RESUMO
Disputes around trade inequality have been growing over the last 2 decades, with different countries claiming inequality in different terms including monetary deficits, resource appropriation and degradation, and environmental emission transfer. Despite prior input-output-based studies analyzing multidimensional trade consequences at the sector level, there is a lack of bottom-up studies that uncover the complexity of trade imbalances at the product level. This paper quantifies four types of flows, monetary, resource, embodied energy use, and embodied greenhouse gas (GHG) emissions, resulting from aluminum trade for the four economies with the highest aluminum trade, that is, the United States, China, Japan, and Australia. Results show that the United States has a negative balance in monetary flows but a positive balance in resource flows, embodied energy use, and GHG emissions. China has a positive balance in monetary and resource flows but a negative balance in embodied energy use and GHG emissions. Japan has a positive balance in all flows, while Australia has a negative balance in all flows. These heterogeneous gains and losses along the global leaders of aluminum trade arise largely from their different trade structures and the heterogeneities of price, energy use, and GHG emission intensities of aluminum products; for example, Japan mainly imports unwrought aluminum, and its quantity is 3 times that of the exported semis and finished aluminum-containing products that have similar energy and GHG emission intensities but 20 times higher prices, while Australia mainly exports bauxite and alumina that have the lowest prices, the quantity of which is 25 times that of imported semis and finished products. This study suggests that resource-related trade inequalities are not uniform across economic and environmental impacts and that trade policies must be carefully considered from various dimensions.
Assuntos
Alumínio , Dióxido de Carbono , Austrália , Dióxido de Carbono/análise , China , JapãoRESUMO
Wind energy is key to addressing the global climate challenge, but its development is subject to potential constraints of finite primary materials. Prior studies on material demand forecasting of wind power development are often limited to a few materials and with low technological resolution, thus hindering a comprehensive understanding of the impact of microengineering parameters on the resource implications of wind energy. In this study, we developed a component-by-component and stock-driven prospective material flow analysis model and used bottom-up data on engineering parameters and wind power capacities to characterize the materials demand and secondary supply potentials of wind energy development in Denmark, a pioneering and leading country in wind power. We also explicitly addressed the uncertainties in the prospective modeling by the means of statistical estimation and sensitivity analysis methods. Our results reveal increasing challenges of materials provision and end-of-life (EoL) management in Denmark's ambitious transition toward 100% renewable energy in the next decades. Harnessing potential secondary resource supply from EoL and extending lifetime could curtail the primary material demand, but they could not fully alleviate the material supply risk. Such a model framework that considers bottom-up engineering parameters with increased precision could be applied to other emerging technologies and help reveal synergies and trade-offs of relevant resource, energy, and climate strategies in the future renewable energy and climate transition.
Assuntos
Energia Renovável , Vento , Mudança Climática , Dinamarca , PrevisõesRESUMO
The growth in metal use in the past few decades raises concern that supplies may be insufficient to meet demands in the future. From the perspective of historical and current use data for seven major metals-iron, manganese, aluminum, copper, nickel, zinc, and lead-we have generated several scenarios of potential metal demand from 2010 to 2050 under alternative patterns of global development. We have also compared those demands with various assessments of potential supply to midcentury. Five conclusions emerge: (1) The calculated demand for each of the seven metals doubles or triples relative to 2010 levels by midcentury; (2) The largest demand increases relate to a scenario in which increasingly equitable values and institutions prevail throughout the world; (3) The metal recycling flows in the scenarios meet only a modest fraction of future metals demand for the next few decades; (4) In the case of copper, zinc, and perhaps lead, supply may be unlikely to meet demand by about midcentury under the current use patterns of the respective metals; (5) Increased rates of demand for metals imply substantial new energy provisioning, leading to increases in overall global energy demand of 21-37%. These results imply that extensive technological transformations and governmental initiatives could be needed over the next several decades in order that regional and global development and associated metal demand are not to be constrained by limited metal supply.
Assuntos
Metais , Reciclagem , Alumínio , Cobre , Manganês , ZincoRESUMO
Indium is a specialty metal crucial for modern technology, yet it is potentially critical due to its byproduct status in mining. Measures to reduce its criticality typically focus on improving its recycling efficiency at end-of-life. This study quantifies primary and secondary indium resources ("stocks") for Australia through a dynamic material-flow analysis. It is based on detailed assessments of indium mineral resources hosted in lead-zinc and copper deposits, respective mining activities from 1844 to 2013, and the trade of indium-containing products from 1988 to 2015. The results show that Australia's indium stocks are substantial, estimated at 46.2 kt in mineral resources and an additional 14.7 kt in mine wastes. Australian mineral resources alone could meet global demand (â¼0.8 kt/year) for more than five decades. Discarded material from post-consumer products, instead, is negligible (43 t). This suggests that the resilience of Australia's indium supply can best be increased through efficiency gains in mining (such as introducing domestic indium refining capacity) rather than at the end of the product life. These findings likely also apply to other specialty metals, such as gallium or germanium, and other resource-dominated countries. Finally, the results illustrate that national circular economy strategies can differ substantially.
Assuntos
Gálio , Índio , Austrália , Cobre , ReciclagemRESUMO
Although a promising technique, phytoextraction has yet to see significant commercialization. Major limitations include metal uptake rates and subsequent processing costs. However, it has been shown that liquid-culture-grown Arabidopsis can take up and store palladium as nanoparticles. The processed plant biomass has catalytic activity comparable to that of commercially available catalysts, creating a product of higher value than extracted bulk metal. We demonstrate that the minimum level of palladium in Arabidopsis dried tissues for catalytic activity comparable to commercially available 3% palladium-on-carbon catalysts was achieved from dried plant biomass containing between 12 and 18 g·kg-1 Pd. To advance this technology, species suitable for in-the-field application: mustard, miscanthus, and 16 willow species and cultivars, were tested. These species were able to grow, and take up, palladium from both synthetic and mine-sourced tailings. Although levels of palladium accumulation in field-suitable species are below that required for commercially available 3% palladium-on-carbon catalysts, this study both sets the target, and is a step toward, the development of field-suitable species that concentrate catalytically active levels of palladium. Life cycle assessment on the phytomining approaches described here indicates that the use of plants to accumulate palladium for industrial applications has the potential to decrease the overall environmental impacts associated with extracting palladium using present-day mining processes.
Assuntos
Mineração , Paládio , Arabidopsis , Catálise , Mostardeira , Poluentes do SoloRESUMO
In the metals industry, recycling is commonly included among the most viable options for climate change mitigation, because using secondary (recycled) instead of primary sources in metal production carries both the potential for significant energy savings and for greenhouse gas emissions reduction. Secondary metal production is, however, limited by the relative quantity of scrap available at end-of-life for two reasons: long product lifespans during use delay the availability of the material for reuse and recycling; and end-of-life recycling rates are low, a result of inefficient collection, separation, and processing. For a few metals, additional losses exist in the form of in-use dissipation. The sum of these lost material flows forms the theoretical maximum potential for future efficiency improvements. Based on a dynamic material flow analysis, we have evaluated these factors from an energy perspective for 50 metals and calculated the corresponding greenhouse gas emissions associated with the supply of lost material from primary sources that would otherwise be used to satisfy demand. A use-by-use examination demonstrates the potential emission gains associated with major application sectors. The results show that minimizing in-use dissipation and constraints to metal recycling have the potential to reduce greenhouse gas emissions from the metal industry by about 13-23%, corresponding to 1% of global anthropogenic greenhouse gas emissions.
RESUMO
In some common uses metals are lost by intent-copper in brake pads, zinc in tires, and germanium in retained catalyst applications being examples. In other common uses, metals are incorporated into products in ways for which no viable recycling approaches exist, examples include selenium in colored glass and vanadium in pigments. To determine quantitatively the scope of these "losses by design", we have assessed the major uses of 56 metals and metalloids, assigning each use to one of three categories: in-use dissipation, currently unrecyclable when discarded, or potentially recyclable when discarded. In-use dissipation affects fewer than a dozen elements (including mercury and arsenic), but the spectrum of elements dissipated increases rapidly if applications from which they are currently unrecyclable are considered. In many cases the resulting dissipation rates are higher than 50%. Among others, specialty metals (e.g., gallium, indium, and thallium) and some heavy rare earth elements are representative of modern technology, and their loss provides a measure of the degree of unsustainability in the contemporary use of materials and products. Even where uses are currently compatible with recycling technologies and approaches, end of life recycling rates are in most cases well below those that are potentially achievable. The outcomes of this research provide guidance in identifying product design approaches for reducing material losses so as to increase element recovery at end-of-life.
Assuntos
Metais/química , Elementos Químicos , Humanos , ReciclagemRESUMO
Pharmaceuticals are among the most challenging products to assess by life cycle assessment (LCA). The main drawback highlighted by LCA practitioners is the lack of inventory data, both regarding the synthesis of active pharmaceutical ingredient (API) precursors (upstream) and the details concerning the downstream phases (use and end of life). A short critical review of pharma-LCAs found in the literature is here proposed, with discussion of several tools and models used to predict the environmental impacts derived from the life cycle of pharmaceuticals, emphasizing current strengths and weaknesses, and exploring the possibilities for improvements. The case of antibiotics is selected as a representative class of pharmaceuticals, due to their massive use worldwide and the growing related issue of antimicrobial resistance enrichment, which is generally not included in most of LCAs. Also, we comment on drafting product category rules (PCRs) in the relevant field to develop standard methodologies and enhance the comparability of the studies, ultimately advocating collaboration with companies and improving inventory data quality and availability for the whole value chain of products.
RESUMO
The fashion industry presents a significant social role, employing millions of people, but it also contributes to resource depletion, ecosystem stress, and climate change. Consequently, sustainability within this sector has garnered increased attention. As part of the fashion sector, the footwear industry is also facing this challenge. With over 23.9 billion shoes produced annually, waste management in this sector presents significant environmental hurdles. In this case study, material flow analysis and life cycle assessment methodologies were adopted to identify and quantify waste flows, their dynamics, and the potential environmental impacts related to one of the main fashion footwear districts in Italy. The results identify opportunities for improving the recovery and recycling processes, especially concerning leather, a key component of shoes contributing to over 30â¯% of various environmental categories. It was also highlighted that the footwear industry's path to sustainability includes legislative progress, improvements in waste management, and collaboration among stakeholders.
RESUMO
There has been increasing attention recently to reprocessing of mining waste, which aims to recover potentially valuable materials such as metals and other byproducts from untapped resources. Mining waste valorization may offer environmental advantages over traditional make-waste-dispose approaches. However, a quantitative environmental assessment for large-scale reprocessing, accounting for future trends and a broad set of environmental indicators, is still lacking. This article assesses the life cycle impacts and resource recovery potential associated with alternative waste management through mine tailings reprocessing at a regional scale. Sulfidic copper tailings in the EU were selected as a case study. We perform prospective life cycle assessments of future reprocessing scenarios by considering emerging resource recovery technologies, market supply & demand forecasts, and energy system changes. We find that some reprocessing and valorization technologies in future scenarios may have reduction potentials for multiple impact indicators. However, results for indicators such as climate change and energy-related impacts suggest that specific scenarios perform sub-optimally due to energy/resource-intensive processes. The environmental performance of reprocessing of tailings is influenced by technology routes, secondary material market penetration, and choices of displaced products. The trade-off between climate change and energy related impacts, on the one hand, and toxicity impacts, on the other hand, requires critical appraisal by decision makers when promoting alternative tailings reprocessing. Implementing value recovery strategies for building material production, can save up to 3 Mt. CO2-eq in 2050 compared to business as usual, helping the copper sector mitigate climate impacts. Additional climate mitigation efforts in demand-side management are needed though to achieve the 1.5 °C climate target. This work provides a scientific basis for decision-making toward more sustainable reprocessing and valorization of sulfidic tailings.
RESUMO
The recent large-scale urbanization and industrialization resulted in an impressive growth of solid waste generation worldwide. Organic fraction generally constitutes a large fraction of municipal solid waste and its peculiar chemical properties open to various valorization strategies. On this purpose, life cycle assessment is applied to an innovative industrial system that processes 18 kt/y of agricultural and livestock waste into a high-quality soil conditioner. The high-quality soil conditioner production system consists of a series of processes, including anaerobic digestion and vermicomposting, allowing the generation of a peat-like material with high carbon content, porosity, and water-holding capacity. The presence of a photovoltaic plant and a cogeneration plant, fed with the biogas produced in the anaerobic digestion, makes the system entirely self-sufficient from the national grid and generating a surplus of electricity of 1177MWh/y. The high-quality soil conditioner showed better environmental performances in 15 out of 18 impact categories when compared to alternative scenarios. In particular, the high-quality soil conditioner and the related biowaste management resulted in a carbon saving of around 397 kg CO2 eq/ton compared with a scenario involving the employment of peat in place of the high-quality soil conditioner and a traditional biowaste management, and 165 kg CO2 eq/ton compared with a scenario where cogeneration is replaced by biomethane upgrading. This study demonstrates the possibility of using organic waste as an environmentally sustainable and renewable source for energy and carbon to soil conditioning.
Assuntos
Solo , Resíduos Sólidos , Animais , Resíduos Sólidos/análise , Dióxido de Carbono , Carbono , Estágios do Ciclo de VidaRESUMO
Prospective life cycle assessment models were developed and applied at the laboratory and industrial scale with the aim to evaluate the environmental burdens associated with the LimoFish process used to produce the fish oil "AnchoiOil", the new organic fertilizer "AnchoisFert" or biogas (by means of anaerobic digestion) after treatment of anchovy fillet leftovers (AnLeft) with agro-solvent d-limonene. Potential impacts for climate change and freshwater eutrophication were estimated at 29.1 kg CO2 eq/kg AnLeft and 1.7E-07 kg PO4 eq/kg AnLeft at laboratory scale, and at 1.5 kg CO2 eq/kg AnLeft and 2.2E-07 kg PO4 eq/kg AnLeft at industrial scale. Electricity consumption is the main contributor to the environmental impact of the process and plays a significant role in the production of d-limonene, for which cold pressing extraction would reduce the related impacts by â¼ 70 %. The use of the solid by-product as organic fertilizer or input to anaerobic digestion would provide additional environmental benefits to the process. The LimoFish process is a successful example of a low impacting strategy to reduce the demand for natural resources and maximize the application of the circular economy principles in the fishing industry.
Assuntos
Gerenciamento de Resíduos , Animais , Fertilizantes , Dióxido de Carbono , Limoneno , Biocombustíveis , Estágios do Ciclo de VidaRESUMO
The COVID-19 pandemic suddenly changed the lifestyle of billions of people. Face masks became indispensable to protect from the contagion providing a significant environmental impact. The aim of this work is to propose possible solutions to decrease masks' impact on the environment. For this reason, different masks (surgical and fabric) were considered, and the CO2 emissions associated with the mask materials production were calculated. Carbon Footprint (CF) for each material composing the masks was evaluated through the database Ces Selector 2019. The software Qgis (version 2.18.20) allows us to elaborate the CO2 emissions maps for each Italian region. Finally, for surgical masks, which are often imported from abroad, the CF related to transport was considered. It results that fabric masks are a sustainable solution to prevent contagion. The total CO2 emission associated with the use of fabric masks from the beginning of the pandemic (March 2020) to December 2021 resulted in about 7 kton compared to 350 kton for surgical masks.
RESUMO
The study focuses on analysing the evolution of environmental impacts caused by a medium-large Italian WtE plant before and after revamping and maintenance operations, with the aim of providing an evaluation of how much these structural upgrade measures may affect the total environmental performance. LCA methodology was applied for the modelling and comparison of six WtE scenarios, each describing the main structural upgrades carried out in the plant over the years 1996-2011. The comparison was conducted by adopting 1ton of MSW as the functional unit, and the net contribution from energy recovery to power generation was distinguished by defining consistent national grid electricity mixes for every year considered. The Ecoindicator99 2.09 impact assessment method was used to evaluate the contribution to midpoint and endpoint categories (e.g. carcinogens, respiratory inorganics and organics, climate change, damage to human health). Lastly, the "Pedigree quality matrix" was applied to verify the reliability and robustness of the model created. As expected, the results showed better environmental scores after both the implementation of new procedures and the integration of operations. However, while a net reduction of air emissions seems to be achievable through dedicated flue gas treatment technologies, outcomes underscored potentials for improving the management of bottom ash through the adoption of alternative options aimed to use that solid residue mainly as filler, and to decrease risks from its current disposal in landfill. If the same effort that is put into flue gas treatment were devoted to energy recovery, the targets for the WtE plant could be easily met, achieving a higher sustainability. This aspect is even more complex: national policies for implementing greener and renewable energy sources would result in a lower impact of the national energy mix and, hence, in a lower net avoided burden from energy recovery. The study confirmed the expected improvements, indicating quantitatively the lower environmental impact resulting from structural upgrade operations in a WtE plant. Furthermore, the work highlights the importance of considering the evolution of the national energy mix in LCA studies, especially during the present years of transition from fossil fuels to renewable sources.