Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planet Space Sci ; 194: 105105, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33012847

RESUMO

This report summarizes observations of returned Apollo rocks and soils, lunar surface images, orbital observations, and experimental impacts related to the erosion and comminution of rocks exposed at the lunar surface. The objective is to develop rigorous criteria for the recognition of impact processes that assist in distinguishing "impact" from other potential erosional processes, particularly thermal fatigue, which has recently been advocated specifically for asteroids. Impact in rock is a process that is centrally to bilaterally symmetric, resulting in highly crushed, high-albedo, quasicircular depressions surrounded by volumetrically prominent spall zones. Containing central glass-lined pits in many cases, such features provide distinctive evidence of impact that is not duplicated by any other process. Additional evidence of impact can include radial fracture systems in the target that emanate from the impact point and clusters of fragments that attest to the lateral acceleration and displacement of each one. It is also important to note that impact produces a wide variety of fragment shapes that might totally overlap with those produced by thermal fatigue; we consider fragment shape to be an unreliable criterion for either process. The stochastic nature of the impact process will result in exponential survival times of surface rocks; that is, rock destruction initially is relatively efficient, but it is followed by ever increasing surface times for the last rock remnants. Thermal fatigue, however, is essentially a thermal-equilibrium process. The corresponding distribution of survival times should be much more peaked in comparison, presumably Gaussian, and diagnostically different from that due to impact. Given the abundance of evidence that has been gleaned from returned Apollo rocks and soils, it is surprising how little has been learned about the impact process from the photography of rocks and boulders taken by the astronauts on the lunar surface. This suggests that it will require rocks and soils returned from asteroids to evaluate the relative roles of thermal versus impact-triggered rock erosion, particularly when both processes are likely to be operating.

2.
Science ; 314(5806): 1716-9, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17170290

RESUMO

Particles emanating from comet 81P/Wild 2 collided with the Stardust spacecraft at 6.1 kilometers per second, producing hypervelocity impact features on the collector surfaces that were returned to Earth. The morphologies of these surprisingly diverse features were created by particles varying from dense mineral grains to loosely bound, polymineralic aggregates ranging from tens of nanometers to hundreds of micrometers in size. The cumulative size distribution of Wild 2 dust is shallower than that of comet Halley, yet steeper than that of comet Grigg-Skjellerup.

3.
Science ; 314(5806): 1711-6, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17170289

RESUMO

The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA