Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(13): 9261-9271, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517949

RESUMO

Despite considerable recent advances already made in developing chemically circular polymers (CPs), the current framework predominantly focuses on CPs with linear-chain structures of different monomer types. As polymer properties are determined by not only composition but also topology, manipulating the topology of the single-monomer-based CP systems from linear-chain structures to architecturally complex polymers could potentially modulate the resulting polymer properties without changing the chemical composition, thereby advancing the concept of monomaterial product design. To that end, here, we introduce a chemically circular hyperbranched polyester (HBPE), synthesized by a mixed chain-growth and step-growth polymerization of a rationally designed bicyclic lactone with a pendent hydroxyl group (BiLOH). This HBPE exhibits full chemical recyclability despite its architectural complexity, showing quantitative selectivity for regeneration of BiLOH, via a unique cascade depolymerization mechanism. Moreover, distinct differences in materials properties and performance arising from topological variations between HBPE, hb-PBiLOH, and its linear analogue, l-PBiLOH, have been revealed where generally the branched structure led to more favorable interchain interactions, and topology-amplified optical activity has also been observed for chiral (1S, 4S, 5S)-hb-PBiLOH. More intriguingly, depolymerization of l-PBiLOH proceeds through an unexpected, initial topological transformation to the HBPE polymer, followed by the faster cascade depolymerization pathway adopted by hb-PBiLOH. Overall, these results demonstrate that CP design can go beyond typical linear polymers, and rationally redesigned, architecturally complex polymers for their unique properties may synergistically impart advantages in topology-augmented depolymerization acceleration and selectivity for exclusive monomer regeneration.

2.
J Am Chem Soc ; 146(7): 4930-4941, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346332

RESUMO

Cyclic block copolymers (cBCP) are fundamentally intriguing materials, but their synthetic challenges that demand precision in controlling both the monomer sequence and polymer topology limit access to AB and ABC block architectures. Here, we show that cyclic ABAB tetra-BCPs (cABAB) and their linear counterpart (lABAB) can be readily obtained at a speed and scale from one-pot (meth)acrylic monomer mixtures, through coupling the Lewis pair polymerization's unique compounded-sequence control with its precision in topology control. This approach achieves fast (<15 min) and quantitative (>99%) conversion to tetra-BCPs of predesignated linear or cyclic topology at scale (40 g) in a one-pot procedure, precluding the needs for repeated chain extensions, stoichiometric addition steps, dilute conditions, and postsynthetic modifications, and/or postsynthetic ring-closure steps. The resulting lABAB and cABAB have essentially identical molecular weights (Mn = 165-168 kg mol-1) and block degrees/symmetry, allowing for direct behavioral comparisons in solution (hydrodynamic volume, intrinsic viscosity, elution time, and refractive indices), bulk (thermal transitions), and film (thermomechanical and rheometric properties and X-ray scattering patterns) states. To further the morphological characterizations, allylic side-chain functionality is exploited via the thiol-ene click chemistry to install crystalline octadecane side chains and promote phase separation between the A and B blocks, allowing visualization of microdomain formation.

3.
ACS Sustain Chem Eng ; 12(32): 11913-11927, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39148515

RESUMO

Large composite structures, such as those used in wind energy applications, rely on the bulk polymerization of thermosets on an impressively large scale. To accomplish this, traditional thermoset polymerizations require both elevated temperatures (>100 °C) and extended cure durations (>5 h) for complete conversion, necessitating the use of oversize ovens or heated molds. In turn, these requirements lead to energy-intensive polymerizations, incurring high manufacturing costs and process emissions. In this study, we develop thermoset polymerizations that can be initiated at room temperature through a transformative "chemical heating" concept, in which the exothermic energy of a secondary reaction is used to facilitate the heating of a primary thermoset polymerization. By leveraging a redox-initiated methacrylate free radical polymerization as a source of exothermic chemical energy, we can achieve peak reaction temperatures >140 °C to initiate the polymerization of epoxy-anhydride thermosets without external heating. Furthermore, by employing Trojan horse methacrylate monomers to induce mixing between methacrylate and epoxy-anhydride domains, we achieve the synthesis of homogeneous hybrid polymeric materials with competitive thermomechanical properties and tunability. Herein, we establish a proof-of-concept for our innovative chemical heating method and advocate for its industrial integration for more energy-efficient and streamlined manufacturing of wind blades and large composite parts more broadly.

4.
Nat Commun ; 15(1): 1217, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336849

RESUMO

Successes in biocatalytic polyester recycling have raised the possibility of deconstructing alternative polymers enzymatically, with polyamide (PA) being a logical target due to the array of amide-cleaving enzymes present in nature. Here, we screen 40 potential natural and engineered nylon-hydrolyzing enzymes (nylonases), using mass spectrometry to quantify eight compounds resulting from enzymatic nylon-6 (PA6) hydrolysis. Comparative time-course reactions incubated at 40-70 °C showcase enzyme-dependent variations in product distributions and extent of PA6 film depolymerization, with significant nylon deconstruction activity appearing rare. The most active nylonase, a NylCK variant we rationally thermostabilized (an N-terminal nucleophile (Ntn) hydrolase, NylCK-TS, Tm = 87.4 °C, 16.4 °C higher than the wild-type), hydrolyzes 0.67 wt% of a PA6 film. Reactions fail to restart after fresh enzyme addition, indicating that substrate-based limitations, such as restricted enzyme access to hydrolysable bonds, prohibit more extensive deconstruction. Overall, this study expands our understanding of nylonase activity distribution, indicates that Ntn hydrolases may have the greatest potential for further development, and identifies key targets for progressing PA6 enzymatic depolymerization, including improving enzyme activity, product selectivity, and enhancing polymer accessibility.


Assuntos
Caprolactama/análogos & derivados , Nylons , Polímeros , Hidrólise , Polímeros/química , Poliésteres
5.
Science ; 385(6711): 854-860, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39172828

RESUMO

Wind energy is helping to decarbonize the electrical grid, but wind blades are not recyclable, and current end-of-life management strategies are not sustainable. To address the material recyclability challenges in sustainable energy infrastructure, we introduce scalable biomass-derivable polyester covalent adaptable networks and corresponding fiber-reinforced composites for recyclable wind blade fabrication. Through experimental and computational studies, including vacuum-assisted resin-transfer molding of a 9-meter wind blade prototype, we demonstrate drop-in technological readiness of this material with existing manufacture techniques, superior properties relative to incumbent materials, and practical end-of-life chemical recyclability. Most notable is the counterintuitive creep suppression, outperforming industry state-of-the-art thermosets despite the dynamic cross-link topology. Overall, this report details the many facets of wind blade manufacture, encompassing chemistry, engineering, safety, mechanical analyses, weathering, and chemical recyclability, enabling a realistic path toward biomass-derivable, recyclable wind blades.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA