Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 295: 120636, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38777219

RESUMO

Diversity in brain health is influenced by individual differences in demographics and cognition. However, most studies on brain health and diseases have typically controlled for these factors rather than explored their potential to predict brain signals. Here, we assessed the role of individual differences in demographics (age, sex, and education; n = 1298) and cognition (n = 725) as predictors of different metrics usually used in case-control studies. These included power spectrum and aperiodic (1/f slope, knee, offset) metrics, as well as complexity (fractal dimension estimation, permutation entropy, Wiener entropy, spectral structure variability) and connectivity (graph-theoretic mutual information, conditional mutual information, organizational information) from the source space resting-state EEG activity in a diverse sample from the global south and north populations. Brain-phenotype models were computed using EEG metrics reflecting local activity (power spectrum and aperiodic components) and brain dynamics and interactions (complexity and graph-theoretic measures). Electrophysiological brain dynamics were modulated by individual differences despite the varied methods of data acquisition and assessments across multiple centers, indicating that results were unlikely to be accounted for by methodological discrepancies. Variations in brain signals were mainly influenced by age and cognition, while education and sex exhibited less importance. Power spectrum activity and graph-theoretic measures were the most sensitive in capturing individual differences. Older age, poorer cognition, and being male were associated with reduced alpha power, whereas older age and less education were associated with reduced network integration and segregation. Findings suggest that basic individual differences impact core metrics of brain function that are used in standard case-control studies. Considering individual variability and diversity in global settings would contribute to a more tailored understanding of brain function.


Assuntos
Encéfalo , Cognição , Eletroencefalografia , Humanos , Masculino , Feminino , Adulto , Cognição/fisiologia , Pessoa de Meia-Idade , Encéfalo/fisiologia , Idoso , Adulto Jovem , Individualidade , Adolescente , Fatores Etários , Envelhecimento/fisiologia
2.
Front Neuroimaging ; 1: 924811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37555186

RESUMO

The prevalence of dementia, including Alzheimer's disease (AD), is on the rise globally with screening and intervention of particular importance and benefit to those with limited access to healthcare. Electroencephalogram (EEG) is an inexpensive, scalable, and portable brain imaging technology that could deliver AD screening to those without local tertiary healthcare infrastructure. We study EEG recordings of subjects with sporadic mild cognitive impairment (MCI) and prodromal familial, early-onset, AD for the same working memory tasks using high- and low-density EEG, respectively. A challenge in detecting electrophysiological changes from EEG recordings is that noise and volume conduction effects are common and disruptive. It is known that the imaginary part of coherency (iCOH) can generate functional connectivity networks that mitigate against volume conduction, while also erasing true instantaneous activity (zero or π-phase). We aim to expose topological differences in these iCOH connectivity networks using a global network measure, eigenvector alignment (EA), shown to be robust to network alterations that emulate the erasure of connectivities by iCOH. Alignments assessed by EA capture the relationship between a pair of EEG channels from the similarity of their connectivity patterns. Significant alignments-from comparison with random null models-are seen to be consistent across frequency ranges (delta, theta, alpha, and beta) for the working memory tasks, where consistency of iCOH connectivities is also noted. For high-density EEG recordings, stark differences in the control and sporadic MCI results are observed with the control group demonstrating far more consistent alignments. Differences between the control and pre-dementia groupings are detected for significant correlation and iCOH connectivities, but only EA suggests a notable difference in network topology when comparing between subjects with sporadic MCI and prodromal familial AD. The consistency of alignments, across frequency ranges, provides a measure of confidence in EA's detection of topological structure, an important aspect that marks this approach as a promising direction for developing a reliable test for early onset AD.

3.
Appl Netw Sci ; 6(1): 5, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33490367

RESUMO

Contact networks provide insights on disease spread due to the duration of close proximity interactions. For systems governed by consensus dynamics, network structure is key to optimising the spread of information. For disease spread over contact networks, the structure would be expected to be similarly influential. However, metrics that are essentially agnostic to the network's structure, such as weighted degree (strength) centrality and its variants, perform near-optimally in selecting effective spreaders. These degree-based metrics outperform eigenvector centrality, despite disease spread over a network being a random walk process. This paper improves eigenvector-based spreader selection by introducing the non-linear relationship between contact time and the probability of disease transmission into the assessment of network dynamics. This approximation of disease spread dynamics is achieved by altering the Laplacian matrix, which in turn highlights why nodes with a high degree are such influential disease spreaders. From this approach, a trichotomy emerges on the definition of an effective spreader where, for susceptible-infected simulations, eigenvector-based selections can either optimise the initial rate of infection, the average rate of infection, or produce the fastest time to full infection of the network. Simulated and real-world human contact networks are examined, with insights also drawn on the effective adaptation of ant colony contact networks to reduce pathogen spread and protect the queen ant.

4.
PLoS One ; 15(8): e0231294, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32853207

RESUMO

Eigenvector alignment, introduced herein to investigate human brain functional networks, is adapted from methods developed to detect influential nodes and communities in networked systems. It is used to identify differences in the brain networks of subjects with Alzheimer's disease (AD), amnestic Mild Cognitive Impairment (aMCI) and healthy controls (HC). Well-established methods exist for analysing connectivity networks composed of brain regions, including the widespread use of centrality metrics such as eigenvector centrality. However, these metrics provide only limited information on the relationship between regions, with this understanding often sought by comparing the strength of pairwise functional connectivity. Our holistic approach, eigenvector alignment, considers the impact of all functional connectivity changes before assessing the strength of the functional relationship, i.e. alignment, between any two regions. This is achieved by comparing the placement of regions in a Euclidean space defined by the network's dominant eigenvectors. Eigenvector alignment recognises the strength of bilateral connectivity in cortical areas of healthy control subjects, but also reveals degradation of this commissural system in those with AD. Surprisingly little structural change is detected for key regions in the Default Mode Network, despite significant declines in the functional connectivity of these regions. In contrast, regions in the auditory cortex display significant alignment changes that begin in aMCI and are the most prominent structural changes for those with AD. Alignment differences between aMCI and AD subjects are detected, including notable changes to the hippocampal regions. These findings suggest eigenvector alignment can play a complementary role, alongside established network analytic approaches, to capture how the brain's functional networks develop and adapt when challenged by disease processes such as AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Mapeamento Encefálico/métodos , Disfunção Cognitiva/fisiopatologia , Idoso , Amnésia/fisiopatologia , Encéfalo/fisiopatologia , Córtex Cerebral/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Modelos Teóricos , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia
5.
Sci Rep ; 9(1): 17590, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772210

RESUMO

Fuelled by a desire for greater connectivity, networked systems now pervade our society at an unprecedented level that will affect it in ways we do not yet understand. In contrast, nature has already developed efficient networks that can instigate rapid response and consensus when key elements are stimulated. We present a technique for identifying these key elements by investigating the relationships between a system's most dominant eigenvectors. This approach reveals the most effective vertices for leading a network to rapid consensus when stimulated, as well as the communities that form under their dynamical influence. In applying this technique, the effectiveness of starling flocks was found to be due, in part, to the low outdegree of every bird, where increasing the number of outgoing connections can produce a less responsive flock. A larger outdegree also affects the location of the birds with the most influence, where these influentially connected birds become more centrally located and in a poorer position to observe a predator and, hence, instigate an evasion manoeuvre. Finally, the technique was found to be effective in large voxel-wise brain connectomes where subjects can be identified from their influential communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA