Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(5): 952-965.e18, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474921

RESUMO

Viruses that are typically benign sometimes invade the brainstem in otherwise healthy children. We report bi-allelic DBR1 mutations in unrelated patients from different ethnicities, each of whom had brainstem infection due to herpes simplex virus 1 (HSV1), influenza virus, or norovirus. DBR1 encodes the only known RNA lariat debranching enzyme. We show that DBR1 expression is ubiquitous, but strongest in the spinal cord and brainstem. We also show that all DBR1 mutant alleles are severely hypomorphic, in terms of expression and function. The fibroblasts of DBR1-mutated patients contain higher RNA lariat levels than control cells, this difference becoming even more marked during HSV1 infection. Finally, we show that the patients' fibroblasts are highly susceptible to HSV1. RNA lariat accumulation and viral susceptibility are rescued by wild-type DBR1. Autosomal recessive, partial DBR1 deficiency underlies viral infection of the brainstem in humans through the disruption of tissue-specific and cell-intrinsic immunity to viruses.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Tronco Encefálico/metabolismo , Tronco Encefálico/virologia , RNA/química , RNA/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Encefalopatias Metabólicas Congênitas/patologia , Tronco Encefálico/patologia , Encefalite Viral/genética , Escherichia coli/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/virologia , Herpesvirus Humano 1 , Humanos , Interferons/metabolismo , Íntrons/genética , Masculino , Camundongos , Proteínas Mutantes/metabolismo , Mutação/genética , Fases de Leitura Aberta/genética , Linhagem , RNA Nucleotidiltransferases/química , RNA Nucleotidiltransferases/deficiência , RNA Nucleotidiltransferases/genética , Receptor 3 Toll-Like/metabolismo , Replicação Viral
2.
Cell ; 160(4): 631-643, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25679759

RESUMO

Interferon-stimulated genes (ISGs) act in concert to provide a tight barrier against viruses. Recent studies have shed light on the contribution of individual ISG effectors to the antiviral state, but most have examined those acting on early, intracellular stages of the viral life cycle. Here, we applied an image-based screen to identify ISGs inhibiting late stages of influenza A virus (IAV) infection. We unraveled a directly antiviral function for the gene SERPINE1, encoding plasminogen activator inhibitor 1 (PAI-1). By targeting extracellular airway proteases, PAI-1 inhibits IAV glycoprotein cleavage, thereby reducing infectivity of progeny viruses. This was biologically relevant for IAV restriction in vivo. Further, partial PAI-1 deficiency, attributable to a polymorphism in human SERPINE1, conferred increased susceptibility to IAV in vitro. Together, our findings reveal that manipulating the extracellular environment to inhibit the last step in a virus life cycle is an important mechanism of the antiviral response.


Assuntos
Vírus da Influenza A/fisiologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Serpina E2/metabolismo , Animais , Linhagem Celular , Humanos , Imunidade Inata , Camundongos Endogâmicos C57BL , Inibidor 1 de Ativador de Plasminogênio/genética , Sistema Respiratório/enzimologia , Sistema Respiratório/virologia , Serina Proteases/metabolismo , Serpina E2/genética
3.
J Clin Immunol ; 38(4): 513-526, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29882021

RESUMO

The pathogenesis of life-threatening influenza A virus (IAV) disease remains elusive, as infection is benign in most individuals. We studied two relatives who died from influenza. We Sanger sequenced GATA2 and evaluated the mutation by gene transfer, measured serum cytokine levels, and analyzed circulating T- and B-cells. Both patients (father and son, P1 and P2) died in 2011 of H1N1pdm IAV infection at the ages of 54 and 31 years, respectively. They had not suffered from severe or moderately severe infections in the last 17 (P1) and 15 years (P2). A daughter of P1 had died at 20 years from infectious complications. Low B-cell, NK- cell, and monocyte numbers and myelodysplastic syndrome led to sequence GATA2. Patients were heterozygous for a novel, hypomorphic, R396L mutation leading to haplo-insufficiency. B- and T-cell rearrangement in peripheral blood from P1 during the influenza episode showed expansion of one major clone. No T-cell receptor excision circles were detected in P1 and P3 since they were 35 and 18 years, respectively. Both patients presented an exuberant, interferon (IFN)-γ-mediated hypercytokinemia during H1N1pdm infection. No data about patients with viremia was available. Two previously reported adult GATA2-deficient patients died from severe H1N1 IAV infection; GATA2 deficiency may predispose to life-threatening influenza in adulthood. However, a role of other genetic variants involved in immune responses cannot be ruled out. Patients with GATA2 deficiency can reach young adulthood without severe infections, including influenza, despite long-lasting complete B-cell and natural killer (NK) cell deficiency, as well as profoundly diminished T-cell thymic output.


Assuntos
Deficiência de GATA2/complicações , Influenza Humana/diagnóstico , Influenza Humana/etiologia , Biomarcadores , Citocinas/sangue , Análise Mutacional de DNA , Evolução Fatal , Feminino , Deficiência de GATA2/diagnóstico , Deficiência de GATA2/genética , Fator de Transcrição GATA2/genética , Humanos , Imunofenotipagem , Vírus da Influenza A , Influenza Humana/virologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Masculino , Mutação , Linhagem
4.
Nature ; 491(7426): 769-73, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23103873

RESUMO

In the course of primary infection with herpes simplex virus 1 (HSV-1), children with inborn errors of toll-like receptor 3 (TLR3) immunity are prone to HSV-1 encephalitis (HSE). We tested the hypothesis that the pathogenesis of HSE involves non-haematopoietic CNS-resident cells. We derived induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of TLR3- and UNC-93B-deficient patients and from controls. These iPSCs were differentiated into highly purified populations of neural stem cells (NSCs), neurons, astrocytes and oligodendrocytes. The induction of interferon-ß (IFN-ß) and/or IFN-λ1 in response to stimulation by the dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) was dependent on TLR3 and UNC-93B in all cells tested. However, the induction of IFN-ß and IFN-λ1 in response to HSV-1 infection was impaired selectively in UNC-93B-deficient neurons and oligodendrocytes. These cells were also much more susceptible to HSV-1 infection than control cells, whereas UNC-93B-deficient NSCs and astrocytes were not. TLR3-deficient neurons were also found to be susceptible to HSV-1 infection. The rescue of UNC-93B- and TLR3-deficient cells with the corresponding wild-type allele showed that the genetic defect was the cause of the poly(I:C) and HSV-1 phenotypes. The viral infection phenotype was rescued further by treatment with exogenous IFN-α or IFN-ß ( IFN-α/ß) but not IFN-λ1. Thus, impaired TLR3- and UNC-93B-dependent IFN-α/ß intrinsic immunity to HSV-1 in the CNS, in neurons and oligodendrocytes in particular, may underlie the pathogenesis of HSE in children with TLR3-pathway deficiencies.


Assuntos
Sistema Nervoso Central/patologia , Herpesvirus Humano 1/imunologia , Células-Tronco Pluripotentes Induzidas/citologia , Receptor 3 Toll-Like/deficiência , Astrócitos/imunologia , Astrócitos/virologia , Biomarcadores , Diferenciação Celular , Linhagem da Célula , Separação Celular , Células Cultivadas , Sistema Nervoso Central/citologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Criança , Suscetibilidade a Doenças , Encefalite por Herpes Simples/imunologia , Encefalite por Herpes Simples/metabolismo , Encefalite por Herpes Simples/patologia , Encefalite por Herpes Simples/virologia , Herpesvirus Humano 1/patogenicidade , Humanos , Imunidade Inata , Células-Tronco Pluripotentes Induzidas/virologia , Interferons/imunologia , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/virologia , Neurônios/imunologia , Neurônios/patologia , Neurônios/virologia , Oligodendroglia/imunologia , Oligodendroglia/patologia , Oligodendroglia/virologia , Receptor 3 Toll-Like/genética
5.
Proc Natl Acad Sci U S A ; 112(44): 13615-20, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483451

RESUMO

The protein-coding exome of a patient with a monogenic disease contains about 20,000 variants, only one or two of which are disease causing. We found that 58% of rare variants in the protein-coding exome of the general population are located in only 2% of the genes. Prompted by this observation, we aimed to develop a gene-level approach for predicting whether a given human protein-coding gene is likely to harbor disease-causing mutations. To this end, we derived the gene damage index (GDI): a genome-wide, gene-level metric of the mutational damage that has accumulated in the general population. We found that the GDI was correlated with selective evolutionary pressure, protein complexity, coding sequence length, and the number of paralogs. We compared GDI with the leading gene-level approaches, genic intolerance, and de novo excess, and demonstrated that GDI performed best for the detection of false positives (i.e., removing exome variants in genes irrelevant to disease), whereas genic intolerance and de novo excess performed better for the detection of true positives (i.e., assessing de novo mutations in genes likely to be disease causing). The GDI server, data, and software are freely available to noncommercial users from lab.rockefeller.edu/casanova/GDI.


Assuntos
Exoma , Doenças Genéticas Inatas/genética , Humanos , Curva ROC
6.
J Immunol ; 190(2): 764-73, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23255358

RESUMO

TLR3 belongs to the family of intracellular TLRs that recognize nucleic acids. Endolysosomal localization and cleavage of intracellular TLRs play pivotal roles in signaling and represent fail-safe mechanisms to prevent self-nucleic acid recognition. Indeed, cleavage by cathepsins is required for native TLR3 to signal in response to dsRNA. Using novel Abs generated against TLR3, we show that the conserved loop exposed in LRR12 is the single cleavage site that lies between the two dsRNA binding sites required for TLR3 dimerization and signaling. Accordingly, we found that the cleavage does not dissociate the C- and N-terminal fragments, but it generates a very stable "cleaved/associated" TLR3 present in endolysosomes that recognizes dsRNA and signals. Moreover, comparison of wild-type, noncleavable, and C-terminal-only mutants of TLR3 demonstrates that efficient signaling requires cleavage of the LRR12 loop but not dissociation of the fragments. Thus, the proteolytic cleavage of TLR3 appears to fulfill function(s) other than separating the two fragments to generate a functional receptor.


Assuntos
Transdução de Sinais , Receptor 3 Toll-Like/metabolismo , Sítios de Ligação , Catepsinas/metabolismo , Linhagem Celular , Perfilação da Expressão Gênica , Complexo de Golgi/metabolismo , Humanos , Lisossomos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteólise , Receptor 3 Toll-Like/genética
9.
Blood ; 116(26): 5895-906, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-20841510

RESUMO

Autosomal recessive STAT1 deficiency is associated with impaired cellular responses to interferons and susceptibility to intracellular bacterial and viral infections. We report here a new form of partial STAT1 deficiency in 2 siblings presenting mycobacterial and viral diseases. Both carried a homozygous missense mutation replacing a lysine with an asparagine residue at position 201 (K201N) of STAT1. This mutation causes the abnormal splicing out of exon 8 from most STAT1 mRNAs, thereby decreasing (by ~ 70%) STAT1 protein levels. The mutant STAT1 proteins are not intrinsically deleterious, in terms of tyrosine phosphorylation, dephosphorylation, homodimerization into γ-activating factor and heterotrimerization into ISGF-3, binding to specific DNA elements, and activation of the transcription. Interestingly, the activation of γ-activating factor and ISGF3 was impaired only at early time points in the various cells from patient (within 1 hour of stimulation), whereas sustained impairment occurs in other known forms of complete and partial recessive STAT1 deficiency. Consequently, delayed responses were normal; however, the early induction of interferon-stimulated genes was selectively and severely impaired. Thus, the early cellular responses to human interferons are critically dependent on the amount of STAT1 and are essential for the appropriate control of mycobacterial and viral infections.


Assuntos
Infecções Bacterianas/tratamento farmacológico , Interferon gama/farmacologia , Mutação de Sentido Incorreto/genética , Splicing de RNA/genética , Fator de Transcrição STAT1/deficiência , Fator de Transcrição STAT1/genética , Bactérias/patogenicidade , Infecções Bacterianas/etiologia , Western Blotting , Criança , Pré-Escolar , Dimerização , Feminino , Homozigoto , Humanos , Imunoprecipitação , Luciferases/metabolismo , Masculino , Linhagem , Fosforilação , Transporte Proteico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
10.
J Allergy Clin Immunol ; 128(3): 610-7.e1-4, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21722947

RESUMO

BACKGROUND: Children with germline mutations in Toll-like receptor 3 (TLR3), UNC93B1, TNF receptor-associated factor 3, and signal transducer and activator of transcription 1 are prone to herpes simplex virus-1 encephalitis, owing to impaired TLR3-triggered, UNC-93B-dependent, IFN-α/ß, and/or IFN-λ-mediated signal transducer and activator of transcription 1-dependent immunity. OBJECTIVE: We explore here the molecular basis of the pathogenesis of herpes simplex encephalitis in a child with a hypomorphic mutation in nuclear factor-κB (NF-κB) essential modulator, which encodes the regulatory subunit of the inhibitor of the Iκß kinase complex. METHODS: The TLR3 signaling pathway was investigated in the patient's fibroblasts by analyses of IFN-ß, IFN-λ, and IL-6 mRNA and protein levels, by quantitative PCR and ELISA, respectively, upon TLR3 stimulation (TLR3 agonists or TLR3-dependent viruses). NF-κB activation was assessed by electrophoretic mobility shift assay and interferon regulatory factor 3 dimerization on native gels after stimulation with a TLR3 agonist. RESULTS: The patient's fibroblasts displayed impaired responses to TLR3 stimulation in terms of IFN-ß, IFN-λ, and IL-6 production, owing to impaired activation of both NF-κB and IRF-3. Moreover, vesicular stomatitis virus, a potent IFN-inducer in human fibroblasts, and herpes simplex virus-1, induced only low levels of IFN-ß and IFN-λ in the patient's fibroblasts, resulting in enhanced viral replication and cell death, as reported for UNC-93B-deficient fibroblasts. CONCLUSION: Herpes simplex encephalitis may occur in patients carrying NF-κB essential modulator mutations, due to the impairment of NF-κB- and interferon regulatory factor 3-dependent-TLR3-mediated antiviral IFN production.


Assuntos
Encefalite por Herpes Simples/imunologia , Quinase I-kappa B/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Mutação , NF-kappa B/metabolismo , Receptor 3 Toll-Like/imunologia , Pré-Escolar , Encefalite por Herpes Simples/genética , Encefalite por Herpes Simples/virologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Humanos , Quinase I-kappa B/genética , Transdução de Sinais , Simplexvirus/imunologia , Receptor 3 Toll-Like/metabolismo
11.
Front Immunol ; 13: 888427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159783

RESUMO

Purpose: Janus kinase-1 (JAK1) tyrosine kinase mediates signaling from multiple cytokine receptors, including interferon alpha/beta and gamma (IFN-α/ß and IFN-γ), which are important for viral and mycobacterial protection respectively. We previously reported autosomal recessive (AR) hypomorphic JAK1 mutations in a patient with recurrent atypical mycobacterial infections and relatively minor viral infections. This study tests the impact of partial JAK1 deficiency on cellular responses to IFNs and pathogen control. Methods: We investigated the role of partial JAK1 deficiency using patient cells and cell models generated with lentiviral vectors expressing shRNA. Results: Partial JAK1 deficiency impairs IFN-γ-dependent responses in multiple cell types including THP-1 macrophages, Epstein-Barr Virus (EBV)-transformed B cells and primary dermal fibroblasts. In THP-1 myeloid cells, partial JAK1 deficiency reduced phagosome acidification and apoptosis and resulted in defective control of mycobacterial infection with enhanced intracellular survival. Although both EBV-B cells and primary dermal fibroblasts with partial JAK1 deficiency demonstrate reduced IFN-α responses, control of viral infection was impaired only in patient EBV-B cells and surprisingly intact in patient primary dermal fibroblasts. Conclusion: Our data suggests that partial JAK1 deficiency predominantly affects susceptibility to mycobacterial infection through impact on the IFN-γ responsive pathway in myeloid cells. Susceptibility to viral infections as a result of reduced IFN-α responses is variable depending on cell type. Description of additional patients with inherited JAK1 deficiency will further clarify the spectrum of bacterial and viral susceptibility in this condition. Our results have broader relevance for anticipating infectious complications from the increasing use of selective JAK1 inhibitors.


Assuntos
Infecções por Vírus Epstein-Barr , Infecções por Mycobacterium , Mycobacterium , Herpesvirus Humano 4/genética , Humanos , Interferon-alfa/farmacologia , Interferon beta , Interferon gama/genética , Janus Quinase 1/genética , Mycobacterium/genética , Infecções por Mycobacterium/genética , RNA Interferente Pequeno , Receptores de Citocinas
12.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393505

RESUMO

Human herpes simplex virus 1 (HSV-1) encephalitis can be caused by inborn errors of the TLR3 pathway, resulting in impairment of CNS cell-intrinsic antiviral immunity. Deficiencies of the TLR3 pathway impair cell-intrinsic immunity to vesicular stomatitis virus (VSV) and HSV-1 in fibroblasts, and to HSV-1 in cortical but not trigeminal neurons. The underlying molecular mechanism is thought to involve impaired IFN-α/ß induction by the TLR3 recognition of dsRNA viral intermediates or by-products. However, we show here that human TLR3 controls constitutive levels of IFNB mRNA and secreted bioactive IFN-ß protein, and thereby also controls constitutive mRNA levels for IFN-stimulated genes (ISGs) in fibroblasts. Tlr3-/- mouse embryonic fibroblasts also have lower basal ISG levels. Moreover, human TLR3 controls basal levels of IFN-ß secretion and ISG mRNA in induced pluripotent stem cell-derived cortical neurons. Consistently, TLR3-deficient human fibroblasts and cortical neurons are vulnerable not only to both VSV and HSV-1, but also to several other families of viruses. The mechanism by which TLR3 restricts viral growth in human fibroblasts and cortical neurons in vitro and, by inference, by which the human CNS prevents infection by HSV-1 in vivo, is therefore based on the control of early viral infection by basal IFN-ß immunity.


Assuntos
Córtex Cerebral/imunologia , Fibroblastos/imunologia , Herpesvirus Humano 1/imunologia , Interferon beta/imunologia , Neurônios/imunologia , Receptor 3 Toll-Like/imunologia , Vesiculovirus/imunologia , Animais , Linhagem Celular , Córtex Cerebral/patologia , Córtex Cerebral/virologia , Fibroblastos/patologia , Fibroblastos/virologia , Humanos , Interferon beta/genética , Camundongos , Camundongos Knockout , Neurônios/patologia , Neurônios/virologia , Receptor 3 Toll-Like/genética
13.
J Virol ; 83(16): 7828-41, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19515782

RESUMO

The Nipah virus (NiV) phosphoprotein (P) gene encodes the C, P, V, and W proteins. P, V, and W, have in common an amino-terminal domain sufficient to bind STAT1, inhibiting its interferon (IFN)-induced tyrosine phosphorylation. P is also essential for RNA-dependent RNA polymerase function. C is encoded by an alternate open reading frame (ORF) within the common amino-terminal domain. Mutations within residues 81 to 113 of P impaired its polymerase cofactor function, as assessed by a minireplicon assay, but these mutants retained STAT1 inhibitory function. Mutations within the residue 114 to 140 region were identified that abrogated interaction with and inhibition of STAT1 by P, V, and W without disrupting P polymerase cofactor function. Recombinant NiVs were then generated. A G121E mutation, which abrogated inhibition of STAT1, was introduced into a C protein knockout background (C(ko)) because the mutation would otherwise also alter the overlapping C ORF. In cell culture, relative to the wild-type virus, the C(ko) mutation proved attenuating but the G121E mutant virus replicated identically to the C(ko) virus. In cells infected with the wild-type and C(ko) viruses, STAT1 was nuclear despite the absence of tyrosine phosphorylation. This latter observation mirrors what has been seen in cells expressing NiV W. In the G121E mutant virus-infected cells, STAT1 was not phosphorylated and was cytoplasmic in the absence of IFN stimulation but became tyrosine phosphorylated and nuclear following IFN addition. These data demonstrate that the gene for NiV P encodes functions that sequester inactive STAT1 in the nucleus, preventing its activation and suggest that the W protein is the dominant inhibitor of STAT1 in NiV-infected cells.


Assuntos
Núcleo Celular/metabolismo , Infecções por Henipavirus/metabolismo , Vírus Nipah/metabolismo , Fosfoproteínas/metabolismo , Fator de Transcrição STAT1/metabolismo , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Linhagem Celular , Núcleo Celular/genética , Infecções por Henipavirus/virologia , Humanos , Mutação , Vírus Nipah/genética , Fosfoproteínas/genética , Fosforilação , Ligação Proteica , Fator de Transcrição STAT1/genética , Proteínas Virais/genética , Proteínas Estruturais Virais/genética
14.
mSphere ; 5(6)2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328346

RESUMO

The Nipah virus (NiV) phosphoprotein (P) gene encodes four proteins. Three of these-P, V, and W-possess a common N-terminal domain but distinct C termini. These proteins interact with immune modulators. Previous studies demonstrated that P, V, and W bind STAT1 and STAT4 and that V also interacts with STAT2 but not with STAT3. The STAT1 and STAT2 interactions block interferon (IFN)-induced STAT tyrosine phosphorylation. To more fully characterize the interactions of P, V, and W with the STATs, we screened for interaction of each viral protein with STATs 1 to 6 by coimmunoprecipitation. We demonstrate that NiV P, V, and W interact with STAT4 through their common N-terminal domain and block STAT4 activity, based on a STAT4 response element reporter assay. Although none of the NiV proteins interact with STAT3 or STAT6, NiV V, but not P or W, interacts with STAT5 through its unique C terminus. Furthermore, the interaction of NiV V with STAT5 was not disrupted by overexpression of the N-terminal binding STAT1 or the C-terminal binding MDA5. NiV V also inhibits a STAT5 response element reporter assay. Residues 114 to 140 of the common N-terminal domain of the NiV P gene products were found to be sufficient to bind STAT1 and STAT4. Analysis of STAT1-STAT3 chimeras suggests that the P gene products target the STAT1 SH2 domain. When fused to GST, the 114-140 peptide is sufficient to decrease STAT1 phosphorylation in IFN-ß-stimulated cells, suggesting that this peptide could potentially be fused to heterologous proteins to confer inhibition of STAT1- and STAT4-dependent responses.IMPORTANCE How Nipah virus (NiV) antagonizes innate immune responses is incompletely understood. The P gene of NiV encodes the P, V, and W proteins. These proteins have a common N-terminal sequence that is sufficient to bind to STAT1 and STAT2 and block IFN-induced signal transduction. This study sought to more fully understand how P, V, and W engage with the STAT family of transcription factors to influence their functions. The results identify a novel interaction of V with STAT5 and demonstrate V inhibition of STAT5 function. We also demonstrate that the common N-terminal residues 114 to 140 of P, V, and W are critical for inhibition of STAT1 and STAT4 function, map the interaction to the SH2 region of STAT1, and show that a fusion construct with this peptide significantly inhibits cytokine-induced STAT1 phosphorylation. These data clarify how these important virulence factors modulate innate antiviral defenses.


Assuntos
Núcleo Celular/química , Infecções por Henipavirus/metabolismo , Vírus Nipah/fisiologia , Fatores de Transcrição STAT/metabolismo , Proteínas Virais/metabolismo , Células HEK293 , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/virologia , Humanos , Imunidade Inata/imunologia , Fosforilação , Fatores de Transcrição STAT/genética , Transdução de Sinais , Transativadores/metabolismo , Proteínas Virais/genética
15.
J Exp Med ; 216(9): 2038-2056, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31217193

RESUMO

Autosomal recessive IRF7 and IRF9 deficiencies impair type I and III IFN immunity and underlie severe influenza pneumonitis. We report three unrelated children with influenza A virus (IAV) infection manifesting as acute respiratory distress syndrome (IAV-ARDS), heterozygous for rare TLR3 variants (P554S in two patients and P680L in the third) causing autosomal dominant (AD) TLR3 deficiency. AD TLR3 deficiency can underlie herpes simplex virus-1 (HSV-1) encephalitis (HSE) by impairing cortical neuron-intrinsic type I IFN immunity to HSV-1. TLR3-mutated leukocytes produce normal levels of IFNs in response to IAV. In contrast, TLR3-mutated fibroblasts produce lower levels of IFN-ß and -λ, and display enhanced viral susceptibility, upon IAV infection. Moreover, the patients' iPSC-derived pulmonary epithelial cells (PECs) are susceptible to IAV. Treatment with IFN-α2b or IFN-λ1 rescues this phenotype. AD TLR3 deficiency may thus underlie IAV-ARDS by impairing TLR3-dependent, type I and/or III IFN-mediated, PEC-intrinsic immunity. Its clinical penetrance is incomplete for both IAV-ARDS and HSE, consistent with their typically sporadic nature.


Assuntos
Influenza Humana/genética , Padrões de Herança/genética , Pneumonia/genética , Receptor 3 Toll-Like/deficiência , Alelos , Criança , Pré-Escolar , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Evolução Fatal , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Recém-Nascido , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/fisiologia , Interferons/metabolismo , Mutação com Perda de Função/genética , Pulmão/patologia , Masculino , Mutação de Sentido Incorreto/genética , Poli I-C/farmacologia , Transporte Proteico
16.
Nat Med ; 25(12): 1873-1884, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31806906

RESUMO

Herpes simplex virus-1 (HSV-1) encephalitis (HSE) is typically sporadic. Inborn errors of TLR3- and DBR1-mediated central nervous system cell-intrinsic immunity can account for forebrain and brainstem HSE, respectively. We report five unrelated patients with forebrain HSE, each heterozygous for one of four rare variants of SNORA31, encoding a small nucleolar RNA of the H/ACA class that are predicted to direct the isomerization of uridine residues to pseudouridine in small nuclear RNA and ribosomal RNA. We show that CRISPR/Cas9-introduced bi- and monoallelic SNORA31 deletions render human pluripotent stem cell (hPSC)-derived cortical neurons susceptible to HSV-1. Accordingly, SNORA31-mutated patient hPSC-derived cortical neurons are susceptible to HSV-1, like those from TLR3- or STAT1-deficient patients. Exogenous interferon (IFN)-ß renders SNORA31- and TLR3- but not STAT1-mutated neurons resistant to HSV-1. Finally, transcriptome analysis of SNORA31-mutated neurons revealed normal responses to TLR3 and IFN-α/ß stimulation but abnormal responses to HSV-1. Human SNORA31 thus controls central nervous system neuron-intrinsic immunity to HSV-1 by a distinctive mechanism.


Assuntos
Encefalite por Herpes Simples/genética , Herpesvirus Humano 1/genética , Neurônios/imunologia , RNA Nucleolar Pequeno/genética , Adulto , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Pré-Escolar , Encefalite por Herpes Simples/imunologia , Encefalite por Herpes Simples/patologia , Encefalite por Herpes Simples/virologia , Feminino , Predisposição Genética para Doença , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/patogenicidade , Humanos , Imunidade/genética , Lactente , Masculino , Metagenoma/genética , Metagenoma/imunologia , Pessoa de Meia-Idade , Neurônios/virologia , RNA Nucleolar Pequeno/imunologia
17.
Sci Immunol ; 3(30)2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30578352

RESUMO

Inherited IL-12Rß1 and TYK2 deficiencies impair both IL-12- and IL-23-dependent IFN-γ immunity and are rare monogenic causes of tuberculosis, each found in less than 1/600,000 individuals. We show that homozygosity for the common TYK2 P1104A allele, which is found in about 1/600 Europeans and between 1/1000 and 1/10,000 individuals in regions other than East Asia, is more frequent in a cohort of patients with tuberculosis from endemic areas than in ethnicity-adjusted controls (P = 8.37 × 10-8; odds ratio, 89.31; 95% CI, 14.7 to 1725). Moreover, the frequency of P1104A in Europeans has decreased, from about 9% to 4.2%, over the past 4000 years, consistent with purging of this variant by endemic tuberculosis. Surprisingly, we also show that TYK2 P1104A impairs cellular responses to IL-23, but not to IFN-α, IL-10, or even IL-12, which, like IL-23, induces IFN-γ via activation of TYK2 and JAK2. Moreover, TYK2 P1104A is properly docked on cytokine receptors and can be phosphorylated by the proximal JAK, but lacks catalytic activity. Last, we show that the catalytic activity of TYK2 is essential for IL-23, but not IL-12, responses in cells expressing wild-type JAK2. In contrast, the catalytic activity of JAK2 is redundant for both IL-12 and IL-23 responses, because the catalytically inactive P1057A JAK2, which is also docked and phosphorylated, rescues signaling in cells expressing wild-type TYK2. In conclusion, homozygosity for the catalytically inactive P1104A missense variant of TYK2 selectively disrupts the induction of IFN-γ by IL-23 and is a common monogenic etiology of tuberculosis.


Assuntos
Interferon gama/imunologia , Interleucina-23/imunologia , Mutação de Sentido Incorreto/genética , TYK2 Quinase/genética , Tuberculose/imunologia , Células Cultivadas , Homozigoto , Humanos , Interleucina-23/deficiência , TYK2 Quinase/imunologia
18.
J Exp Med ; 215(10): 2567-2585, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143481

RESUMO

Life-threatening pulmonary influenza can be caused by inborn errors of type I and III IFN immunity. We report a 5-yr-old child with severe pulmonary influenza at 2 yr. She is homozygous for a loss-of-function IRF9 allele. Her cells activate gamma-activated factor (GAF) STAT1 homodimers but not IFN-stimulated gene factor 3 (ISGF3) trimers (STAT1/STAT2/IRF9) in response to IFN-α2b. The transcriptome induced by IFN-α2b in the patient's cells is much narrower than that of control cells; however, induction of a subset of IFN-stimulated gene transcripts remains detectable. In vitro, the patient's cells do not control three respiratory viruses, influenza A virus (IAV), parainfluenza virus (PIV), and respiratory syncytial virus (RSV). These phenotypes are rescued by wild-type IRF9, whereas silencing IRF9 expression in control cells increases viral replication. However, the child has controlled various common viruses in vivo, including respiratory viruses other than IAV. Our findings show that human IRF9- and ISGF3-dependent type I and III IFN responsive pathways are essential for controlling IAV.


Assuntos
Alelos , Homozigoto , Influenza Humana , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/deficiência , Orthomyxoviridae/imunologia , Pneumonia Viral , Feminino , Humanos , Lactente , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/patologia , Interferon alfa-2/genética , Interferon alfa-2/imunologia , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/imunologia , Pneumonia Viral/genética , Pneumonia Viral/imunologia , Pneumonia Viral/patologia
19.
Nat Cell Biol ; 19(5): 542-549, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28436965

RESUMO

Recapitulation of lung development from human pluripotent stem cells (hPSCs) in three dimensions (3D) would allow deeper insight into human development, as well as the development of innovative strategies for disease modelling, drug discovery and regenerative medicine. We report here the generation from hPSCs of lung bud organoids (LBOs) that contain mesoderm and pulmonary endoderm and develop into branching airway and early alveolar structures after xenotransplantation and in Matrigel 3D culture. Expression analysis and structural features indicated that the branching structures reached the second trimester of human gestation. Infection in vitro with respiratory syncytial virus, which causes small airway obstruction and bronchiolitis in infants, led to swelling, detachment and shedding of infected cells into the organoid lumens, similar to what has been observed in human lungs. Introduction of mutation in HPS1, which causes an early-onset form of intractable pulmonary fibrosis, led to accumulation of extracellular matrix and mesenchymal cells, suggesting the potential use of this model to recapitulate fibrotic lung disease in vitro. LBOs therefore recapitulate lung development and may provide a useful tool to model lung disease.


Assuntos
Técnicas de Cultura de Células , Pulmão/patologia , Organoides/patologia , Células-Tronco Pluripotentes/patologia , Fibrose Pulmonar/patologia , Infecções por Vírus Respiratório Sincicial/patologia , Engenharia Tecidual/métodos , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Predisposição Genética para Doença , Humanos , Pulmão/metabolismo , Pulmão/virologia , Transplante de Pulmão , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos NOD , Mutação , Organogênese , Organoides/metabolismo , Organoides/transplante , Organoides/virologia , Fenótipo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante , Células-Tronco Pluripotentes/virologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Fatores de Tempo
20.
J Exp Med ; 214(7): 1949-1972, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28606988

RESUMO

MDA5 is a cytosolic sensor of double-stranded RNA (ds)RNA including viral byproducts and intermediates. We studied a child with life-threatening, recurrent respiratory tract infections, caused by viruses including human rhinovirus (HRV), influenza virus, and respiratory syncytial virus (RSV). We identified in her a homozygous missense mutation in IFIH1 that encodes MDA5. Mutant MDA5 was expressed but did not recognize the synthetic MDA5 agonist/(ds)RNA mimic polyinosinic-polycytidylic acid. When overexpressed, mutant MDA5 failed to drive luciferase activity from the IFNB1 promoter or promoters containing ISRE or NF-κB sequence motifs. In respiratory epithelial cells or fibroblasts, wild-type but not knockdown of MDA5 restricted HRV infection while increasing IFN-stimulated gene expression and IFN-ß/λ. However, wild-type MDA5 did not restrict influenza virus or RSV replication. Moreover, nasal epithelial cells from the patient, or fibroblasts gene-edited to express mutant MDA5, showed increased replication of HRV but not influenza or RSV. Thus, human MDA5 deficiency is a novel inborn error of innate and/or intrinsic immunity that causes impaired (ds)RNA sensing, reduced IFN induction, and susceptibility to the common cold virus.


Assuntos
Helicase IFIH1 Induzida por Interferon/genética , Mutação , Infecções por Picornaviridae/genética , Infecções por Picornaviridae/virologia , Rhinovirus/fisiologia , Antivirais/farmacologia , Sequência de Bases , Células Cultivadas , Pré-Escolar , Análise Mutacional de DNA/métodos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/virologia , Expressão Gênica/efeitos dos fármacos , Genes Recessivos/genética , Heterozigoto , Homozigoto , Interações Hospedeiro-Patógeno , Humanos , Helicase IFIH1 Induzida por Interferon/deficiência , Interferons/farmacologia , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA