Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Cell Physiol ; 239(4): e31199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38291668

RESUMO

The effects of exercise training (ET) on the heart of aortic stenosis (AS) rats are controversial and the mechanisms involved in alterations induced by ET have been poorly clarified. In this study, we analyzed the myocardial proteome to identify proteins modulated by moderate-intensity aerobic ET in rats with chronic supravalvular AS. Wistar rats were divided into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary aortic stenosis (AS-Sed), and exercised AS (AS-Ex). ET consisted of five treadmill running sessions per week for 16 weeks. Statistical analysis was performed by ANOVA or Kruskal-Wallis and Goodman tests. Results were discussed at a significance level of 5%. At the end of the experiment, AS-Ex rats had higher functional capacity, lower blood lactate concentration, and better cardiac structural and left ventricular (LV) functional parameters than the AS-Sed. Myocardial proteome analysis showed that AS-Sed had higher relative protein abundance related to the glycolytic pathway, oxidative stress, and inflammation, and lower relative protein abundance related to beta-oxidation than C-Sed. AS-Ex had higher abundance of one protein related to mitochondrial biogenesis and lower relative protein abundance associated with oxidative stress and inflammation than AS-Sed. Proteomic data were validated for proteins related to lipid and glycolytic metabolism. Chronic pressure overload changes the abundance of myocardial proteins that are mainly involved in lipid and glycolytic energy metabolism in rats. Moderate-intensity aerobic training attenuates changes in proteins related to oxidative stress and inflammation and increases the COX4I1 protein, related to mitochondrial biogenesis. Protein changes are combined with improved functional capacity, cardiac remodeling, and LV function in AS rats.


Assuntos
Estenose da Valva Aórtica , Miocárdio , Condicionamento Físico Animal , Proteoma , Animais , Ratos , Estenose da Valva Aórtica/metabolismo , Inflamação , Lipídeos , Condicionamento Físico Animal/métodos , Proteômica , Ratos Wistar , Miocárdio/metabolismo
2.
J Cell Mol Med ; 27(19): 2956-2969, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37654004

RESUMO

We employed an early training exercise program, immediately after recovery from surgery, and before severe cardiac hypertrophy, to study the underlying mechanism involved with the amelioration of cardiac dysfunction in aortic stenosis (AS) rats. As ET induces angiogenesis and oxygen support, we aimed to verify the effect of exercise on myocardial lipid metabolism disturbance. Wistar rats were divided into Sham, trained Sham (ShamT), AS and trained AS (AST). The exercise consisted of 5-week sessions of treadmill running for 16 weeks. Statistical analysis was conducted by anova or Kruskal-Wallis test and Goodman test. A global correlation between variables was also performed using a two-tailed Pearson's correlation test. AST rats displayed a higher functional capacity and a lower cardiac remodelling and dysfunction when compared to AS, as well as the myocardial capillary rarefaction was prevented. Regarding metabolic properties, immunoblotting and enzymatic assay raised beneficial effects of exercise on fatty acid transport and oxidation pathways. The correlation assessment indicated a positive correlation between variables of angiogenesis and FA utilisation, as well as between metabolism and echocardiographic parameters. In conclusion, early exercise improves exercise tolerance and attenuates cardiac structural and functional remodelling. In parallel, exercise attenuated myocardial capillary and lipid metabolism derangement in rats with aortic stenosis-induced heart failure.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Condicionamento Físico Animal , Ratos , Animais , Ratos Wistar , Metabolismo dos Lipídeos , Insuficiência Cardíaca/metabolismo
3.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569680

RESUMO

Aerobic exercise training (AET) has been used to manage heart disease. AET may totally or partially restore the activity and/or expression of proteins that regulate calcium (Ca2+) handling, optimize intracellular Ca2+ flow, and attenuate cardiac functional impairment in failing hearts. However, the literature presents conflicting data regarding the effects of AET on Ca2+ transit and cardiac function in rats with heart failure resulting from aortic stenosis (AoS). This study aimed to evaluate the impact of AET on Ca2+ handling and cardiac function in rats with heart failure due to AoS. Wistar rats were distributed into two groups: control (Sham; n = 61) and aortic stenosis (AoS; n = 44). After 18 weeks, the groups were redistributed into: non-exposed to exercise training (Sham, n = 28 and AoS, n = 22) and trained (Sham-ET, n = 33 and AoS-ET, n = 22) for 10 weeks. Treadmill exercise training was performed with a velocity equivalent to the lactate threshold. The cardiac function was analyzed by echocardiogram, isolated papillary muscles, and isolated cardiomyocytes. During assays of isolated papillary muscles and isolated cardiomyocytes, the Ca2+ concentrations were evaluated. The expression of regulatory proteins for diastolic Ca2+ was assessed via Western Blot. AET attenuated the diastolic dysfunction and improved the systolic function. AoS-ET animals presented an enhanced response to post-rest contraction and SERCA2a and L-type Ca2+ channel blockage compared to the AoS. Furthermore, AET was able to improve aspects of the mechanical function and the responsiveness of the myofilaments to the Ca2+ of the AoS-ET animals. AoS animals presented an alteration in the protein expression of SERCA2a and NCX, and AET restored SERCA2a and NCX levels near normal values. Therefore, AET increased SERCA2a activity and myofilament responsiveness to Ca2+ and improved the cellular Ca2+ influx mechanism, attenuating cardiac dysfunction at cellular, tissue, and chamber levels in animals with AoS and heart failure.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Ratos , Animais , Cálcio/metabolismo , Ratos Wistar , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio da Dieta/metabolismo , Estenose da Valva Aórtica/metabolismo , Exercício Físico , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
4.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37047174

RESUMO

In pathological cardiac hypertrophy, the heart is more dependent on glucose than fatty acids. This shift in energy metabolism occurs due to several factors, including the oxygen deficit, which activates hypoxia-inducible factor-1α (HIF-1α), a critical molecule related to glucose metabolism. However, there are gaps regarding the behavior of key proteins in the glycolytic pathway and HIF-1α during the transition from hypertrophy to heart failure (HF). This study assesses the hypothesis that there is an early change and enhancement of HIF-1α and the glycolytic pathway, as well as an association between them during cardiac remodeling. Sham and aortic stenosis Wistar rats were analyzed at 2, 6, and 18 weeks and in HF (n = 10-18). Cardiac structure and function were investigated by echocardiogram. Myocardial glycolysis, the aerobic and anaerobic pathways and glycogen were analyzed by enzymatic assay, Western blot, and enzyme-linked immunosorbent assay (ELISA). The following were observed: increased left ventricular hypertrophy; early diastolic function change and severe systolic and diastolic dysfunction in HF; increased HIF-1α in the 2nd week and in HF; precocious alteration and intensification of glycolysis with a shift to anaerobic metabolism from the 6th week onwards; association between HIF-1α, glycolysis, and the anaerobic pathway. Our hypothesis was confirmed as there was an early change and intensification in glucose metabolism, alteration in HIF-1α, and an association between data during the progression from hypertrophy to heart failure.


Assuntos
Insuficiência Cardíaca , Remodelação Ventricular , Ratos , Animais , Remodelação Ventricular/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ratos Wistar , Cardiomegalia , Glicólise/fisiologia , Glucose/metabolismo
5.
Cell Physiol Biochem ; 54(4): 665-681, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32639114

RESUMO

BACKGROUND/AIMS: Aortic stenosis-induced chronic pressure overload leads to cardiac dysfunction and congestive heart failure. The pathophysiological mechanisms of the myocardial impairment are multifactorial and include maladaptive ß-adrenergic signaling. Exercise training (ET) has been used as a non-pharmacological therapy for heart failure management. The present study tested the hypothesis that exercise training attenuates diastolic dysfunction through ß-adrenergic signaling preservation. METHODS: Wistar rats were submitted to ascending aortic stenosis (AS) surgery, and after 18 weeks, a moderate aerobic exercise training protocol was performed for ten weeks. RESULTS: ET attenuated diastolic dysfunction, evaluated by echocardiogram and isolated papillary muscle (IPM) assay. Also, ET reduced features of heart failure, cross-sectional cardiomyocyte area, and exercise intolerance, assessed by treadmill exercise testing. The ß2 adrenergic receptor protein expression was increased in AS rats independently of exercise. Interestingly, ET restored the protein levels of phosphorylated phospholamban at Serine 16 and preserved the ß-adrenergic receptor responsiveness as visualized by the lower myocardial compliance decline and time to 50% tension development and relaxation during ß-adrenergic stimulation in the IPM than untrained rats. Additionally, AS rats presented higher levels of TNFα and iNOS, which were attenuated by ET. CONCLUSION: Moderate ET improves exercise tolerance, reduces heart failure features, and attenuates diastolic dysfunction. In the myocardium, ET decreases the cross-sectional area of the cardiomyocyte and preserves the ß-adrenergic responsiveness, which reveals that the adjustments in ß-adrenergic signaling contribute to the amelioration of cardiac dysfunction by mild exercise training in aortic stenosis rats.


Assuntos
Estenose Aórtica Supravalvular/metabolismo , Insuficiência Cardíaca Diastólica/terapia , Miócitos Cardíacos/metabolismo , Condicionamento Físico Animal/fisiologia , Receptores Adrenérgicos beta/metabolismo , Animais , Estenose Aórtica Supravalvular/terapia , Proteínas de Ligação ao Cálcio/metabolismo , Ecocardiografia , Teste de Esforço , Masculino , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Músculos Papilares/fisiologia , Fosforilação , Ratos , Ratos Wistar , Receptores Adrenérgicos beta/fisiologia , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
6.
Cell Physiol Biochem ; 54(4): 719-735, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32730701

RESUMO

BACKGROUND/AIMS: The beneficial effect of aerobic exercise training (ET) on cardiac remodeling caused by supravalvar aortic stenosis (AS) has been demonstrated in experimental studies; however, the mechanisms responsible for improving cardiac function are not entirely understood. We evaluated whether ET-generated cardioprotection in pressure-overloaded rats is dependent on cardiomyocyte proliferation, increased angiotensin-(1-7) (Ang-1-7) levels, and its receptor in the myocardium. METHODS: Eighteen weeks after ascending AS surgery, Wistar rats were randomly assigned to four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary aortic stenosis (AS-Sed) and exercised aortic stenosis (AS-Ex) groups. The moderate treadmill exercise protocol was performed for ten weeks. The functional capacity was assessed by treadmill exercise testing. Cardiac structure and function were evaluated by echocardiogram. Cardiomyocyte proliferation was evaluated by flow cytometry. Expression of cell cycle regulatory genes as CCND2, AURKB, CDK1, and MEIS1 was verified by RT-qPCR. Cardiac and plasma angiotensin I (Ang I), angiotensin II (Ang II), and Ang-(1-7) levels were analyzed by high-performance liquid chromatography (HPLC). The angiotensin-converting enzyme (ACE) activity was assessed by the fluorometric method and protein expression of AT1 and Mas receptors by Western blot. RESULTS: The AS-Ex group showed reduced left ventricular wall relative thickness and improved ejection fraction; also, it showed decreased gene expression of myocyte cell cycle regulators, ACE, Ang I, Ang II and Ang II/Ang-(1-7) ratio levels compared to AS-Sed group. However, ET did not induce alterations in Ang-(1-7) and cardiac Mas receptor expression and myocyte proliferation. CONCLUSION: Aerobic exercise training improves systolic function regardless of myocyte proliferation and Ang-(1-7)/Mas receptor levels. However, the ET negatively modulates the vasoconstrictor/hypertrophic axis (ACE/Ang II) and decreases the expression of negative regulatory genes of the cell cycle in cardiomyocytes of rats with supravalvular aortic stenosis.


Assuntos
Angiotensina I/metabolismo , Estenose Aórtica Supravalvular/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fragmentos de Peptídeos/metabolismo , Condicionamento Físico Animal/fisiologia , Sistema Renina-Angiotensina/fisiologia , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Estenose Aórtica Supravalvular/enzimologia , Estenose Aórtica Supravalvular/genética , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Ciclo Celular/genética , Proliferação de Células/fisiologia , Cromatografia Líquida de Alta Pressão , Ciclina D2/genética , Ciclina D2/metabolismo , Ecocardiografia , Teste de Esforço , Masculino , Proteína Meis1/genética , Proteína Meis1/metabolismo , Ratos , Ratos Wistar
7.
Pathophysiology ; 25(4): 373-379, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30030016

RESUMO

Cardiac remodeling (CR) is a structural change of the heart due to chronic hemodynamic overload related to changes in both myocyte and extracellular matrix (ECM). We investigated that the imbalance of collagen V promotes cardiomyocyte apoptosis that contributes to heart failure and cell death. Aortic stenosis was induced surgically and male Wistar rats were randomized to 18 weeks (Sham 18 w, n = 12; AoS 18 w, n = 12) and severe of heart failure (Sham HF, n = 12; AoS HF, n = 12) groups. Functional and structural echocardiogram, immunohistochemistry for Ki-67, TUNEL assay and Immunofluorescence for collagen were performed. Our main results were: (1) Progressive reduction of cardiac functional capacity due to cardiac remodeling with decreased eject fraction in heart failure; (2) Imbalance of collagen deposition with increased, crowded and irregular collagen I in situ expression; (3) Dysregulation of dynamic control of collagen fibers with exposed epitopes of collagen V; (4) Additional apoptosis that are dependent to cardiac injury. The collagen V expression in cardiac remodeling is for the first time described and may be related to additional apoptosis and autoimmune response. Our findings suggest a critical role of collagen V in cardiac remodeling to modulate and promote heart failure and death.

8.
Int J Exp Pathol ; 97(3): 238-47, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27365256

RESUMO

Pulmonary arterial hypertension (PAH) is a chronic disease which causes overload to the right ventricle. The effect of preventive training on cardiac remodelling in this condition is still unknown. This study aimed to evaluate the influence of preventive training on hypertrophy, heart function and gene expression of calcium transport proteins in rats with monocrotaline-induced PAH. Thirty-two male Wistar rats were randomly divided into four groups: S, sedentary control; T, trained control; SM, sedentary monocrotaline; and TM, trained monocrotaline. The preventive training protocol was performed on a treadmill for 13 weeks, five times/week. The first two weeks were adopted for adaptation to training with gradual increases in speed/time. The speed of the physical training from the third to tenth weeks was gradually increased from 0.9 to 1.1 km/h for 60 min. Next, monocrotaline was applied (60 mg/kg) to induce PAH and lactate threshold analysis performed to determine the training speeds. The training speed of the TM group in the following two weeks was 0.8 km/h for 60 min and the T = 0.9 km/h for 60 min; in the final two weeks, both groups trained at the same speed and duration 0.9 km/h, 60 min. Cardiac function was assessed through echocardiography, ventricular hypertrophy through histomorphometric analysis and gene expression through RT-qPCR. Right cardiac function assessed through the peak flow velocity was SM = 75.5 cm/s vs. TM = 92.0 cm/s (P = 0.001), and ventricular hypertrophy was SM = 106.4 µm² vs. TM = 77.7 µm² (P = 0.004). There was a decrease in the gene expression of ryanodine S = 1.12 au vs. SM = 0.60 au (P = 0.02) without alterations due to training. Thus, we conclude that prior physical training exerts a cardioprotective effect on the right ventricle in the monocrotaline rat model.


Assuntos
Cardiotônicos/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Monocrotalina/farmacologia , Aerobiose , Animais , Modelos Animais de Doenças , Hipertensão Pulmonar/prevenção & controle , Hipertrofia Ventricular Direita/prevenção & controle , Masculino , Condicionamento Físico Animal/métodos , Ratos Wistar
9.
Exp Physiol ; 101(8): 1075-85, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27219629

RESUMO

NEW FINDINGS: What is the central question of this study? We investigated the effects of physical training on phenotypic (fibre-type content) and myogenic features (MyoD and myogenin expression) in skeletal muscle during the transition from cardiac hypertrophy to heart failure. What is the main finding and its importance? We provide new insight into skeletal muscle adaptations by showing that physical training increases the type I fibre content during the transition from cardiac hypertrophy to heart failure, without altering MyoD and myogenin expression. These results have important clinical implications for patients with heart failure, because this population has reduced muscle oxidative capacity. The purpose of this study was to investigate the effects of physical training (PT) on phenotypic features (fibre-type content) and myogenic regulatory factors (MyoD and myogenin) in rat skeletal muscle during the transition from cardiac hypertrophy to heart failure. We used the model of ascending aortic stenosis (AS) to induce heart failure in male Wistar rats. Sham-operated animals were used as age-matched controls. At 18 weeks after surgery, rats with ventricular dysfunction were randomized into the following four groups: sham-operated, untrained (Sham-U; n = 8); sham-operated, trained (Sham-T; n = 6); aortic stenosis, untrained (AS-U; n = 6); and aortic stenosis, trained (AS-T; n = 8). The AS-T and Sham-T groups were submitted to a 10 week aerobic PT programme, while the AS-U and Sham-U groups remained untrained for the same period of time. After the PT programme, the animals were killed and the soleus muscles collected for phenotypic and molecular analyses. Physical training promoted type IIa-to-I fibre conversion in the trained groups (Sham-T and AS-T) compared with the untrained groups (Sham-U and AS-U). No significant (P > 0.05) differences were found in type I or IIa fibre content in the AS-U group compared with the Sham-U group. Additionally, there were no significant (P > 0.05) differences in the myogenic regulatory factors MyoD and myogenin (gene and protein) expression between the groups. Therefore, our results indicate that PT may be a suitable strategy to improve the oxidative phenotype in skeletal muscle during the transition from cardiac hypertrophy to heart failure, without altering MyoD and myogenin.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Proteína MyoD/metabolismo , Miogenina/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Oxirredução , Ratos , Ratos Wistar
10.
Mol Cell Endocrinol ; 589: 112236, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608803

RESUMO

INTRODUCTION: High sucrose intake is linked to cardiovascular disease, a major global cause of mortality worldwide. Calcium mishandling and inflammation play crucial roles in cardiac disease pathophysiology. OBJECTIVE: Evaluate if sucrose-induced obesity is related to deterioration of myocardial function due to alterations in the calcium-handling proteins in association with proinflammatory cytokines. METHODS: Wistar rats were divided into control and sucrose groups. Over eight weeks, Sucrose group received 30% sucrose water. Cardiac function was determined in vivo using echocardiography and in vitro using papillary muscle assay. Western blotting was used to detect calcium handling protein; ELISA assay was used to assess TNF-α and IL-6 levels. RESULTS: Sucrose led to cardiac dysfunction. RYR2, SERCA2, NCX, pPBL Ser16 and L-type calcium channels were unchanged. However, pPBL-Thr17, and TNF-α levels were elevated in the S group. CONCLUSION: Sucrose induced cardiac dysfunction and decreased myocardial contractility in association with altered pPBL-Thr17 and elevated cardiac pro-inflammatory TNF-α.


Assuntos
Proteínas de Ligação ao Cálcio , Ratos Wistar , Fator de Necrose Tumoral alfa , Animais , Masculino , Ratos , Proteínas de Ligação ao Cálcio/metabolismo , Interleucina-6/metabolismo , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Fosforilação/efeitos dos fármacos , Sacarose/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
11.
Cardiovasc Diabetol ; 12: 152, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24134628

RESUMO

BACKGROUND: The combination of systemic arterial hypertension and diabetes mellitus (DM) induces greater cardiac remodeling than either condition alone. However, this association has been poorly addressed in senescent rats. Therefore, this study aimed to analyze the influence of streptozotocin-induced DM on ventricular remodeling and oxidative stress in aged spontaneously hypertensive rats (SHR). METHODS: Fifty 18 month old male SHR were divided into two groups: control (SHR, n = 25) and diabetic (SHR-DM, n = 25). DM was induced by streptozotocin (40 mg/kg, i.p.). After nine weeks, the rats underwent echocardiography and myocardial functional study in left ventricular (LV) isolated papillary muscle preparations. LV samples were obtained to measure myocyte diameters, interstitial collagen fraction, and hydroxyproline concentration. Gene expression of atrial natriuretic peptide (ANP) and α- and ß-myosin heavy chain (MyHC) isoforms was evaluated by RT-PCR. Serum oxidative stress was assessed by measuring lipid hydroperoxide concentration and superoxide dismutase and glutathione peroxidase activities. STATISTICS: Student's t test or Mann-Whitney test, p < 0.05. RESULTS: SHR-DM presented higher blood glucose (487 ± 29 vs. 89.1 ± 21.1 mg/dL) and lower body weight (277 ± 26 vs. 339 ± 38 g). Systolic blood pressure did not differ between groups. Echocardiography showed LV and left atrial dilation, LV diastolic and relative wall thickness decrease, and LV systolic and diastolic function impairment in SHR-DM. Papillary muscle study showed decreased myocardial contractility and contractile reserve in SHR-DM. Myocyte diameters and myocardial interstitial collagen fraction and hydroxyproline concentration did not differ between groups. Increased serum pro-oxidant activity and gene expression of ANP and ß/α-MyHC ratio were observed in DM. CONCLUSION: Diabetes mellitus induces cardiac dilation and functional impairment, increases oxidative stress and activates fetal gene program in aged spontaneously hypertensive rats.


Assuntos
Diabetes Mellitus Experimental/genética , Hipertensão/genética , Hipertrofia Ventricular Esquerda/genética , Miocárdio/metabolismo , Estresse Oxidativo/genética , Remodelação Ventricular/genética , Animais , Fator Natriurético Atrial/genética , Miosinas Cardíacas/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/diagnóstico por imagem , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Ecocardiografia , Hidroxiprolina/metabolismo , Hipertensão/complicações , Hipertensão/metabolismo , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/metabolismo , Masculino , Cadeias Pesadas de Miosina/genética , Estresse Oxidativo/fisiologia , Ratos , Ratos Endogâmicos SHR , Reação em Cadeia da Polimerase Via Transcriptase Reversa , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Transcriptoma , Remodelação Ventricular/fisiologia
12.
Front Physiol ; 14: 1182303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37362442

RESUMO

We evaluated the influence of aerobic physical exercise (EX) on gene-encoding proteins associated with oxidative stress in diaphragm muscle of rats with aortic stenosis-induced heart failure (HF). Wistar male rats were divided into four groups: Control sedentary (C); Control exercise (C-Ex); Sedentary aortic stenosis (AS); Aortic stenosis exercise (AS-Ex). Exercised rats trained 5 times a week for 10 weeks on a treadmill. Statistical analysis was performed by ANOVA or Kruskal-Wallis test. In the final echocardiogram, animals with aortic stenosis subjected to exercise demonstrated improvement in systolic function compared to the sedentary aortic stenosis group. In diaphragm muscle, the activity of antioxidant enzymes, malondialdehyde malondialdehyde concentration, protein carbonylation, and protein expression of p65 and its inhibitor IκB did not differ between groups. Alterations in gene expression of sources that generate reactive species of oxygen were observed in AS-Ex group, which showed decreased mRNA abundance of NOX2 and NOX4 compared to the aortic stenosis group (p < 0.05). We concluded that aerobic exercise has a positive impact during heart failure, ameliorating systolic dysfunction and biomarkers of oxidative stress in diaphragm muscle of rats with aortic stenosis-induced heart failure.

13.
ScientificWorldJournal ; 2012: 780890, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22645452

RESUMO

AIMS: To analyze the influence of hyperthyroidism on the gene expression and serum concentration of leptin, resistin, and adiponectin in obese animals. MAIN METHODS: Male Wistar rats were randomly divided into two groups: control (C)-fed with commercial chow ad libitum-and obese (OB)-fed with a hypercaloric diet. After group characterization, the OB rats continued receiving a hypercaloric diet and were randomized into two groups: obese animals (OB) and obese with 25 µg triiodothyronine (T(3))/100 BW (OT). The T(3) dose was administered every day for the last 2 weeks of the study. After 30 weeks the animals were euthanized. Samples of blood and adipose tissue were collected for biochemical and hormonal analyses as well as gene expression of leptin, resistin, and adiponectin. RESULTS: T(3) treatment was effective, increasing fT(3) levels and decreasing fT(4) and TSH serum concentration. Administration of T(3) promotes weight loss, decreases all fat deposits, and diminishes serum levels of leptin, resistin, and adiponectin by reducing their gene expression. CONCLUSIONS: Our results suggest that T(3) modulate serum and gene expression levels of leptin, resistin, and adiponectin in experimental model of obesity, providing new insights regarding the relationship between T(3) and adipokines in obesity.


Assuntos
Adiponectina/sangue , Hipertireoidismo/metabolismo , Leptina/sangue , Resistina/sangue , Tecido Adiposo/metabolismo , Animais , Peso Corporal , Modelos Animais de Doenças , Regulação da Expressão Gênica , Homeostase , Masculino , Obesidade/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Tireotropina/sangue , Tiroxina/biossíntese , Tri-Iodotironina/biossíntese
14.
Arq Bras Cardiol ; 118(2): 463-475, 2022 02.
Artigo em Inglês, Português | MEDLINE | ID: mdl-35262582

RESUMO

BACKGROUND: Maladaptive cardiac remodelling is characterized by diastolic and systolic dysfunction, culminating in heart failure. In this context, the dysfunctional scenario of cardiac calcium (Ca2+) handling has been poorly studied. An experimental model of aortic stenosis has been extensively used to improve knowledge about the key mechanisms of cardiac pathologic remodelling. OBJECTIVE: To understand the dysfunctional process of the major components responsible for Ca2+ balance and its influence on cardiac function in heart failure induced by aortic stenosis. METHODS: Male 21-day-old Wistar rats were distributed into two groups: control (sham; n= 28) and aortic stenosis (AoS; n= 18). Cardiac function was analysed by echocardiogram, isolated papillary muscle, and isolated cardiomyocytes. In the papillary muscle assay, SERCA2a and L-type Ca2+ channel activity was evaluated. The isolated cardiomyocyte assay evaluated Ca2+ handling. Ca2+ handling protein expression was analysed by western blot. Statistical significance was set at p <0.05. RESULTS: Papillary muscles and cardiomyocytes from AoS hearts displayed mechanical malfunction. AoS rats presented a slower time to the Ca2+ peak, reduced Ca2+ myofilament sensitivity, impaired sarcoplasmic reticulum Ca2+ influx and reuptake ability, and SERCA2a and L-type calcium channel (LTCC) dysfunction. Moreover, AoS animals presented increased expression of SERCA2a, LTCCs, and the Na+/Ca2+ exchanger. CONCLUSION: Systolic and diastolic heart failure due to supravalvular aortic stenosis was paralleled by impairment of cellular Ca2+ influx and inhibition of sarcoplasmic reticulum Ca2+ reuptake due to LTCC and SERCA2a dysfunction, as well as changes in Ca2+ handling and expression of the major proteins responsible for cellular Ca2+ homeostasis.


FUNDAMENTO: O remodelamento cardíaco patológico se caracteriza por disfunção diastólica e sistólica, levando à insuficiência cardíaca. Neste contexto, o cenário disfuncional do trânsito de cálcio miocárdico (Ca2+) tem sido pouco estudado. Um modelo experimental de estenose aórtica tem sido extensamente utilizado para aprimorar os conhecimentos sobre os principais mecanismos do remodelamento patológico cardíaco. OBJETIVO: Entender o processo disfuncional dos principais componentes responsáveis pelo equilíbrio do cálcio miocárdico e sua influência sobre a função cardíaca na insuficiência cardíaca induzida pela estenose aórtica. MÉTODOS: Ratos Wistar de 21 dias de idade foram distribuídos em dois grupos: controle (placebo; n=28) e estenose aórtica (EaO; n=18). A função cardíaca foi analisada com o ecocardiograma, músculo papilar isolado e cardiomiócitos isolados. No ensaio do músculo papilar, SERCA2a e a atividade do canal de Ca2+ do tipo L foram avaliados. O ensaio de cardiomiócitos isolados avaliou o trânsito de cálcio. A expressão proteica da proteínas do trânsito de cálcio foi analisada com o western blot. Os resultados foram estatisticamente significativos quando p <0,05. RESULTADOS: Os músculos papilares e cardiomiócitos dos corações no grupo EaO demonstraram falhas mecânicas. Os ratos com EaO apresentaram menor tempo de pico do Ca2+, menor sensibilidade das miofibrilas do Ca2+, prejuízos nos processos de entrada e recaptura de cálcio pelo retículo sarcoplasmático, bem como disfunção no canal de cálcio do tipo L (CCTL). Além disso, os animais com EaO apresentaram maior expressão de SERCA2a, CCTL e trocador de Na+/Ca2+. CONCLUSÃO: Insuficiência cardíaca sistólica e diastólica devido à estenose aórtica supravalvular acarretou comprometimento da entrada de Ca2+ celular e inibição da recaptura de cálcio pelo retículo sarcoplasmático devido à disfunção no CCTL e SERCA2a, assim como mudanças no trânsito de cálcio e na expressão das principais proteínas responsáveis pela homeostase de Ca2+ celular.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Animais , Estenose da Valva Aórtica/patologia , Cálcio/metabolismo , Insuficiência Cardíaca/patologia , Masculino , Contração Miocárdica/fisiologia , Miócitos Cardíacos/patologia , Músculos Papilares , Ratos , Ratos Wistar , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
15.
Life Sci ; 308: 120959, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108768

RESUMO

AIM: To evaluate the influence of high-intensity interval training (HIIT) on cardiac structural and functional characteristics and myocardial mitogen-activated protein kinase (MAPK) signaling in hypertensive rats. METHODS: Male rats (12 months old) were divided into three groups: Wistar Kyoto rats (WKY, n = 8); sedentary spontaneously hypertensive rats (SED-SHR, n = 10), and trained spontaneously hypertensive rats (HIIT-SHR, n = 10). Systolic blood pressure (SBP), functional capacity, echocardiography, isolated papillary muscle, and gene expression of MAPK gene-encoding proteins associated with Elk1, cJun, ATF2, MEF2 were analyzed. KEY FINDINGS: HIIT decreased SBP and increased functional capacity, left ventricular diastolic diameter, posterior wall thickness-left ventricle, relative wall thickness-left ventricle, and resting tension of the papillary muscle. In hypertensive rats, we observed a decrease in the gene-encoding ATF2 protein; this decrease was reversed by HIIT. SIGNIFICANCE: The influence of HIIT in the SHR model in the compensated hypertension phase generated an increase in cardiac hypertrophy, attenuated myocardial diastolic dysfunction, lowered blood pressure, improved functional capacity, and reversed the alteration in gene-encoding ATF2 protein.


Assuntos
Treinamento Intervalado de Alta Intensidade , Hipertensão , Animais , Pressão Sanguínea/fisiologia , Hipertensão/metabolismo , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miocárdio/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Remodelação Ventricular/fisiologia
16.
J Cell Physiol ; 226(11): 2934-42, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21302294

RESUMO

Obesity has been shown to impair myocardial performance. Nevertheless, the mechanisms underlying the participation of calcium (Ca(2+) ) handling on cardiac dysfunction in obesity models remain unknown. L-type Ca(2+) channels and sarcoplasmic reticulum (SR) Ca(2+) -ATPase (SERCA2a), may contribute to the cardiac dysfunction induced by obesity. The purpose of this study was to investigate whether myocardial dysfunction in obese rats is related to decreased activity and/or expression of L-type Ca(2+) channels and SERCA2a. Male 30-day-old Wistar rats were fed standard (C) and alternately four palatable high-fat diets (Ob) for 15 weeks. Obesity was determined by adiposity index and comorbidities were evaluated. Myocardial function was evaluated in isolated left ventricle papillary muscles under basal conditions and after inotropic and lusitropic maneuvers. L-type Ca(2+) channels and SERCA2a activity were determined using specific blockers, while changes in the amount of channels were evaluated by Western blot analysis. Phospholamban (PLB) protein expression and the SERCA2a/PLB ratio were also determined. Compared with C rats, the Ob rats had increased body fat, adiposity index and several comorbidities. The Ob muscles developed similar baseline data, but myocardial responsiveness to post-rest contraction stimulus and increased extracellular Ca(2+) was compromised. The diltiazem promoted higher inhibition on developed tension in obese rats. In addition, there were no changes in the L-type Ca(2+) channel protein content and SERCA2a behavior (activity and expression). In conclusion, the myocardial dysfunction caused by obesity is related to L-type Ca(2+) channel activity impairment without significant changes in SERCA2a expression and function as well as L-type Ca(2+) protein levels.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Cardiomiopatias/fisiopatologia , Obesidade/complicações , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/biossíntese , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatias/etiologia , Gorduras na Dieta/administração & dosagem , Diltiazem/farmacologia , Masculino , Contração Miocárdica/efeitos dos fármacos , Obesidade/fisiopatologia , Ratos , Ratos Wistar , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores
17.
J Nutr Biochem ; 92: 108625, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33705955

RESUMO

Metabolic syndrome (MetS) include obesity as a critical feature and is strongly associated with risk of cardiovascular disease (CVD). Insights into mechanisms involved in the pathophysiology of these clinical manifestations are essential for the development of therapeutic strategies. Thus, Western diets (WD) have been widely employed in diet-induced obesity (DIO) model. However, there are variations in fat and sugar proportions of such diets, making comparisons challenging. We aimed to assess the impact of two types of the WD on metabolic status and cardiac remodeling, to achieve a DIO model that better mimics the human pathogenesis of MetS-induced CVD. Male Wistar rats were distributed into three groups: control diet, Western diet fat (WDF), and Western diet sugar (WDS) for 41 weeks. Metabolic and inflammatory parameters and cardiac changes were characterized. WDF and WDS feeding promoted higher serum triglycerides, glucose intolerance, and insulin resistance, while just WDF presented inflammation in adipose tissue. WDF-fed rats showed increased catalase activity and malondialdehyde (MDA) and carbonyl protein levels, suggesting cardiac oxidative stress, while WDS-fed rats only raised MDA. Both WD equally elevated protein expressions involved in lipid metabolism, but only WDF downregulated the glycolysis pathway. Furthermore, the mechanical myocardial function was impaired in obese rats, being more relevant in WDF. In conclusion, both WD effectively triggered MetS features, although inflammation was detected just on the WDF-fed animals. Moreover, the WDF promoted a more pronounced functional, metabolic, and oxidative cardiac disorder, suggesting to be an adequate model for studying CVD in the scenario of MetS.


Assuntos
Dieta Ocidental/efeitos adversos , Síndrome Metabólica/etiologia , Obesidade/etiologia , Remodelação Ventricular , Animais , Metabolismo Energético , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , Ratos Wistar
18.
Arq Bras Cardiol ; 117(1): 91-99, 2021 07.
Artigo em Inglês, Português | MEDLINE | ID: mdl-34320076

RESUMO

BACKGROUND: Obesity is a chronic low-grade inflammation condition related to cardiac disorders. However, the mechanism responsible for obesity-related cardiac inflammation is unclear. The toll-like receptor 4 (TLR-4) belongs to a receptor of the transmembrane family responsible for the immune response whose activation stimulates the production of proinflammatory cytokines. OBJECTIVE: To test whether the activation of the TLR-4 receptor participates in the obesity cardiomyopathy process, due to cytokine production through NF-ĸB activation. METHODS: Male Wistar rats were randomized into two groups: the control group (C, n= 8 animals) that received standard diet/water and the obese group (OB, n= 8 animals) that were fed a high sugar-fat diet and water plus 25% of sucrose for 30 weeks. Nutritional analysis: body weight, adiposity index, food, water, and caloric intake. Obesity-related disorders analysis: plasma glucose, uric acid and triglycerides, HOMA-IR, systolic blood pressure, TNF-α in adipose tissue. Cardiac analysis included: TLR-4 and NF-ĸB protein expression, TNF-α and IL-6 levels. Comparison by unpaired Student's t-test or Mann- Whitney test with a p-value < 0.05 as statistically significant. RESULTS: The OB group showed obesity, high glucose, triglycerides, uric acid, HOMA, systolic blood pressure, and TNF-α in adipose tissue. OB group presented cardiac remodeling and diastolic dysfunction. TLR-4 and NF-ĸB expression and cytokine levels were higher in OB. CONCLUSION: Our findings conclude that, in an obesogenic condition, the inflammation derived from cardiac TLR-4 activation can be a mechanism able to lead to remodeling and cardiac dysfunction.


FUNDAMENTO: A obesidade é uma condição inflamatória crônica de baixo grau relacionada a distúrbios cardíacos. No entanto, o mecanismo responsável pela inflamação cardíaca relacionada à obesidade não é claro. O receptor do tipo toll 4 (TLR-4) pertence a um receptor da família das transmembranas, responsável pela resposta imune, cuja ativação estimula a produção de citocinas pró-inflamatórias. OBJETIVO: Testar se a ativação do receptor TLR-4 participa do processo de cardiomiopatia da obesidade, devido à produção de citocinas por meio da ativação do NF-ĸB. MÉTODOS: Ratos Wistar machos foram randomizados em dois grupos: o grupo controle (C, n = 8 animais) que recebeu dieta padrão/água e o grupo obeso (OB, n = 8 animais) que foi alimentado com dieta rica em açúcar e gordura e água mais 25% de sacarose por 30 semanas. Análise nutricional: peso corporal, índice de adiposidade, alimentos, água e ingestão calórica. Análise de distúrbios relacionados à obesidade: glicose plasmática, ácido úrico e triglicerídeos, HOMA-IR, pressão arterial sistólica, TNF-α no tecido adiposo. A análise cardíaca incluiu: expressão das proteínas TLR-4 e NF-ĸB, níveis de TNF-α e IL-6. Comparação pelo teste t de Student não pareado ou teste de Mann-Whitney com um valor de p <0,05 como estatisticamente significativo. RESULTADOS: O grupo OB apresentou obesidade, glicose elevada, triglicerídeos, ácido úrico, HOMA, pressão arterial sistólica e TNF-α no tecido adiposo. O grupo OB apresentou remodelação cardíaca e disfunção diastólica. A expressão de TLR-4 e NF-ĸB e os níveis de citocinas foram maiores em OB. CONCLUSÃO: Nossos achados concluem que, em uma condição obesogênica, a inflamação derivada da ativação do TLR-4 cardíaco pode ser um mecanismo capaz de levar à remodelação e disfunção cardíaca.


Assuntos
Cardiomiopatias , Receptor 4 Toll-Like , Animais , Imunidade Inata , Inflamação , Masculino , Obesidade , Ratos , Ratos Wistar
19.
J Cardiovasc Transl Res ; 14(4): 674-684, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32246321

RESUMO

Cirrhotic cardiomyopathy is a condition where liver cirrhosis is associated with cardiac dysfunction. Triggers and blockers of cirrhotic cardiomyopathy are poorly understood, which might compromise the prognosis of chronic liver disease patients. We tested whether exercise training would reduce liver damage induced by thioacetamide and prevent liver cirrhosis-associated cardiomyopathy. Wistar rats were divided into three groups: control, thioacetamide (TAA), or TAA plus exercise. Thioacetamide increased liver weight and serum alanine aminotransferase and aspartate aminotransferase levels. Also, TAA treatment was involved with hepatic nodule formation, fibrotic septa, inflammatory infiltration, and hepatocyte necrosis. The exercise group presented with a reduction in liver injury status. We found that liver injury was associated with disordered cardiac hypertrophy as well as diastolic and systolic dysfunction. Exercise training attenuated cirrhosis-associated cardiac remodeling and diastolic dysfunction and prevented systolic impairment. These results provided insights that exercise training can mitigate cirrhotic cardiomyopathy phenotype. Graphical Abstract Exercise training attenuated liver injury as well as cirrhosis-associated cardiac remodeling and diastolic dysfunction and prevented systolic impairment.


Assuntos
Cardiomiopatias/prevenção & controle , Terapia por Exercício , Cirrose Hepática/terapia , Condicionamento Físico Humano , Animais , Função do Átrio Esquerdo , Biomarcadores/sangue , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Tolerância ao Exercício , Humanos , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Masculino , Miocárdio/patologia , Ratos Wistar , Tioacetamida , Função Ventricular Esquerda
20.
PLoS One ; 16(9): e0244768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495964

RESUMO

To gain insight on the impact of preventive exercise during pulmonary arterial hypertension (PAH), we evaluated the gene expression of myosins and gene-encoding proteins associated with the extracellular matrix remodeling of right hypertrophied ventricles. We used 32 male Wistar rats, separated in four groups: Sedentary Control (S, n = 8); Control with Training (T, n = 8); Sedentary with Pulmonary Arterial Hypertension (SPAH, n = 8); and Pulmonary Arterial Hypertension with Training (TPAH, n = 8). All rats underwent a two-week adaptation period; T and TPAH group rats then proceeded to an eight-week training period on a treadmill. At the beginning of the 11th week, S and T groups received an intraperitoneal injection of saline, and SPAH and TPAH groups received an injection of monocrotaline (60 mg/kg). Rats in the T and TPAH groups then continued with the training protocol until the 13th week. We assessed exercise capacity, echocardiography analysis, Fulton's index, cross-sectional areas of cardiomyocytes, collagen content and types, and fractal dimension (FD). Transcript abundance of myosins and extracellular matrix genes were estimated through reverse transcription-quantitative PCR (RT-qPCR). When compared to the SPAH group, the TPAH group showed increases in functional capacity and pulmonary artery acceleration time/pulmonary ejection time ratio and decreases in Fulton's index and cross-sectional areas of myocyte cells. However, preventive exercise did not induce alterations in col1a1 and myh7 gene expression. Our findings demonstrate that preventive exercise improved functional capacity, reduced cardiac hypertrophy, and attenuated PH development without interfering in mRNA-encoding myosin and collagen expression during PAH.


Assuntos
Hipertensão Arterial Pulmonar , Animais , Colágeno/metabolismo , Hipertensão Pulmonar , Masculino , Miosinas/metabolismo , RNA Mensageiro , Ratos , Ratos Wistar , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA