Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(2): 021102, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512228

RESUMO

Axions may be produced thermally inside the cores of neutron stars (NSs), escape the stars due to their feeble interactions with matter, and subsequently convert into x rays in the magnetic fields surrounding the stars. We show that a recently discovered excess of hard x-ray emission in the 2-8 keV energy range from the nearby magnificent seven isolated NSs could be explained by this emission mechanism. These NSs are unique in that they had previously been expected to only produce observable flux in the UV and soft x-ray bands from thermal surface emission at temperatures ∼100 eV. No conventional astrophysical explanation of the magnificent seven hard x-ray excess exists at present. We show that the hard x-ray excess may be consistently explained by an axionlike particle with mass m_{a}≲2×10^{-5} eV and g_{aγγ}×g_{ann}∈(2×10^{-21},10^{-18}) GeV^{-1} at 95% confidence, accounting for both statistical and theoretical uncertainties, where g_{aγγ} (g_{ann}) is the axion-photon (axion-neutron) coupling constant.

2.
Phys Rev Lett ; 124(11): 111602, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242736

RESUMO

We propose a mechanism called axiogenesis where the cosmological excess of baryons over antibaryons is generated from the rotation of the QCD axion. The Peccei-Quinn (PQ) symmetry may be explicitly broken in the early Universe, inducing the rotation of a PQ charged scalar field. The rotation corresponds to the asymmetry of the PQ charge, which is converted into the baryon asymmetry via QCD and electroweak sphaleron transitions. In the concrete model we explore, interesting phenomenology arises due to the prediction of a small decay constant and the connections with new physics at the LHC and future colliders and with axion dark matter.

3.
Phys Rev Lett ; 124(25): 251802, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32639773

RESUMO

In the conventional misalignment mechanism, the axion field has a constant initial field value in the early Universe and later begins to oscillate. We present an alternative scenario where the axion field has a nonzero initial velocity, allowing an axion decay constant much below the conventional prediction from axion dark matter. This axion velocity can be generated from explicit breaking of the axion shift symmetry in the early Universe, which may occur as this symmetry is approximate.

4.
Rep Prog Phys ; 82(11): 116201, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31185458

RESUMO

We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of standard model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the [Formula: see text]m scale up to the Big Bang Nucleosynthesis limit of [Formula: see text] m. Neutral LLPs with lifetimes above [Formula: see text]100 m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging backgrounds, triggers, and small acceptances. MATHUSLA is a proposal for a minimally instrumented, large-volume surface detector near ATLAS or CMS. It would search for neutral LLPs produced in HL-LHC collisions by reconstructing displaced vertices (DVs) in a low-background environment, extending the sensitivity of the main detectors by orders of magnitude in the long-lifetime regime. We study the LLP physics opportunities afforded by a MATHUSLA-like detector at the HL-LHC, assuming backgrounds can be rejected as expected. We develop a model-independent approach to describe the sensitivity of MATHUSLA to BSM LLP signals, and compare it to DV and missing energy searches at ATLAS or CMS. We then explore the BSM motivations for LLPs in considerable detail, presenting a large number of new sensitivity studies. While our discussion is especially oriented towards the long-lifetime regime at MATHUSLA, this survey underlines the importance of a varied LLP search program at the LHC in general. By synthesizing these results into a general discussion of the top-down and bottom-up motivations for LLP searches, it is our aim to demonstrate the exceptional strength and breadth of the physics case for the construction of the MATHUSLA detector.

5.
Phys Rev Lett ; 120(21): 211602, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883137

RESUMO

The QCD axion is a good dark matter candidate. The observed dark matter abundance can arise from misalignment or defect mechanisms, which generically require an axion decay constant f_{a}∼O(10^{11}) GeV (or higher). We introduce a new cosmological origin for axion dark matter, parametric resonance from oscillations of the Peccei-Quinn symmetry breaking field, that requires f_{a}∼(10^{8}-10^{11}) GeV. The axions may be warm enough to give deviations from cold dark matter in large scale structure.

6.
Phys Rev Lett ; 118(10): 101801, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28339231

RESUMO

We present a simple and natural dark sector model in which dark matter particles arise as composite states of hidden strong dynamics and their stability is ensured by accidental symmetries. The model has only a few free parameters. In particular, the gauge symmetry of the model forbids the masses of dark quarks, and the confinement scale of the dynamics provides the unique mass scale of the model. The gauge group contains an Abelian symmetry U(1)_{D}, which couples the dark and standard model sectors through kinetic mixing. This model, despite its simple structure, has rich and distinctive phenomenology. In the case where the dark pion becomes massive due to U(1)_{D} quantum corrections, direct and indirect detection experiments can probe thermal relic dark matter which is generically a mixture of the dark pion and the dark baryon, and the Large Hadron Collider can discover the U(1)_{D} gauge boson. Alternatively, if the dark pion stays light due to a specific U(1)_{D} charge assignment of the dark quarks, then the dark pion constitutes dark radiation. The signal of this radiation is highly correlated with that of dark baryons in dark matter direct detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA