Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 622(7981): 93-100, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37612511

RESUMO

The Pacific Walker circulation (PWC) has an outsized influence on weather and climate worldwide. Yet the PWC response to external forcings is unclear1,2, with empirical data and model simulations often disagreeing on the magnitude and sign of these responses3. Most climate models predict that the PWC will ultimately weaken in response to global warming4. However, the PWC strengthened from 1992 to 2011, suggesting a significant role for anthropogenic and/or volcanic aerosol forcing5, or internal variability. Here we use a new annually resolved, multi-method, palaeoproxy-derived PWC reconstruction ensemble (1200-2000) to show that the 1992-2011 PWC strengthening is anomalous but not unprecedented in the context of the past 800 years. The 1992-2011 PWC strengthening was unlikely to have been a consequence of volcanic forcing and may therefore have resulted from anthropogenic aerosol forcing or natural variability. We find no significant industrial-era (1850-2000) PWC trend, contrasting the PWC weakening simulated by most climate models3. However, an industrial-era shift to lower-frequency variability suggests a subtle anthropogenic influence. The reconstruction also suggests that volcanic eruptions trigger El Niño-like PWC weakening, similar to the response simulated by climate models.


Assuntos
Movimentos do Ar , Atmosfera , Clima , Tempo (Meteorologia) , Aerossóis/análise , Atmosfera/química , Modelos Climáticos , El Niño Oscilação Sul , Aquecimento Global , História do Século XIX , História do Século XX , História do Século XXI , Atividades Humanas , Oceano Pacífico , Erupções Vulcânicas
2.
Proc Natl Acad Sci U S A ; 119(12): e2108124119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35286205

RESUMO

SignificanceTwenty-first century trends in hydroclimate are so large that future average conditions will, in most cases, fall into the range of what we would today consider extreme drought or pluvial states. Using large climate model ensembles, we remove the background trend and find that the risk of droughts and pluvials relative to that (changing) baseline is fairly similar to the 20th century risk. By continually adapting to long-term background changes, these risks could therefore perhaps be minimized. However, increases in the frequency of extremely wet and dry years are still present even after removing the trend, indicating that sustainably managing hydroclimate-driven risks in a warmer world will face increasingly difficult challenges.


Assuntos
Mudança Climática , Secas , Previsões
3.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34518222

RESUMO

Reconstruction of the North Atlantic jet stream (NAJ) presents a critical, albeit largely unconstrained, paleoclimatic target. Models suggest northward migration and changing variance of the NAJ under 21st-century warming scenarios, but assessing the significance of such projections is hindered by a lack of long-term observations. Here, we incorporate insights from an ensemble of last-millennium water isotope-enabled climate model simulations and a wide array of mean annual water isotope ([Formula: see text]O) and annually accumulated snowfall records from Greenland ice cores to reconstruct North Atlantic zonal-mean zonal winds back to the 8th century CE. Using this reconstruction we provide preobservational constraints on both annual mean NAJ position and intensity to show that late 20th- and early 21st-century NAJ variations were likely not unique relative to natural variability. Rather, insights from our 1,250 year reconstruction highlight the overwhelming role of natural variability in thus far masking the response of midlatitude atmospheric dynamics to anthropogenic forcing, consistent with recent large-ensemble transient modeling experiments. This masking is not projected to persist under high greenhouse gas emissions scenarios, however, with model projected annual mean NAJ position emerging as distinct from the range of reconstructed natural variability by as early as 2060 CE.

4.
Geophys Res Lett ; 49(2): e2021GL096820, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36247419

RESUMO

Atmospheric rivers (ARs) cause inland hydrological impacts related to precipitation. However, little is known about coastal hazards associated with these events. We elucidate high-tide floods (HTFs) and storm surges during ARs on the US West Coast during 1980-2016. HTFs and ARs cooccur more often than expected from chance. Between 10% and 63% of HTFs coincide with ARs on average, depending on location. However, interannual-to-decadal variations in HTFs are due more to tides and mean sea-level changes than storminess variability. Only 2-15% of ARs coincide with HTFs, suggesting that ARs typically must cooccur with high tides or mean sea levels to cause HTFs. Storm surges during ARs reflect local wind, pressure, and precipitation forcing: meridional wind and barometric pressure are primary drivers, but precipitation makes secondary contributions. This study highlights the relevance of ARs to coastal impacts, clarifies the drivers of storm surge during ARs, and identifies future research directions.

5.
Geophys Res Lett ; 45(19): 10619-10626, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30546165

RESUMO

The Caribbean islands are expected to see more frequent and severe droughts from reduced precipitation and increased evaporative demand due to anthropogenic climate change. Between 2013 and 2016, the Caribbean experienced a widespread drought due in part to El Niño in 2015-2016, but it is unknown whether its severity was exacerbated by anthropogenic warming. This work examines the role of recent warming on this drought, using a recently developed high-resolution self-calibrating Palmer Drought Severity Index data set. The resulting analysis suggest that anthropogenic warming accounted for ~15-17% of the drought's severity and ~7% of its spatial extent. These findings strongly suggest that climate model projected anthropogenic drying in the Caribbean is already underway, with major implications for the more than 43 million people currently living in this region.

6.
Geophys Res Lett ; Volume 43(Iss 17): 9225-9233, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32601513

RESUMO

American Southwest (ASW) megadroughts represent decadal-scale periods of dry conditions, the near-term risks of which arise from natural low-frequency hydroclimate variability and anthropogenic forcing. A large single-climate-model ensemble indicates anthropogenic forcing increases near-term ASW megadrought risk by a factor of 100, however, accurate risk assessment remains a challenge. At the global-scale we find that anthropogenic forcing may alter the variability driving megadroughts over 55% of land-areas, undermining accurate assessments of their risk. For the remaining areas, current ensembles are too small to characterize megadroughts' driving variability. For example, constraining uncertainty in near-term ASW megadrought risk to 5 percentage points with high confidence requires 287 simulations. Such ensemble sizes are beyond current computational and storage resources and these limitations suggest that constraining errors in near-term megadrought risk projections with high confidence-even in places where underlying variability is stationary-is not currently possible.

7.
Sci Adv ; 10(10): eadj3460, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446893

RESUMO

We examine the characteristics and causes of southeast Australia's Tinderbox Drought (2017 to 2019) that preceded the Black Summer fire disaster. The Tinderbox Drought was characterized by cool season rainfall deficits of around -50% in three consecutive years, which was exceptionally unlikely in the context of natural variability alone. The precipitation deficits were initiated and sustained by an anomalous atmospheric circulation that diverted oceanic moisture away from the region, despite traditional indicators of drought risk in southeast Australia generally being in neutral states. Moisture deficits were intensified by unusually high temperatures, high vapor pressure deficits, and sustained reductions in terrestrial water availability. Anthropogenic forcing intensified the rainfall deficits of the Tinderbox Drought by around 18% with an interquartile range of 34.9 to -13.3% highlighting the considerable uncertainty in attributing droughts of this kind to human activity. Skillful predictability of this drought was possible by incorporating multiple remote and local predictors through machine learning, providing prospects for improving forecasting of droughts.


Assuntos
Mudança Climática , Secas , Humanos , Austrália , Temperatura Baixa , Aprendizado de Máquina
8.
Nat Commun ; 12(1): 212, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431844

RESUMO

Attribution studies have identified a robust anthropogenic fingerprint in increased 21st century wildfire risk. However, the risks associated with individual aspects of anthropogenic aerosol and greenhouse gases (GHG) emissions, biomass burning and land use/land cover change remain unknown. Here, we use new climate model large ensembles isolating these influences to show that GHG-driven increases in extreme fire weather conditions have been balanced by aerosol-driven cooling throughout the 20th century. This compensation is projected to disappear due to future reductions in aerosol emissions, causing unprecedented increases in extreme fire weather risk in the 21st century as GHGs continue to rise. Changes to temperature and relative humidity drive the largest shifts in extreme fire weather conditions; this is particularly apparent over the Amazon, where GHGs cause a seven-fold increase by 2080. Our results allow increased understanding of the interacting roles of anthropogenic stressors in altering the regional expression of future wildfire risk.

9.
J Clim ; 30(18): 7141-7155, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30449951

RESUMO

The tree-ring-based North American Drought Atlas (NADA), Monsoon Asia Drought Atlas (MADA), and Old World Drought Atlas (OWDA) collectively yield a near-hemispheric gridded reconstruction of hydroclimate variability over the last millennium. To test the robustness of the large-scale representation of hydroclimate variability across the drought atlases, the joint expression of seasonal climate variability and teleconnections in the NADA, MADA, and OWDA are compared against two global, observation-based PDSI products. Predominantly positive (negative) correlations are determined between seasonal precipitation (surface air temperature) and collocated tree-ring-based PDSI, with average Pearson's correlation coefficients increasing in magnitude from boreal winter to summer. For precipitation, these correlations tend to be stronger in the boreal winter and summer when calculated for the observed PDSI record, while remaining similar for temperature. Notwithstanding these differences, the drought atlases robustly express teleconnection patterns associated with the El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). These expressions exist in the drought atlas estimates of boreal summer PDSI despite the fact that these modes of climate variability are dominant in boreal winter, with the exception of the Atlantic Multidecadal Oscillation. ENSO and NAO teleconnection patterns in the drought atlases are particularly consistent with their well-known dominant expressions in boreal winter and over the OWDA domain, respectively. Collectively, our findings confirm that the joint Northern Hemisphere drought atlases robustly reflect large-scale patterns of hydroclimate variability on seasonal to multidecadal timescales over the 20th century and are likely to provide similarly robust estimates of hydroclimate variability prior to the existence of widespread instrumental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA