Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 22(6): 4-10, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33938120

RESUMO

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: (a) Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. (b) Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.


Assuntos
Física Médica , Radioterapia (Especialidade) , Citarabina , Humanos , Sociedades , Tomografia Computadorizada por Raios X , Estados Unidos
2.
J Appl Clin Med Phys ; 22(5): 97-109, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33939253

RESUMO

PURPOSE: The purpose of this work was to estimate and compare breast and lung doses of chest CT scans using organ-based tube current modulation (OBTCM) to those from conventional, attenuation-based automatic tube current modulation (ATCM) across a range of patient sizes. METHODS: Thirty-four patients (17 females, 17 males) who underwent clinically indicated CT chest/abdomen/pelvis (CAP) examinations employing OBTCM were collected from two multi-detector row CT scanners. Patient size metric was assessed as water equivalent diameter (Dw ) taken at the center of the scan volume. Breast and lung tissues were segmented from patient image data to create voxelized models for use in a Monte Carlo transport code. The OBTCM schemes for the chest portion were extracted from the raw projection data. ATCM schemes were estimated using a recently developed method. Breast and lung doses for each TCM scenario were estimated for each patient model. CTDIvol -normalized breast (nDbreast ) and lung (nDlung ) doses were subsequently calculated. The differences between OBTCM and ATCM normalized organ dose estimates were tested using linear regression models that included CT scanner and Dw as covariates. RESULTS: Mean dose reduction from OBTCM in nDbreast was significant after adjusting for the scanner models and patient size (P = 0.047). When pooled with females and male patient, mean dose reduction from OBTCM in nDlung was observed to be trending after adjusting for the scanner model and patient size (P = 0.085). CONCLUSIONS: One specific manufacturer's OBTCM was analyzed. OBTCM was observed to significantly decrease normalized breast relative to a modeled version of that same manufacturer's ATCM scheme. However, significant dose savings were not observed in lung dose over all. Results from this study support the use of OBTCM chest protocols for females only.


Assuntos
Mama , Tomografia Computadorizada por Raios X , Mama/diagnóstico por imagem , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação
3.
Radiology ; 292(2): 414-419, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31237496

RESUMO

Background Assessments of the quantitative limitations among the six commercially available dual-energy (DE) CT acquisition schemes used by major CT manufacturers could aid researchers looking to use iodine quantification as an imaging biomarker. Purpose To determine the limits of detection and quantification of DE CT in phantoms by comparing rapid peak kilovoltage switching, dual-source, split-filter, and dual-layer detector systems in six different scanners. Materials and Methods Seven 50-mL iohexol solutions were used, with concentrations of 0.03-2.0 mg iodine per milliliter. The solutions and water sample were scanned five times each in two phantoms (small, 20-cm diameter; large, 30 × 40-cm diameter) with six DE CT systems and a total of 10 peak kilovoltage settings or combinations. Iodine maps were created, and the mean iodine signal in each sample was recorded. The limit of blank (LOB) was defined as the upper limit of the 95% confidence interval of the water sample. The limit of detection (LOD) was defined as the concentration with a 95% chance of having a signal above the LOB. The limit of quantification (LOQ) was defined as the lowest concentration where the coefficient of variation was less than 20%. Results The LOD range was 0.021-0.26 mg/mL in the small phantom and 0.026-0.55 mg/mL in the large phantom. The LOQ range was 0.07-0.50 mg/mL in the small phantom and 0.20-1.0 mg/mL in the large phantom. The dual-source and rapid peak kilovoltage switching systems had the lowest LODs, and the dual-layer detector systems had the highest LODs. Conclusion The iodine limit of detection using dual-energy CT systems varied with scanner and phantom size, but all systems depicted iodine in the small and large phantoms at or below 0.3 and 0.5 mg/mL, respectively, and enabled quantification at concentrations of 0.5 and 1.0 mg/mL, respectively. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Hindman in this issue.


Assuntos
Meios de Contraste , Iodo , Intensificação de Imagem Radiográfica/métodos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes
4.
J Appl Clin Med Phys ; 20(1): 331-339, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30426664

RESUMO

Aluminum oxide based optically stimulated luminescent dosimeters (OSLD) have been recognized as a useful dosimeter for measuring CT dose, particularly for patient dose measurements. Despite the increasing use of this dosimeter, appropriate dosimeter calibration techniques have not been established in the literature; while the manufacturer offers a calibration procedure, it is known to have relatively large uncertainties. The purpose of this work was to evaluate two clinical approaches for calibrating these dosimeters for CT applications, and to determine the uncertainty associated with measurements using these techniques. Three unique calibration procedures were used to calculate dose for a range of CT conditions using a commercially available OSLD and reader. The three calibration procedures included calibration (a) using the vendor-provided method, (b) relative to a 120 kVp CT spectrum in air, and (c) relative to a megavoltage beam (implemented with 60 Co). The dose measured using each of these approaches was compared to dose measured using a calibrated farmer-type ion chamber. Finally, the uncertainty in the dose measured using each approach was determined. For the CT and megavoltage calibration methods, the dose measured using the OSLD nanoDot was within 5% of the dose measured using an ion chamber for a wide range of different CT scan parameters (80-140 kVp, and with measurements at a range of positions). When calibrated using the vendor-recommended protocol, the OSLD measured doses were on average 15.5% lower than ion chamber doses. Two clinical calibration techniques have been evaluated and are presented in this work as alternatives to the vendor-provided calibration approach. These techniques provide high precision for OSLD-based measurements in a CT environment.


Assuntos
Calibragem , Nanotecnologia/instrumentação , Dosimetria por Luminescência Estimulada Opticamente/instrumentação , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/instrumentação , Simulação por Computador , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Nanotecnologia/métodos , Dosimetria por Luminescência Estimulada Opticamente/métodos , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Incerteza
5.
Radiology ; 287(1): 224-234, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29185902

RESUMO

Purpose To determine the accuracy of dual-energy computed tomographic (CT) quantitation in a phantom system comparing fast kilovolt peak-switching, dual-source, split-filter, sequential-scanning, and dual-layer detector systems. Materials and Methods A large elliptical phantom containing iodine (2, 5, and 15 mg/mL), simulated contrast material-enhanced blood, and soft-tissue inserts with known elemental compositions was scanned three to five times with seven dual-energy CT systems and a total of 10 kilovolt peak settings. Monochromatic images (50, 70, and 140 keV) and iodine concentration images were created. Mean iodine concentration and monochromatic attenuation for each insert and reconstruction energy level were recorded. Measurement bias was assessed by using the sum of the mean signed errors measured across relevant inserts for each monochromatic energy level and iodine concentration. Iodine and monochromatic errors were assessed by using the root sum of the squared error of all measurements. Results At least one acquisition paradigm per scanner had iodine biases (range, -2.6 to 1.5 mg/mL) with significant differences from zero. There were no significant differences in iodine error (range, 0.44-1.70 mg/mL) among the top five acquisition paradigms (one fast kilovolt peak switching, three dual source, and one sequential scanning). Monochromatic bias was smallest for 70 keV (-12.7 to 15.8 HU) and largest for 50 keV (-80.6 to 35.2 HU). There were no significant differences in monochromatic error (range, 11.4-52.0 HU) among the top three acquisition paradigms (one dual source and two fast kilovolt peak switching). The lowest accuracy for both measures was with a split-filter system. Conclusion Iodine and monochromatic accuracy varies among systems, but dual-source and fast kilovolt-switching generally provided the most accurate results in a large phantom. © RSNA, 2017 Online supplemental material is available for this article.


Assuntos
Iodo , Imagens de Fantasmas , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Tomografia Computadorizada por Raios X/métodos , Reprodutibilidade dos Testes
6.
AJR Am J Roentgenol ; 208(5): 1082-1088, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28267354

RESUMO

OBJECTIVE: We calculated body size-specific organ and effective doses for 23,734 participants in the National Lung Screening Trial (NLST) using a CT dose calculator. MATERIALS AND METHODS: We collected participant-specific technical parameters of 23,734 participants who underwent CT in the clinical trial. For each participant, we calculated two sets of organ doses using two methods. First, we computed body size-specific organ and effective doses using the National Cancer Institute CT (NCICT) dosimetry program, which is based on dose coefficients derived from a library of body size-dependent adult male and female computational phantoms. We then recalculated organ and effective doses using dose coefficients from reference size phantoms for all examinations to investigate potential errors caused by the lack of body size consideration in the dose calculations. RESULTS: The underweight participants (body mass index [BMI; weight in kilograms divided by the square of height in meters] < 18.5) received 1.3-fold greater lung dose (median, 4.93 mGy) than the obese participants (BMI > 30) (3.90 mGy). Thyroid doses were approximately 1.3- to 1.6-fold greater than the lung doses (6.3-6.5 mGy). The reference phantom-based dose calculation underestimates the body size-specific lung dose by up to 50% for the underweight participants and overestimates that value by up to 200% for the overweight participants. The median effective dose ranges from 2.01 mSv in obese participants to 2.80 mSv in underweight participants. CONCLUSION: Body size-specific organ and effective doses were computed for 23,734 NLST participants who underwent low-dose CT screening. The use of reference size phantoms can lead to significant errors in organ dose estimates when body size is not considered in the dose assessment.


Assuntos
Tamanho Corporal , Neoplasias Pulmonares/diagnóstico por imagem , Programas de Rastreamento , Radiografia Torácica/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Humanos , Neoplasias Pulmonares/epidemiologia , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Imagens de Fantasmas , Doses de Radiação , Fumar/epidemiologia , Estados Unidos/epidemiologia
7.
J Appl Clin Med Phys ; 17(2): 511-531, 2016 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-27074454

RESUMO

The purpose of this study was to characterize image quality and dose performance with GE CT iterative reconstruction techniques, adaptive statistical iterative recontruction (ASiR), and model-based iterative reconstruction (MBIR), over a range of typical to low-dose intervals using the Catphan 600 and the anthropomorphic Kyoto Kagaku abdomen phantoms. The scope of the project was to quantitatively describe the advantages and limitations of these approaches. The Catphan 600 phantom, supplemented with a fat-equivalent oval ring, was scanned using a GE Discovery HD750 scanner at 120 kVp, 0.8 s rotation time, and pitch factors of 0.516, 0.984, and 1.375. The mA was selected for each pitch factor to achieve CTDIvol values of 24, 18, 12, 6, 3, 2, and 1 mGy. Images were reconstructed at 2.5 mm thickness with filtered back-projection (FBP); 20%, 40%, and 70% ASiR; and MBIR. The potential for dose reduction and low-contrast detectability were evaluated from noise and contrast-to-noise ratio (CNR) measurements in the CTP 404 module of the Catphan. Hounsfield units (HUs) of several materials were evaluated from the cylinder inserts in the CTP 404 module, and the modulation transfer function (MTF) was calculated from the air insert. The results were con-firmed in the anthropomorphic Kyoto Kagaku abdomen phantom at 6, 3, 2, and 1mGy. MBIR reduced noise levels five-fold and increased CNR by a factor of five compared to FBP below 6mGy CTDIvol, resulting in a substantial improvement in image quality. Compared to ASiR and FBP, HU in images reconstructed with MBIR were consistently lower, and this discrepancy was reversed by higher pitch factors in some materials. MBIR improved the conspicuity of the high-contrast spatial resolution bar pattern, and MTF quantification confirmed the superior spatial resolution performance of MBIR versus FBP and ASiR at higher dose levels. While ASiR and FBP were relatively insensitive to changes in dose and pitch, the spatial resolution for MBIR improved with increasing dose and pitch. Unlike FBP, MBIR and ASiR may have the potential for patient imaging at around 1 mGy CTDIvol. The improved low-contrast detectability observed with MBIR, especially at low-dose levels, indicate the potential for considerable dose reduction.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/radioterapia , Imagens de Fantasmas , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Humanos , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Tomografia Computadorizada por Raios X
8.
Microsurgery ; 36(3): 246-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26663239

RESUMO

Bony free flap reconstruction of the facial skeleton remains a challenging area of reconstructive surgery. Despite technological advances that have aided planning and execution of these procedures, surgical inaccuracy is not insignificant. One source of error that has not been wholly addressed is that attributable to a human operator. In this study, we investigate the feasibility and accuracy of performing osteotomies robotically in pre-programmed fashion for fibula free flap mandible reconstruction as a method to reduce inaccuracies related to human error. A mandibular defect and corresponding free fibula flap reconstruction requiring six osteotomies were designed on a CAD platform. A methodology was developed to translate this virtual surgical plan data to a robot (KUKA, Augsburgs, Germany), which then executed osteotomies on three-dimensional (3D) printed fibula flaps with the aid of dynamic stereotactic navigation. Using high-resolution computed tomography, the osteotomized segments were compared to the virtually planned segments in order to measure linear and angular accuracy. A total of 18 robotic osteotomies were performed on three 3D printed fibulas. Compared to the virtual preoperative plan, the average linear variation of the osteotomized segments was 1.3 ± 0.4 mm, and the average angular variation was 4.2 ± 1.7°. This preclinical study demonstrates the feasibility of pre-programmed robotic osteotomies for free fibula flap mandible reconstruction. Preliminarily, this method exhibits high degrees of linear and angular accuracy, and may be of utility in the development of techniques to further improve surgical accuracy.


Assuntos
Transplante Ósseo/métodos , Fíbula/transplante , Retalhos de Tecido Biológico/transplante , Reconstrução Mandibular/métodos , Osteotomia/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Estudos de Viabilidade , Fíbula/diagnóstico por imagem , Humanos , Masculino , Tomografia Computadorizada por Raios X
9.
AJR Am J Roentgenol ; 204(6): 1234-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26001233

RESUMO

OBJECTIVE: The purpose of this article is to quantitatively investigate the accuracy and performance of dual-energy CT (DECT) material density images and to calculate the areal bone mineral density (aBMD) for comparison with dual-energy x-ray absorptiometry (DEXA). MATERIALS AND METHODS: A rapid-kilovoltage-switching DECT scanner was used to create material density images of various two-material phantoms of known concentrations under different experimental conditions. They were subsequently also scanned by single-energy CT and DEXA. The total uncertainty and accuracy of the DECT concentration measurements was quantified by the root-mean-square (RMS) error, and linear regression was performed to evaluate measurement changes under varying scanning conditions. Alterations to accuracy with concentric (anthropomorphic) phantom geometry were explored. The sensitivity of DECT and DEXA to changes in material density was evaluated. Correlations between DEXA and DECT-derived aBMD values were assessed. RESULTS: The RMS error of DECT concentration measurements in air ranged from 9% to 244% depending on the materials. Concentration measurements made off-isocenter or with a different DECT protocol were slightly lower (≈ 5%), whereas measurement in scattering conditions resulted in a reduction of 8-27%. In concentric phantoms, higher-attenuating material in the outer chamber increased measured values of the inner material for all methods. DECT was more sensitive than DEXA to changes in BMD at 2 mg/mL K2HPO4. Measurements of aBMD using DECT and DEXA were highly correlated (R(2) = 0.98). CONCLUSION: DECT material density images were linear in response but prone to poor accuracy and biases. DECT-based aBMD could be used to monitor relative change in bone density.


Assuntos
Absorciometria de Fóton/métodos , Densidade Óssea/fisiologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/fisiologia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Tomografia Computadorizada por Raios X/métodos , Absorciometria de Fóton/instrumentação , Humanos , Imagens de Fantasmas , Doses de Radiação , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/instrumentação
10.
Gynecol Oncol ; 132(1): 166-75, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24183729

RESUMO

OBJECTIVE: Platelet-derived growth factor receptor alpha (PDGFRα) is believed to be associated with cell survival. We examined (i) whether PDGFRα blockade enhances the antitumor activity of taxanes in ovarian carcinoma and (ii) potential biomarkers of response to anti-PDGFRα therapy. METHODS: PDGFRα expression in 176 ovarian carcinomas was evaluated with tissue microarray and correlated to survival outcome. Human-specific monoclonal antibody to PDGFRα (IMC-3G3) was used for in vitro and in vivo experiments with or without docetaxel. Gene microarrays and reverse-phase protein arrays with pathway analyses were performed to identify potential predictive biomarkers. RESULTS: When compared to low or no PDGFRα expression, increased PDGFRα expression was associated with significantly poorer overall survival of patients with ovarian cancer (P=0.014). Although treatment with IMC-3G3 alone did not affect cell viability or increase apoptosis, concurrent use of IMC-3G3 with docetaxel significantly enhanced sensitization to docetaxel and apoptosis. In an orthotopic mouse model, IMC-3G3 monotherapy had no significant antitumor effects in SKOV3-ip1 (low PDGFRα expression), but showed significant antitumor effects in HeyA8-MDR (high PDGFRα expression). Concurrent use of IMC-3G3 with docetaxel, compared with use of docetaxel alone, significantly reduced tumor weight in all tested cell lines. In protein ontology, the EGFR and AKT pathways were downregulated by IMC-3G3 therapy. MAPK and CCNB1 were downregulated only in the HeyA8-MDR model. CONCLUSION: These data identify IMC-3G3 as an attractive therapeutic strategy and identify potential predictive markers for further development.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Docetaxel , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/química , Neoplasias Ovarianas/mortalidade , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/análise , Transdução de Sinais , Taxoides/uso terapêutico
11.
AJR Am J Roentgenol ; 202(4): 703-10, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24660695

RESUMO

OBJECTIVE: The purpose of this study was to develop a method of measuring rectal radiation dose in vivo during CT colonography (CTC) and assess the accuracy of size-specific dose estimates (SSDEs) relative to that of in vivo dose measurements. MATERIALS AND METHODS: Thermoluminescent dosimeter capsules were attached to a CTC rectal catheter to obtain four measurements of the CT radiation dose in 10 volunteers (five men and five women; age range, 23-87 years; mean age, 70.4 years). A fixed CT technique (supine and prone, 50 mAs and 120 kVp each) was used for CTC. SSDEs and percentile body habitus measurements were based on CT images and directly compared with in vivo dose measurements. RESULTS: The mean absorbed doses delivered to the rectum ranged from 8.8 to 23.6 mGy in the 10 patients, whose mean body habitus was in the 27th percentile among American adults 18-64 years old (range, 0.5-67th percentile). The mean SSDE error was 7.2% (range, 0.6-31.4%). CONCLUSION: This in vivo radiation dose measurement technique can be applied to patients undergoing CTC. Our measurements indicate that SSDEs are reasonable estimates of the rectal absorbed dose. The data obtained in this pilot study can be used as benchmarks for assessing dose estimates using other indirect methods (e.g., Monte Carlo simulations).


Assuntos
Colonografia Tomográfica Computadorizada , Doses de Radiação , Reto/efeitos da radiação , Dosimetria Termoluminescente/instrumentação , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Projetos Piloto
12.
Pediatr Radiol ; 44 Suppl 3: 427-30, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25304700

RESUMO

Automatic exposure control (AEC) is particularly well-suited for pediatric CT scanning. However the importance of the localizer scan portion of exams that relies on AEC is frequently underestimated. This paper explains in detail several crucial aspects of the localizer and their effect on the subsequent cross-sectional (axial or helical) image acquisition. The paper also covers general suggestions regarding AEC influence on the cross-sectional images. AEC systems on CT scanners are becoming more complex; using them effectively in the setting of pediatric CT requires careful selection of scan parameters.


Assuntos
Aumento da Imagem/instrumentação , Posicionamento do Paciente/instrumentação , Pediatria/instrumentação , Doses de Radiação , Proteção Radiológica/instrumentação , Radiometria/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Criança , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Aumento da Imagem/métodos , Posicionamento do Paciente/métodos , Pediatria/métodos , Proteção Radiológica/métodos , Radiometria/métodos , Tomografia Computadorizada por Raios X/métodos
13.
Pediatr Radiol ; 44 Suppl 3: 489-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25304708

RESUMO

When determining a strategy for pediatric CT scanning, clinical staff can either elect to adjust routine adult-protocol parameter settings on a case-by-case basis or rely on pre-set pediatric protocol parameters. The advantages of the latter approach are the topic of this manuscript. This paper outlines specific options to consider, including the need for regular protocol review.


Assuntos
Assistência Centrada no Paciente/normas , Guias de Prática Clínica como Assunto , Doses de Radiação , Radiologia/normas , Radiometria/normas , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/normas , Algoritmos , Criança , Análise de Falha de Equipamento/instrumentação , Análise de Falha de Equipamento/normas , Fidelidade a Diretrizes , Humanos , Pediatria/normas , Radiometria/instrumentação , Valores de Referência , Estados Unidos
14.
AJR Am J Roentgenol ; 200(3): 601-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23436850

RESUMO

OBJECTIVE: We sought to assess the effectiveness of a novel CT radiation dose reduction strategy in which filtration was added at the x-ray tube output port between the x-ray beam and the breast area of three sizes of anthropomorphic phantoms. MATERIALS AND METHODS: To evaluate the dose-reduction potential of partial arc x-ray beam filtration, copper foil filtration or lead foil filtration was placed over CT scanners' covers when scanning anthropomorphic phantoms representative of a 5-year-old child, a 10-year-old child, and an adult female. Dose reduction was calculated as the percentage difference between the mean entrance radiation dose (on the phantoms' surfaces at locations representing the sternum and left breast) in unshielded scans compared with the mean dose in scans shielded by copper or lead foil. We also compared the CT numbers and noise sampled in regions representing the lung and the soft tissues near the sternum, left breast, and spine in CT images of the phantoms during unshielded scans relative to acquisitions shielded by copper or lead foil. RESULTS: Entrance dose at the sternum and left breast in the three anthropomorphic phantoms was reduced by 28-66% and 54-79% when using copper or lead foil filtration, respectively. However, copper foil filtration affected the CT numbers and noise in the CT images less than the lead foil filtration did (8.2% vs 32% mean increase in noise). CONCLUSION: By incorporating partial arc beam filtration into CT scanners, substantial dose reductions may be achieved with a minimal increase in image noise.


Assuntos
Mama , Filtração/instrumentação , Doses de Radiação , Proteção Radiológica/instrumentação , Proteção Radiológica/métodos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Adulto , Criança , Pré-Escolar , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Masculino , Imagens de Fantasmas
15.
Radiology ; 262(2): 635-46, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22282185

RESUMO

BACKGROUND: Pulmonary embolism (PE) is a leading cause of maternal mortality in the developed world. Along with appropriate prophylaxis and therapy, prevention of death from PE in pregnancy requires a high index of clinical suspicion followed by a timely and accurate diagnostic approach. METHODS: To provide guidance on this important health issue, a multidisciplinary panel of major medical stakeholders was convened to develop evidence-based guidelines for evaluation of suspected pulmonary embolism in pregnancy using the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) system. In formulation of the recommended diagnostic algorithm, the important outcomes were defined to be diagnostic accuracy and diagnostic yield; the panel placed a high value on minimizing cumulative radiation dose when determining the recommended sequence of tests. RESULTS: Overall, the quality of the underlying evidence for all recommendations was rated as very low or low with some of the evidence considered for recommendations extrapolated from studies of the general population. Despite the low quality evidence, strong recommendations were made for three specific scenarios: performance of chest radiography (CXR) as the first radiation-associated procedure; use of lung scintigraphy as the preferred test in the setting of a normal CXR; and performance of computed-tomographic pulmonary angiography (CTPA) rather than digital subtraction angiography (DSA) in a pregnant woman with a nondiagnostic ventilation-perfusion (V/Q) result. DISCUSSION: The recommendations presented in this guideline are based upon the currently available evidence; availability of new clinical research data and development and dissemination of new technologies will necessitate a revision and update.

16.
Med Phys ; 39(8): 5212-28, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22894446

RESUMO

PURPOSE: Most methods to estimate patient dose from computed tomography (CT) exams have been developed based on fixed tube current scans. However, in current clinical practice, many CT exams are performed using tube current modulation (TCM). Detailed information about the TCM function is difficult to obtain and therefore not easily integrated into patient dose estimate methods. The purpose of this study was to investigate the accuracy of organ dose estimates obtained using methods that approximate the TCM function using more readily available data compared to estimates obtained using the detailed description of the TCM function. METHODS: Twenty adult female models generated from actual patient thoracic CT exams and 20 pediatric female models generated from whole body PET∕CT exams were obtained with IRB (Institutional Review Board) approval. Detailed TCM function for each patient was obtained from projection data. Monte Carlo based models of each scanner and patient model were developed that incorporated the detailed TCM function for each patient model. Lungs and glandular breast tissue were identified in each patient model so that organ doses could be estimated from simulations. Three sets of simulations were performed: one using the original detailed TCM function (x, y, and z modulations), one using an approximation to the TCM function (only the z-axis or longitudinal modulation extracted from the image data), and the third was a fixed tube current simulation using a single tube current value which was equal to the average tube current over the entire exam. Differences from the reference (detailed TCM) method were calculated based on organ dose estimates. Pearson's correlation coefficients were calculated between methods after testing for normality. Equivalence test was performed to compare the equivalence limit between each method (longitudinal approximated TCM and fixed tube current method) and the detailed TCM method. Minimum equivalence limit was reported for each organ. RESULTS: Doses estimated using the longitudinal approximated TCM resulted in small differences from doses obtained using the detailed TCM function. The calculated root-mean-square errors (RMSE) for adult female chest simulations were 9% and 3% for breasts and lungs, respectively; for pediatric female chest and whole body simulations RMSE were 9% and 7% for breasts and 3% and 1% for lungs, respectively. Pearson's correlation coefficients were consistently high for the longitudinal approximated TCM method, ranging from 0.947 to 0.999, compared to the fixed tube current value ranging from 0.8099 to 0.9916. In addition, an equivalence test illustrated that across all models the longitudinal approximated TCM is equivalent to the detailed TCM function within up to 3% for lungs and breasts. CONCLUSIONS: While the best estimate of organ dose requires the detailed description of the TCM function for each patient, extracting these values can be difficult. The presented results show that an approximation using available data extracted from the DICOM header provides organ dose estimates with RMSE of less than 10%. On the other hand, the use of the overall average tube current as a single tube current value was shown to result in poor and inconsistent estimates of organ doses.


Assuntos
Radiografia Torácica/métodos , Tomografia Computadorizada por Raios X/métodos , Adolescente , Mama/patologia , Criança , Simulação por Computador , Desenho de Equipamento , Feminino , Humanos , Pulmão/patologia , Método de Monte Carlo , Doses de Radiação , Reprodutibilidade dos Testes
17.
AJR Am J Roentgenol ; 198(2): 412-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22268186

RESUMO

OBJECTIVE: The purpose of our study was to accurately estimate the radiation dose to skin and the eye lens from clinical CT brain perfusion studies, investigate how well scanner output (expressed as volume CT dose index [CTDI(vol)]) matches these estimated doses, and investigate the efficacy of eye lens dose reduction techniques. MATERIALS AND METHODS: Peak skin dose and eye lens dose were estimated using Monte Carlo simulation methods on a voxelized patient model and 64-MDCT scanners from four major manufacturers. A range of clinical protocols was evaluated. CTDI(vol) for each scanner was obtained from the scanner console. Dose reduction to the eye lens was evaluated for various gantry tilt angles as well as scan locations. RESULTS: Peak skin dose and eye lens dose ranged from 81 mGy to 348 mGy, depending on the scanner and protocol used. Peak skin dose and eye lens dose were observed to be 66-79% and 59-63%, respectively, of the CTDI(vol) values reported by the scanners. The eye lens dose was significantly reduced when the eye lenses were not directly irradiated. CONCLUSION: CTDI(vol) should not be interpreted as patient dose; this study has shown it to overestimate dose to the skin or eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical practice. These actions should be considered when they are consistent with the clinical task and patient anatomy.


Assuntos
Encéfalo/diagnóstico por imagem , Cristalino/efeitos da radiação , Doses de Radiação , Pele/efeitos da radiação , Tomografia Computadorizada por Raios X/métodos , Protocolos Clínicos , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Lesões por Radiação/prevenção & controle , Radiometria/métodos
18.
Am J Respir Crit Care Med ; 184(10): 1200-8, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22086989

RESUMO

BACKGROUND: Pulmonary embolism (PE) is a leading cause of maternal mortality in the developed world. Along with appropriate prophylaxis and therapy, prevention of death from PE in pregnancy requires a high index of clinical suspicion followed by a timely and accurate diagnostic approach. METHODS: To provide guidance on this important health issue, a multidisciplinary panel of major medical stakeholders was convened to develop evidence-based guidelines for evaluation of suspected pulmonary embolism in pregnancy using the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) system. In formulation of the recommended diagnostic algorithm, the important outcomes were defined to be diagnostic accuracy and diagnostic yield; the panel placed a high value on minimizing cumulative radiation dose when determining the recommended sequence of tests. RESULTS: Overall, the quality of the underlying evidence for all recommendations was rated as very low or low, with some of the evidence considered for recommendations extrapolated from studies of the general population. Despite the low-quality evidence, strong recommendations were made for three specific scenarios: performance of chest radiography (CXR) as the first radiation-associated procedure; use of lung scintigraphy as the preferred test in the setting of a normal CXR; and performance of computed-tomographic pulmonary angiography (CTPA) rather than digital subtraction angiography (DSA) in a pregnant woman with a nondiagnostic ventilation-perfusion (V/Q) result. DISCUSSION: The recommendations presented in this guideline are based upon the currently available evidence; availability of new clinical research data and development and dissemination of new technologies will necessitate a revision and update.


Assuntos
Complicações Cardiovasculares na Gravidez/diagnóstico , Embolia Pulmonar/diagnóstico , Meios de Contraste/efeitos adversos , Feminino , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Humanos , Perna (Membro)/irrigação sanguínea , Perna (Membro)/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Gravidez , Complicações Cardiovasculares na Gravidez/diagnóstico por imagem , Embolia Pulmonar/complicações , Embolia Pulmonar/diagnóstico por imagem , Doses de Radiação , Radiografia Torácica/efeitos adversos , Cintilografia , Ultrassonografia
19.
Med Phys ; 38(8): 4546-55, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21928626

RESUMO

PURPOSE: The purpose of this study was to develop and validate a mathematical model to describe narrow-beam attenuation of kilovoltage x-ray beams for the intended applications of half-value layer (HVL) and quarter-value layer (QVL) estimations, patient organ shielding, and computer modeling. METHODS: An empirical model, which uses the Lambert W function and represents a generalized Lambert-Beer law, was developed. To validate this model, transmission of diagnostic energy x-ray beams was measured over a wide range of attenuator thicknesses [0.49-33.03 mm Al on a computed tomography (CT) scanner, 0.09-1.93 mm Al on two mammography systems, and 0.1-0.45 mm Cu and 0.49-14.87 mm Al using general radiography]. Exposure measurements were acquired under narrow-beam geometry using standard methods, including the appropriate ionization chamber, for each radiographic system. Nonlinear regression was used to find the best-fit curve of the proposed Lambert W model to each measured transmission versus attenuator thickness data set. In addition to validating the Lambert W model, we also assessed the performance of two-point Lambert W interpolation compared to traditional methods for estimating the HVL and QVL [i.e., semi-logarithmic (exponential) and linear interpolation]. RESULTS: The Lambert W model was validated for modeling attenuation versus attenuator thickness with respect to the data collected in this study (R2 > 0.99). Furthermore, Lambert W interpolation was more accurate and less sensitive to the choice of interpolation points used to estimate the HVL and/or QVL than the traditional methods of semilogarithmic and linear interpolation. CONCLUSIONS: The proposed Lambert W model accurately describes attenuation of both monoenergetic radiation and (kilovoltage) polyenergetic beams (under narrow-beam geometry).


Assuntos
Radiografia/estatística & dados numéricos , Fenômenos Biofísicos , Simulação por Computador , Feminino , Humanos , Mamografia/estatística & dados numéricos , Modelos Teóricos , Radiometria , Espalhamento de Radiação , Tomografia Computadorizada por Raios X/estatística & dados numéricos
20.
Med Phys ; 38(2): 820-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21452719

RESUMO

PURPOSE: A recent work has demonstrated the feasibility of estimating the dose to individual organs from multidetector CT exams using patient-specific, scanner-independent CTDIvol-to-organ-dose conversion coefficients. However, the previous study only investigated organ dose to a single patient model from a full-body helical CT scan. The purpose of this work was to extend the validity of this dose estimation technique to patients of any size undergoing a common clinical exam. This was done by determining the influence of patient size on organ dose conversion coefficients generated for typical abdominal CT exams. METHODS: Monte Carlo simulations of abdominal exams were performed using models of 64-slice MDCT scanners from each of the four major manufacturers to obtain dose to radiosensitive organs for eight patient models of varying size, age, and gender. The scanner-specific organ doses were normalized by corresponding CTDIvol values and averaged across scanners to obtain scanner-independent CTDIvol-to-organ-dose conversion coefficients for each patient model. In order to obtain a metric for patient size, the outer perimeter of each patient was measured at the central slice of the abdominal scan region. Then, the relationship between CTDIvol-to-organ-dose conversion coefficients and patient perimeter was investigated for organs that were directly irradiated by the abdominal scan. These included organs that were either completely ("fully irradiated") or partly ("partially irradiated") contained within the abdominal exam region. Finally, dose to organs that were not at all contained within the scan region ("nonirradiated") were compared to the doses delivered to fully irradiated organs. RESULTS: CTDIvol-to-organ-dose conversion coefficients for fully irradiated abdominal organs had a strong exponential correlation with patient perimeter. Conversely, partially irradiated organs did not have a strong dependence on patient perimeter. In almost all cases, the doses delivered to nonirradiated organs were less than 5%, on average across patient models, of the mean dose of the fully irradiated organs. CONCLUSIONS: This work demonstrates the feasibility of calculating patient-specific, scanner-independent CTDIvol-to-organ-dose conversion coefficients for fully irradiated organs in patients undergoing typical abdominal CT exams. A method to calculate patient-specific, scanner-specific, and exam-specific organ dose estimates that requires only knowledge of the CTDIvol for the scan protocol and the patient's perimeter is thus possible. This method will have to be extended in future studies to include organs that are partially irradiated. Finally, it was shown that, in most cases, the doses to nonirradiated organs were small compared to the dose to fully irradiated organs.


Assuntos
Tamanho Corporal , Doses de Radiação , Radiografia Abdominal/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Estudos de Viabilidade , Feminino , Humanos , Masculino , Imagens de Fantasmas , Medicina de Precisão , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA