell viability and colony-forming ability. MDA-MB-231 xenograft model showed that the ω-HUA-treated group exhibited greater tumor regression and significantly reduced tumor weight compared to that exhibited by the vehicle-administered group. Collectively, ω-HUA-induced intracellular ROS generation induced breast cancer cell apoptosis through JNK and p38 signaling pathway activation, resulting in tumor regression. The results suggested that ω-HUA is an effective supplement for inhibiting human breast cancer growth.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , MAP Quinase Quinase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácidos Undecilênicos/administração & dosagem , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Fosforilação/efeitos dos fármacos , Ácidos Undecilênicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Proc Natl Acad Sci U S A ; 112(17): E2253-62, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25877153

RESUMO

Although inhibition of cyclic nucleotide phosphodiesterase type 3 (PDE3) has been reported to protect rodent heart against ischemia/reperfusion (I/R) injury, neither the specific PDE3 isoform involved nor the underlying mechanisms have been identified. Targeted disruption of PDE3 subfamily B (PDE3B), but not of PDE3 subfamily A (PDE3A), protected mouse heart from I/R injury in vivo and in vitro, with reduced infarct size and improved cardiac function. The cardioprotective effect in PDE3B(-/-) heart was reversed by blocking cAMP-dependent PKA and by paxilline, an inhibitor of mitochondrial calcium-activated K channels, the opening of which is potentiated by cAMP/PKA signaling. Compared with WT mitochondria, PDE3B(-/-) mitochondria were enriched in antiapoptotic Bcl-2, produced less reactive oxygen species, and more frequently contacted transverse tubules where PDE3B was localized with caveolin-3. Moreover, a PDE3B(-/-) mitochondrial fraction containing connexin-43 and caveolin-3 was more resistant to Ca(2+)-induced opening of the mitochondrial permeability transition pore. Proteomics analyses indicated that PDE3B(-/-) heart mitochondria fractions were enriched in buoyant ischemia-induced caveolin-3-enriched fractions (ICEFs) containing cardioprotective proteins. Accumulation of proteins into ICEFs was PKA dependent and was achieved by ischemic preconditioning or treatment of WT heart with the PDE3 inhibitor cilostamide. Taken together, these findings indicate that PDE3B deletion confers cardioprotective effects because of cAMP/PKA-induced preconditioning, which is associated with the accumulation of proteins with cardioprotective function in ICEFs. To our knowledge, our study is the first to define a role for PDE3B in cardioprotection against I/R injury and suggests PDE3B as a target for cardiovascular therapies.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/deficiência , Traumatismo por Reperfusão Miocárdica , Miocárdio/enzimologia , Animais , Caveolina 3/genética , Caveolina 3/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/farmacologia , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/patologia , Inibidores de Fosfodiesterase/farmacologia , Quinolonas/farmacologia
7.
Anal Chem ; 89(20): 10924-10931, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28920425

RESUMO

In this study, the far-red-emitting fluorescence probe 1, containing a rhodamine derivative and a hydrazide reactive group, was developed for peroxynitrite detection and imaging. This probe, which is cell permeable and shows high sensitivity and selectivity in fluorometric detection of peroxynitrite over other ROS/RNS, was successfully utilized to detect exogenous and endogenous peroxynitrite in HeLa and RAW 264.7 cells, respectively. More importantly, 1 can also be used to detect endogenous peroxynitrite generated in Pseudomonas aeruginosa (PAO1)-infected mouse bone marrow-derived neutrophils. We anticipate that the new probe will serve as a powerful molecular imaging tool in investigations of the role(s) played by peroxynitrite in a variety of physiological and pathological contexts.


Assuntos
Corantes Fluorescentes/química , Microscopia Confocal , Ácido Peroxinitroso/análise , Animais , Líquido da Lavagem Broncoalveolar/citologia , Citometria de Fluxo , Células HeLa , Humanos , Pulmão/microbiologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Neutrófilos/citologia , Neutrófilos/metabolismo , Ácido Peroxinitroso/metabolismo , Pseudomonas aeruginosa/patogenicidade , Células RAW 264.7 , Espectrometria de Fluorescência
8.
Biochem J ; 473(22): 4205-4225, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27647936

RESUMO

Oxidative stress plays a pivotal role in pathogenesis of cardiovascular diseases and diabetes; however, the roles of protein kinase A (PKA) and human phosphodiesterase 3A (hPDE3A) remain unknown. Here, we show that yeast expressing wild-type (WT) hPDE3A or K13R hPDE3A (putative ubiquitinylation site mutant) exhibited resistance or sensitivity to exogenous hydrogen peroxide (H2O2), respectively. H2O2-stimulated ROS production was markedly increased in yeast expressing K13R hPDE3A (Oxidative stress Sensitive 1, OxiS1), compared with yeast expressing WT hPDE3A (Oxidative stress Resistant 1, OxiR1). In OxiR1, YAP1 and YAP1-dependent antioxidant genes were up-regulated, accompanied by a reduction in thioredoxin peroxidase. In OxiS1, expression of YAP1 and YAP1-dependent genes was impaired, and the thioredoxin system malfunctioned. H2O2 increased cyclic adenosine monophosphate (cAMP)-hydrolyzing activity of WT hPDE3A, but not K13R hPDE3A, through PKA-dependent phosphorylation of hPDE3A, which was correlated with its ubiquitinylation. The changes in antioxidant gene expression did not directly correlate with differences in cAMP-PKA signaling. Despite differences in their capacities to hydrolyze cAMP, total cAMP levels among OxiR1, OxiS1, and mock were similar; PKA activity, however, was lower in OxiS1 than in OxiR1 or mock. During exposure to H2O2, however, Sch9p activity, a target of Rapamycin complex 1-regulated Rps6 kinase and negative-regulator of PKA, was rapidly reduced in OxiR1, and Tpk1p, a PKA catalytic subunit, was diffusely spread throughout the cytosol, with PKA activation. In OxiS1, Sch9p activity was unchanged during exposure to H2O2, consistent with reduced activation of PKA. These results suggest that, during oxidative stress, TOR-Sch9 signaling might regulate PKA activity, and that post-translational modifications of hPDE3A are critical in its regulation of cellular recovery from oxidative stress.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Saccharomyces cerevisiae/enzimologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Ativação Enzimática/efeitos dos fármacos , Citometria de Fluxo , Humanos , Peróxido de Hidrogênio/farmacologia , Imunoprecipitação , Microscopia de Fluorescência , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
J Allergy Clin Immunol ; 136(3): 713-24, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25936568

RESUMO

BACKGROUND: Langerhans cells (LCs) are skin-resident dendritic cells (DCs) that orchestrate skin immunity. CCCTC-binding factor (CTCF) is a highly conserved DNA-binding protein that regulates higher-order chromatin organization and is involved in various gene regulation processes. OBJECTIVE: We sought to clarify a possible role for CTCF in LC homeostasis and function in vivo. METHODS: We used a conditional gene deletion mouse system to generate DC- and LC-specific CTCF-ablated mice. Short hairpin RNA-mediated RNA interference was used to silence CTCF expression in human monocyte-derived Langerhans cells. DC populations were assessed by using flow cytometry and immunofluorescence. Gene expression arrays were performed to identify genes regulated by CTCF in LCs. Contact hypersensitivity and epicutaneous sensitization responses were measured to examine the functional significance of CTCF ablation. RESULTS: DC-specific CTCF deletion led to a reduced pool of systemic DCs, with LCs most severely affected. Decreases in epidermal LC numbers were specifically associated with self-turnover defects. Interestingly, CTCF-deficient LCs demonstrated impaired migration out of the epidermis. Whole-transcriptome analyses revealed that genes that promoted cell adhesion were highly expressed, but CCR7 was downregulated in CTCF-depleted LCs. Hapten-induced contact hypersensitivity responses were more sustained in LC-specific CTCF-deficient mice, whereas epicutaneous sensitization to protein antigen was attenuated, indicating that CTCF-dependent LC homeostasis is required for optimal immune function of LCs in a context-dependent manner. CONCLUSION: Our results show that CTCF positively regulates the homeostatic pool and the efficient emigration of LCs, which are required for modulating the functional immune network of the skin.


Assuntos
Dermatite de Contato/genética , Homeostase/genética , Células de Langerhans/metabolismo , Proteínas Repressoras/genética , Animais , Fator de Ligação a CCCTC , Adesão Celular , Movimento Celular/genética , Movimento Celular/imunologia , Dermatite de Contato/imunologia , Dermatite de Contato/patologia , Epiderme/imunologia , Epiderme/metabolismo , Epiderme/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Haptenos , Homeostase/imunologia , Humanos , Células de Langerhans/imunologia , Células de Langerhans/patologia , Camundongos , Camundongos Knockout , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Receptores CCR7/genética , Receptores CCR7/imunologia , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/deficiência , Proteínas Repressoras/imunologia , Transdução de Sinais
10.
Circ Res ; 112(2): 289-97, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23168336

RESUMO

RATIONALE: cAMP is an important regulator of myocardial function, and regulation of cAMP hydrolysis by cyclic nucleotide phosphodiesterases (PDEs) is a critical determinant of the amplitude, duration, and compartmentation of cAMP-mediated signaling. The role of different PDE isozymes, particularly PDE3A vs PDE3B, in the regulation of heart function remains unclear. OBJECTIVE: To determine the relative contribution of PDE3A vs PDE3B isozymes in the regulation of heart function and to dissect the molecular basis for this regulation. METHODS AND RESULTS: Compared with wild-type littermates, cardiac contractility and relaxation were enhanced in isolated hearts from PDE3A(-/-), but not PDE3B(-/-), mice. Furthermore, PDE3 inhibition had no effect on PDE3A(-/-) hearts but increased contractility in wild-type (as expected) and PDE3B(-/-) hearts to levels indistinguishable from PDE3A(-/-). The enhanced contractility in PDE3A(-/-) hearts was associated with cAMP-dependent elevations in Ca(2+) transient amplitudes and increased sarcoplasmic reticulum (SR) Ca(2+) content, without changes in L-type Ca(2+) currents of cardiomyocytes, as well as with increased SR Ca(2+)-ATPase type 2a activity, SR Ca(2+) uptake rates, and phospholamban phosphorylation in SR fractions. Consistent with these observations, PDE3 activity was reduced ≈8-fold in SR fractions from PDE3A(-/-) hearts. Coimmunoprecipitation experiments further revealed that PDE3A associates with both SR calcium ATPase type 2a and phospholamban in a complex that also contains A-kinase anchoring protein-18, protein kinase type A-RII, and protein phosphatase type 2A. CONCLUSIONS: Our data support the conclusion that PDE3A is the primary PDE3 isozyme modulating basal contractility and SR Ca(2+) content by regulating cAMP in microdomains containing macromolecular complexes of SR calcium ATPase type 2a-phospholamban-PDE3A.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/fisiologia , Coração/fisiologia , Contração Miocárdica/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Retículo Sarcoplasmático/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia
11.
J Immunol ; 188(11): 5665-73, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22539796

RESUMO

Annexin A1 (ANXA1) is cleaved at the N terminal in some activated cells, such as macrophages, neutrophils, and epithelial cells. We previously observed that ANXA1 was proteolytically cleaved in lung extracts prepared from a murine OVA-induced asthma model. However, the cleavage and regulatory mechanisms of ANXA1 in the allergic response remain unclear. In this study, we found that ANXA1 was cleaved in both Ag-induced activated rat basophilic leukemia 2H3 (RBL-2H3) cells and bone marrow-derived mast cells. This cleavage event was inhibited when intracellular Ca(2+) signaling was blocked. ANXA1-knockdown RBL-2H3 cells produced a greater amount of eicosanoids with simultaneous upregulation of cytosolic phospholipase A(2) (cPLA(2)) activity. However, there were no changes in degranulation activity or cytokine production in the knockdown cells. We also found that cPLA(2) interacted with either full-length or cleaved ANXA1 in activated mast cells. cPLA(2) mainly interacted with full-length ANXA1 in the cytosol and cleaved ANXA1 in the membrane fraction. In addition, introduction of a cleavage-resistant ANXA1 mutant had inhibitory effects on both the phosphorylation of cPLA(2) and release of eicosanoids during the activation of RBL-2H3 cells and bone marrow-derived mast cells. These data suggest that cleavage of ANXA1 causes proinflammatory reactions by increasing the phosphorylation of cPLA(2) and production of eicosanoids during mast-cell activation.


Assuntos
Anexina A1/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Fosfolipases A2 Citosólicas/metabolismo , Proteólise , Animais , Anexina A1/fisiologia , Linhagem Celular , Células Cultivadas , Eicosanoides/biossíntese , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/fisiologia , Mastócitos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipases A2 Citosólicas/fisiologia , Fosforilação/imunologia
12.
Cell Host Microbe ; 32(2): 244-260.e11, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38198924

RESUMO

Although early life colonization of commensal microbes contributes to long-lasting immune imprinting in host tissues, little is known regarding the pathophysiological consequences of postnatal microbial tuning of cutaneous immunity. Here, we show that postnatal exposure to specific skin commensal Staphylococcus lentus (S. lentus) promotes the extent of atopic dermatitis (AD)-like inflammation in adults through priming of group 2 innate lymphoid cells (ILC2s). Early postnatal skin is dynamically populated by discrete subset of primed ILC2s driven by microbiota-dependent induction of thymic stromal lymphopoietin (TSLP) in keratinocytes. Specifically, the indole-3-aldehyde-producing tryptophan metabolic pathway, shared across Staphylococcus species, is involved in TSLP-mediated ILC2 priming. Furthermore, we demonstrate a critical contribution of the early postnatal S. lentus-TSLP-ILC2 priming axis in facilitating AD-like inflammation that is not replicated by later microbial exposure. Thus, our findings highlight the fundamental role of time-dependent neonatal microbial-skin crosstalk in shaping the threshold of innate type 2 immunity co-opted in adulthood.


Assuntos
Dermatite Atópica , Linfopoietina do Estroma do Timo , Humanos , Adulto , Recém-Nascido , Imunidade Inata , Linfócitos , Citocinas/metabolismo , Pele/metabolismo , Inflamação
13.
Nat Commun ; 15(1): 3666, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693120

RESUMO

Respiratory viral infection increases host susceptibility to secondary bacterial infections, yet the precise dynamics within airway epithelia remain elusive. Here, we elucidate the pivotal role of CD47 in the airway epithelium during bacterial super-infection. We demonstrated that upon influenza virus infection, CD47 expression was upregulated and localized on the apical surface of ciliated cells within primary human nasal or bronchial epithelial cells. This induced CD47 exposure provided attachment sites for Staphylococcus aureus, thereby compromising the epithelial barrier integrity. Through bacterial adhesion assays and in vitro pull-down assays, we identified fibronectin-binding proteins (FnBP) of S. aureus as a key component that binds to CD47. Furthermore, we found that ciliated cell-specific CD47 deficiency or neutralizing antibody-mediated CD47 inactivation enhanced in vivo survival rates. These findings suggest that interfering with the interaction between airway epithelial CD47 and pathogenic bacterial FnBP holds promise for alleviating the adverse effects of super-infection.


Assuntos
Antígeno CD47 , Células Epiteliais , Infecções Estafilocócicas , Staphylococcus aureus , Superinfecção , Antígeno CD47/metabolismo , Antígeno CD47/genética , Humanos , Animais , Superinfecção/microbiologia , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Influenza Humana/metabolismo , Influenza Humana/imunologia , Influenza Humana/virologia , Aderência Bacteriana , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Mucosa Respiratória/virologia , Camundongos Endogâmicos C57BL , Brônquios/metabolismo , Brônquios/citologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Camundongos Knockout , Vírus da Influenza A Subtipo H1N1
14.
Immune Netw ; 23(5): e42, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37970233

RESUMO

When the lungs are infected with bacteria, alveolar macrophages (AMs) are recruited to the site and play a crucial role in protecting the host by reducing excessive lung inflammation. However, the regulatory mechanisms that trigger the recruitment of AMs to lung alveoli during an infection are still not fully understood. In this study, we identified a critical role for NADPH oxidase 4 (NOX4) in the recruitment of AMs during Staphylococcus aureus lung infection. We found that NOX4 knockout (KO) mice showed decreased recruitment of AMs and increased lung neutrophils and injury in response to S. aureus infection compared to wild-type (WT) mice. Interestingly, the burden of S. aureus in the lungs was not different between NOX4 KO and WT mice. Furthermore, we observed that depletion of AMs in WT mice during S. aureus infection increased the number of neutrophils and lung injury to a similar level as that observed in NOX4 KO mice. Additionally, we found that expression of intercellular adhesion molecule-1 (ICAM1) in NOX4 KO mice-derived lung endothelial cells was lower than that in WT mice-derived endothelial cells. Therefore, we conclude that NOX4 plays a crucial role in inducing the recruitment of AMs by controlling ICAM1 expression in lung endothelial cells, which is responsible for resolving lung inflammation during acute S. aureus infection.

15.
J Biol Chem ; 286(34): 29681-90, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21705328

RESUMO

12-O-tetradecanoylphorbol-13-acetate (TPA) has been shown to induce transcriptional activation of human manganese superoxide dismutase (MnSOD) mRNA in human lung carcinoma cells, A549, mediated by a protein kinase C (PKC)-dependent activation of cAMP-responsive element-binding protein (CREB)-1/ATF-1-like factors. In this study, we showed that MnSOD protein expression was elevated in response to TPA or TNF-α, but not to hydrogen peroxide treatment. TPA-induced generation of reactive oxygen species (ROS) was blocked by pretreatment of the PKC inhibitor BIM and NADPH oxidase inhibitor DPI. Small interfering RNA (siRNA) experiments indicated that knocking down the NADPH oxidase components e.g. Rac1, p22(phox), p67(phox), and NOXO1 in A549 cells impaired TPA-induced MnSOD expression. To identify the PKC isozyme involved, we used a sod2 gene response reporter plasmid, pSODLUC-3340-I2E-C, capable of sensing the effect of TNF-α and TPA, to monitor the effects of PKC isozyme-specific inhibitors and siRNA-induced knockdown of specific PKC isozyme. Our data indicate that TPA-induced MnSOD expression was independent of p53 and most likely mediated by PKC-α-, and -ε-dependent signaling pathways. Furthermore, siRNA-induced knock-down of CREB and Forkhead box class O (FOXO) 3a led to a reduction in TPA-induced MnSOD gene expression. Together, our results revealed that TPA up-regulates, in part, two PKC-dependent transcriptional pathways to induce MnSOD expression. One pathway involves PKC-α catalyzed phosphorylation of CREB and the other involves a PKC-mediated the PP2A catalyzed dephosphorylation of Akt at Ser(473) which in turn leads to FOXO3a Ser(253) dephosphorylation and its activation.


Assuntos
Carcinógenos/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Superóxido Dismutase/biossíntese , Acetato de Tetradecanoilforbol/farmacologia , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Oxidantes/metabolismo , Oxidantes/farmacologia , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteína Quinase C-alfa/genética , Proteínas Proto-Oncogênicas c-akt/genética , Superóxido Dismutase/genética , Fator de Necrose Tumoral alfa/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
16.
Cell Rep ; 40(3): 111117, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35839776

RESUMO

As an enveloped virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delivers its viral genome into host cells via fusion of the viral and cell membranes. Here, we show that ANO6/TMEM16F-mediated cell surface exposure of phosphatidylserine is critical for SARS-CoV-2 entry and that ANO6-selective inhibitors are effective against SARS-CoV-2 infections. Application of the SARS-CoV-2 Spike pseudotyped virus (SARS2-PsV) evokes a cytosolic Ca2+ elevation and ANO6-dependent phosphatidylserine externalization in ACE2/TMPRSS2-positive mammalian cells. A high-throughput screening of drug-like chemical libraries identifies three different structural classes of chemicals showing ANO6 inhibitory effects. Among them, A6-001 displays the highest potency and ANO6 selectivity and it inhibits the single-round infection of SARS2-PsV in ACE2/TMPRSS2-positive HEK 293T cells. More importantly, A6-001 strongly inhibits authentic SARS-CoV-2-induced phosphatidylserine scrambling and SARS-CoV-2 viral replications in Vero, Calu-3, and primarily cultured human nasal epithelial cells. These results provide mechanistic insights into the viral entry process and offer a potential target for pharmacological intervention to protect against coronavirus disease 2019 (COVID-19).


Assuntos
Tratamento Farmacológico da COVID-19 , Enzima de Conversão de Angiotensina 2 , Animais , Anoctaminas , Humanos , Mamíferos/metabolismo , Fosfatidilserinas , Proteínas de Transferência de Fosfolipídeos/metabolismo , SARS-CoV-2 , Internalização do Vírus
17.
J Biol Chem ; 285(52): 40496-507, 2010 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20956524

RESUMO

Selenoprotein W (SelW) is expressed in various tissues, but it is especially high in the skeletal muscle of mammals. Such tissue-specific protein expression implies regulation by a tissue-specific factor. In this study, we investigated SelW expression during myogenic C2C12 cell differentiation using RT-PCR, quantitative PCR, and Western blot analysis. Both the protein and mRNA levels of SelW were increased during C2C12 cell differentiation, particularly during the early stage. Sequence analysis of the SelW promoter revealed four putative E-boxes, E1, E2, E3, and E4, which are known binding sites for MyoD, a myogenic transcriptional factor. Luciferase reporter assay showed that E1 and E4 were crucial for MyoD-dependent promoter activity. Using EMSA analysis, we observed that MyoD bound directly to E1 but not to E4, even though E4 mutation reduced SelW promoter activity in the luciferase reporter assay. Binding of MyoD to E1 was further investigated by ChIP assay. These results suggest that the SelW gene was activated by the binding of MyoD to a specific E-box during early skeletal muscle differentiation.


Assuntos
Diferenciação Celular/fisiologia , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Elementos de Resposta/fisiologia , Selenoproteína W/biossíntese , Animais , Linhagem Celular , Camundongos , Músculo Esquelético/citologia , Mutação , Proteína MyoD/genética , Ratos , Selenoproteína W/genética
18.
Arch Biochem Biophys ; 509(2): 177-85, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21354101

RESUMO

Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H(2)O(2), mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation.


Assuntos
Radicais Livres/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Linhagem Celular , Expressão Gênica , Humanos , Chaperonas Moleculares/análise , Chaperonas Moleculares/genética , Estresse Oxidativo , Transporte Proteico , RNA Mensageiro/genética , Superóxido Dismutase/análise , Superóxido Dismutase-1
19.
Sci Rep ; 11(1): 11019, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040049

RESUMO

Intestinal Behçet's disease (BD) and Crohn's disease (CD) present similar manifestations, but there are no specific diagnostic tests to differentiate them. We used a proteomic approach to discover novel diagnostic biomarkers specific to intestinal BD. Colon mucosa tissue samples were obtained from patients with intestinal BD or CD using colonoscopy-guided biopsy of the affected bowel. Peptides from seven intestinal BD and seven CD patients were extracted and labeled using tandem mass tag (TMT) reagents. The labeled peptides were identified and quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The proteins were further validated using immunohistochemical (IHC) analysis with tissue samples and an ELISA test with serum samples from 20 intestinal BD and 20 CD patients. Using TMT/LC-MS/MS-based proteomic quantification, we identified 39 proteins differentially expressed between intestinal BD and CD. Beta-2 glycoprotein 1 (APOH) and maltase-glucoamylase (MGAM) showed higher intensity in the IHC staining of intestinal BD tissues than in CD tissues. The serum MGAM level was higher in intestinal BD patients. Proteomic analysis revealed that some proteins were differentially expressed in patients with intestinal BD compared with those with CD. Differential MGAM expression in intestinal BD suggests its role as a potential novel diagnostic biomarker.


Assuntos
Síndrome de Behçet , Doença de Crohn , Proteômica , Biomarcadores/sangue , Colonoscopia , Diagnóstico Diferencial , Humanos
20.
Nat Commun ; 12(1): 2258, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859201

RESUMO

Selenoproteins containing selenium in the form of selenocysteine are critical for bone remodeling. However, their underlying mechanism of action is not fully understood. Herein, we report the identification of selenoprotein W (SELENOW) through large-scale mRNA profiling of receptor activator of nuclear factor (NF)-κΒ ligand (RANKL)-induced osteoclast differentiation, as a protein that is downregulated via RANKL/RANK/tumour necrosis factor receptor-associated factor 6/p38 signaling. RNA-sequencing analysis revealed that SELENOW regulates osteoclastogenic genes. SELENOW overexpression enhances osteoclastogenesis in vitro via nuclear translocation of NF-κB and nuclear factor of activated T-cells cytoplasmic 1 mediated by 14-3-3γ, whereas its deficiency suppresses osteoclast formation. SELENOW-deficient and SELENOW-overexpressing mice exhibit high bone mass phenotype and osteoporosis, respectively. Ectopic SELENOW expression stimulates cell-cell fusion critical for osteoclast maturation as well as bone resorption. Thus, RANKL-dependent repression of SELENOW regulates osteoclast differentiation and blocks osteoporosis caused by overactive osteoclasts. These findings demonstrate a biological link between selenium and bone metabolism.


Assuntos
Remodelação Óssea/genética , Osteoclastos/fisiologia , Osteogênese/genética , Osteoporose/genética , Selenoproteína W/metabolismo , Proteínas 14-3-3/metabolismo , Animais , Diferenciação Celular/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Osteoporose/patologia , Ligante RANK/metabolismo , RNA-Seq , Selenoproteína W/genética , Transdução de Sinais/fisiologia , Fator 6 Associado a Receptor de TNF/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA