Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mutat ; 41(1): 203-211, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490007

RESUMO

Previous analysis of next-generation sequencing (NGS) hereditary pan-cancer panel testing demonstrated that approximately 40% of TP53 pathogenic and likely pathogenic variants (PVs) detected have NGS allele frequencies between 10% and 30%, indicating that they likely are acquired somatically. These are seen more frequently in older adults, suggesting that most result from normal aging-related clonal hematopoiesis. For this analysis, apparent heterozygous germline TP53 PV carriers (NGS allele frequency 30-70%) were offered follow-up testing to confirm variant origin. Ninety-eight probands had samples submitted for follow-up family member testing, fibroblast testing, or both. The apparent heterozygous germline TP53 PV was not detected in 32.6% (15/46) of submitted fibroblast samples, indicating that it was acquired somatically, either through clonal hematopoiesis or via constitutional mosaicism. Notably, no individuals with confirmed germline or likely germline TP53 PVs met classic Li-Fraumeni syndrome (LFS) criteria, only 41% met Chompret LFS criteria, and 59% met neither criteria, based upon provider-reported personal and family cancer history. Comprehensive reporting of TP53 PVs detected using NGS, combined with follow-up analysis to confirm variant origin, is advised for clinical testing laboratories. These findings underscore the investment required to provide individuals and family members with clinically accurate genetic test results pertaining to their LFS risk.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Heterozigoto , Mutação , Neoplasias/diagnóstico , Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Feminino , Estudos de Associação Genética/métodos , Testes Genéticos , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
2.
Am J Hum Genet ; 99(3): 555-566, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27569549

RESUMO

Genomic imprinting is a mechanism in which gene expression varies depending on parental origin. Imprinting occurs through differential epigenetic marks on the two parental alleles, with most imprinted loci marked by the presence of differentially methylated regions (DMRs). To identify sites of parental epigenetic bias, here we have profiled DNA methylation patterns in a cohort of 57 individuals with uniparental disomy (UPD) for 19 different chromosomes, defining imprinted DMRs as sites where the maternal and paternal methylation levels diverge significantly from the biparental mean. Using this approach we identified 77 DMRs, including nearly all those described in previous studies, in addition to 34 DMRs not previously reported. These include a DMR at TUBGCP5 within the recurrent 15q11.2 microdeletion region, suggesting potential parent-of-origin effects associated with this genomic disorder. We also observed a modest parental bias in DNA methylation levels at every CpG analyzed across ∼1.9 Mb of the 15q11-q13 Prader-Willi/Angelman syndrome region, demonstrating that the influence of imprinting is not limited to individual regulatory elements such as CpG islands, but can extend across entire chromosomal domains. Using RNA-seq data, we detected signatures consistent with imprinted expression associated with nine novel DMRs. Finally, using a population sample of 4,004 blood methylomes, we define patterns of epigenetic variation at DMRs, identifying rare individuals with global gain or loss of methylation across multiple imprinted loci. Our data provide a detailed map of parental epigenetic bias in the human genome, providing insights into potential parent-of-origin effects.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Genoma Humano/genética , Pais , Dissomia Uniparental/genética , Alelos , Síndrome de Angelman/genética , Aberrações Cromossômicas , Cromossomos Humanos/genética , Cromossomos Humanos Par 15/genética , Estudos de Coortes , Ilhas de CpG/genética , Feminino , Impressão Genômica/genética , Humanos , Deficiência Intelectual/genética , Cariótipo , Masculino , Proteínas Associadas aos Microtúbulos/genética , Síndrome de Prader-Willi/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA
3.
Future Oncol ; 15(1): 65-79, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30113232

RESUMO

Expanded genetic test utilization to guide cancer management has driven the development of larger gene panels and greater diversity in the patient population pursuing testing, resulting in increased identification of atypical or technically challenging genetic findings. To ensure appropriate patient care, it is critical that genetic tests adequately identify and characterize these findings. We describe genetic testing challenges frequently encountered by our laboratory and the methodologies we employ to improve test accuracy for the identification and characterization of atypical genetic findings. While these findings may be individually rare, 15,745 (9%) individuals tested by our laboratory for hereditary cancer risk had an atypical genetic finding, highlighting the importance of employing highly accurate and comprehensive methods in clinical genetic testing.


Assuntos
Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Síndromes Neoplásicas Hereditárias/genética , Rearranjo Gênico , Predisposição Genética para Doença , Testes Genéticos/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Mosaicismo , Pseudogenes , Controle de Qualidade , Reprodutibilidade dos Testes
4.
Genet Med ; 20(1): 3-11, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29261178

RESUMO

Disclaimer: These ACMG Standards and Guidelines are developed primarily as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to these Standards and Guidelines is voluntary and does not necessarily assure a successful medical outcome. These Standards and Guidelines should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinical laboratory geneticist should apply his or her own professional judgment to the specific circumstances presented by the individual patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient's record the rationale for the use of a particular procedure or test, whether or not it is in conformance with these Standards and Guidelines. They also are advised to take notice of the date any particular guideline was adopted, and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.Galactosemias are inherited disorders of galactose metabolism due to deficiency in one of the three enzymes involved in the Leloir pathway: galactose-1-phosphate uridyltransferase, galactokinase, and uridine diphosphate (UDP)-galactose-4'-epimerase. Galactose-1-phosphate uridyltransferase deficiency, or classic galactosemia, is the most frequent and the most severe of the three enzyme deficiencies; it is characterized by failure to thrive, liver failure, susceptibility to sepsis, and death, if untreated. Newborn screening for classic galactosemia has been implemented in all of the United States, while screening for galactokinase deficiency and UDP-galactose-4'-epimerase deficiency is not universal. Early identification and treatment of galactosemia leads to improved outcome. This document reviews the laboratory methods and best practices for the diagnosis of galactosemia.


Assuntos
Galactosemias/diagnóstico , Testes Genéticos , Técnicas de Diagnóstico Molecular , Técnicas de Laboratório Clínico/métodos , Técnicas de Laboratório Clínico/normas , Galactose/metabolismo , Galactosemias/etiologia , Galactosemias/metabolismo , Testes Genéticos/métodos , Testes Genéticos/normas , Humanos , Redes e Vias Metabólicas , Mutação , Diagnóstico Pré-Natal , Reprodutibilidade dos Testes
5.
Muscle Nerve ; 51(5): 767-72, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25430424

RESUMO

INTRODUCTION: Nemaline myopathy (NM) is a congenital neuromuscular disorder often characterized by hypotonia, facial weakness, skeletal muscle weakness, and the presence of rods on muscle biopsy. A rare form of nemaline myopathy known as Amish Nemaline Myopathy has only been seen in a genetically isolated cohort of Old Order Amish patients who may additionally present with tremors in the first 2-3 months of life. METHODS: We describe an Hispanic male diagnosed with nemaline myopathy histopathologically and subsequently confirmed by next generation gene sequencing. RESULTS: Direct sequencing revealed that he is homozygous for a pathogenic nonsense variant c.323C>G (p.S108X) in exon 9 of the TNNT1 gene. CONCLUSIONS: This report describes a novel pathogenic variant in the TNNT1 gene and represents a nemaline myopathy-causing variant in the TNNT1 gene outside of the Old Order Amish and Dutch ancestry.


Assuntos
Mutação/genética , Miopatias da Nemalina/genética , Troponina I/genética , Biópsia , Pré-Escolar , Éxons/genética , Hispânico ou Latino/genética , Homozigoto , Humanos , Masculino , Músculo Esquelético/patologia , Miopatias da Nemalina/diagnóstico , Linhagem
6.
Mol Genet Metab ; 110(1-2): 78-85, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23806237

RESUMO

Congenital disorders of glycosylation (CDG) are comprised of over 60 disorders with the majority of defects residing within the N-glycosylation pathway. Approximately 20% of patients do not survive beyond five years of age due to widespread organ dysfunction. A diagnosis of CDG is based on abnormal glycosylation of transferrin but this method cannot identify the specific gene defect. For many individuals diagnosed with CDG the gene defect remains unknown. To improve the molecular diagnosis of CDG we developed molecular testing for 25 CDG genes including single gene testing and next generation sequencing (NGS) panel testing. From March 2010 through November 2012, a total of 94 samples were referred for single gene testing and 68 samples were referred for NGS panel testing. Disease causing mutations were identified in 24 patients resulting in a molecular diagnosis rate of 14.8%. Coverage of the 24 CDG genes using panel testing and whole exome sequencing (WES) was compared and it was determined that many exons of these genes were not adequately covered using a WES approach and a panel approach may be the preferred first option for CDG patients. A collaborative effort between physicians, researchers and diagnostic laboratories will be very important as NGS testing using panels and exome becomes more widespread. This technology will ultimately improve the molecular diagnosis of patients with CDG in hard to solve cases.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Sequenciamento de Nucleotídeos em Larga Escala , Patologia Molecular , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/patologia , Feminino , Glicosilação , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mutação
7.
BMC Genet ; 14: 116, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24304607

RESUMO

BACKGROUND: Pathogenic mutations range from single nucleotide changes to deletions or duplications that encompass a single exon to several genes. The use of gene-centric high-density array comparative genomic hybridization (aCGH) has revolutionized the detection of intragenic copy number variations. We implemented an exon-centric design of high-resolution aCGH to detect single- and multi-exon deletions and duplications in a large set of genes using the OGT 60 K and 180 K arrays. Here we describe the molecular characterization and breakpoint mapping of deletions at the smaller end of the detectable range in several genes using aCGH. RESULTS: The method initially implemented to detect single to multiple exon deletions, was able to detect deletions much smaller than anticipated. The selected deletions we describe vary in size, ranging from over 2 kb to as small as 12 base pairs. The smallest of these deletions are only detectable after careful manual review during data analysis. Suspected deletions smaller than the detection size for which the method was optimized, were rigorously followed up and confirmed with PCR-based investigations to uncover the true detection size limit of intragenic deletions with this technology. False-positive deletion calls often demonstrated single nucleotide changes or an insertion causing lower hybridization of probes demonstrating the sensitivity of aCGH. CONCLUSIONS: With optimizing aCGH design and careful review process, aCGH can uncover intragenic deletions as small as dozen bases. These data provide insight that will help optimize probe coverage in array design and illustrate the true assay sensitivity. Mapping of the breakpoints confirms smaller deletions and contributes to the understanding of the mechanism behind these events. Our knowledge of the mutation spectra of several genes can be expected to change as previously unrecognized intragenic deletions are uncovered.


Assuntos
Hibridização Genômica Comparativa , Íntrons/genética , Deleção de Sequência , Algoritmos , Pareamento de Bases , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
8.
Front Oncol ; 13: 1069467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793599

RESUMO

Background and Aims: Tumor immunohistochemical staining (IHC) of DNA mismatch repair (MMR) proteins is often used to guide germline genetic testing and variant classification for patients with suspected Lynch syndrome. This analysis examined the spectrum of germline findings in a cohort of individuals showing abnormal tumor IHC. Methods: We assessed individuals with reported abnormal IHC findings and referred for testing with a six-gene syndrome-specific panel (n=703). Pathogenic variants (PVs) and variants of uncertain significance (VUS) in MMR genes were designated expected/unexpected relative to IHC results. Results: The PV positive rate was 23.2% (163/703; 95% confidence interval [CI], 20.1%-26.5%); 8.0% (13/163; 95% CI, 4.3%-13.3%) of PV carriers had a PV in an unexpected MMR gene. Overall, 121 individuals carried VUS in MMR genes expected to be mutated based on IHC results. Based on independent evidence, in 47.1% (57/121; 95% CI, 38.0%-56.4%) of these individuals the VUSs were later reclassified as benign and in 14.0% (17/121; 95% CI, 8.4%-21.5%) of these individuals the VUSs were reclassified as pathogenic. Conclusions: Among patients with abnormal IHC findings, IHC-guided single-gene genetic testing may miss 8% of individuals with Lynch syndrome. In addition, in patients with VUS identified in MMR genes predicted to be mutated by IHC, extreme caution must be taken when the IHC results are considered in variant classification.

9.
Am J Hum Genet ; 85(4): 503-14, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19804849

RESUMO

Fragile X syndrome (FXS) results from a CGG-repeat expansion that triggers hypermethylation and silencing of the FMR1 gene. FXS is referred to as the most common form of inherited intellectual disability, yet its true incidence has never been measured directly by large population screening. Here, we developed an inexpensive and high-throughput assay to quantitatively assess FMR1 methylation in DNA isolated from the dried blood spots of 36,124 deidentified newborn males. This assay displays 100% specificity and 100% sensitivity for detecting FMR1 methylation, successfully distinguishing normal males from males with full-mutation FXS. Furthermore, the assay can detect excess FMR1 methylation in 82% of females with full mutations, although the methylation did not correlate with intellectual disability. With amelogenin PCR used for detecting the presence of a Y chromosome, this assay can also detect males with Klinefelter syndrome (KS) (47, XXY). We identified 64 males with FMR1 methylation and, after confirmatory testing, found seven to have full-mutation FXS and 57 to have KS. Because the precise incidence of KS is known, we used our observed KS incidence as a sentinel to assess ascertainment quality and showed that our KS incidence of 1 in 633 newborn males was not significantly different from the literature incidence of 1 in 576 (p = 0.79). The seven FXS males revealed an FXS incidence in males of 1 in 5161 (95% confidence interval of 1 in 10,653-1 in 2500), consistent with some earlier indirect estimates. Given the trials now underway for possible FXS treatments, this method could be used in newborn or infant screening as a way of ensuring early interventions for FXS.


Assuntos
Metilação de DNA , DNA/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/epidemiologia , Síndrome do Cromossomo X Frágil/genética , Triagem Neonatal/métodos , Sequência de Bases , Análise Mutacional de DNA , Primers do DNA/química , Humanos , Recém-Nascido , Síndrome de Klinefelter/diagnóstico , Síndrome de Klinefelter/genética , Masculino , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Sensibilidade e Especificidade , Homologia de Sequência do Ácido Nucleico
10.
Mol Genet Metab ; 107(1-2): 31-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22841515

RESUMO

BACKGROUND: A need exists to expand the characterization of tetrahydrobiopterin (BH(4)) responsiveness in patients with phenylketonuria (PKU), beyond simply evaluating change in blood phenylalanine concentrations. The clinical interpretation of BH(4) responsiveness should be evaluated within the context of phenylalanine hydroxylase (PAH) genotype. AIM: This investigation seeks to use a modified version of a previously developed PAH genotype severity tool, the assigned value (AV) sum, to assess the molecular basis of responsiveness in a clinical cohort and to explore the tool's ability to differentiate BH(4) responsive groups. METHODS: BH(4) response was previously clinically classified in 58 patients with PKU, with three response groups emerging: definitive responders, provisional responders, and non-responders. Provisional responders represented a clinically ambiguous group, with an initial decrease in plasma phenylalanine concentrations, but limited ability to improve dietary phenylalanine tolerance. In this retrospective analysis, mutations in the PAH gene were identified in each patient. PAH genotype was characterized through the AV sum approach, in which each mutation is given an AV of 1, 2, 4, or 8; the sum of both mutations' AV corresponds to genotype severity, with a lower number representing a more severe phenotype. An AV sum cutoff of 2 (indicative of the most severe genotypes) was used to dichotomize patients and predict BH(4) responsiveness. Provisional responders were classified with the definitive responders then the non-responders to see with which group they best aligned. RESULTS: In 17/19 definitive responders, at least one mutation was mild or moderate in severity (AV sum>2). In contrast, 7/9 provisional responders carried two severe or null mutations (AV sum=2), suggesting little molecular basis for responsiveness. Non-responders represent a heterogeneous group with 15/25 patients carrying two severe mutations (AV sum=2), 5/25 patients carrying one moderate or mild mutation in combination with a severe or null mutation (AV sum>2), and the remaining five patients carrying an uncharacterized mutation in combination with a severe mutation. Predictive sensitivity of the AV sum was maximized (89.5% vs. 67.9%) with limited detriment to specificity (79.4% vs. 80.0%), by classifying provisional responders with the non-responders rather than with the definitive responders. CONCLUSIONS: In our clinical cohort, the AV sum tool was able to identify definitive responders with a high degree of sensitivity. As demonstrated by both the provisional responder group and the substantial number of non-responders with AV sums>2, a potential exists for misclassification when BH(4) response is determined by relying solely on change in plasma phenylalanine concentrations. PAH genotype should be incorporated in the clinical evaluation of BH(4) responsiveness.


Assuntos
Genótipo , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/genética , Biopterinas/análogos & derivados , Biopterinas/uso terapêutico , Criança , Pré-Escolar , Humanos , Mutação , Fenilalanina/sangue , Fenilcetonúrias/tratamento farmacológico , Prognóstico , Resultado do Tratamento
11.
Fam Cancer ; 21(1): 7-19, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33469799

RESUMO

A substantial proportion of pathogenic variants associated with an increased risk of hereditary cancer are sequence variants affecting RNA splicing. The classification of these variants can be complex when both non-functional and functional transcripts are produced from the variant allele. We present four BRCA2 splice site variants with complex variant interpretations (BRCA2 c.68-3T>G, c.68-2A>G, c.425G>T, c.8331+2T>C). Evidence supporting a pathogenic classification is available for each variant, including in silico models, absence in population databases, and published functional data. However, comprehensive RNA analysis showed that some functional transcript may be produced by each variant. BRCA2 c.68-3T>G results in a partial splice defect. For BRCA2 c.68-2A>G and c.425G>T, aberrant splicing was shown to produce a potentially functional, in-frame transcript. BRCA2 c.8331+2T>C may utilize a functional GC donor in place of the wild-type GT donor. The severity of cancer history for carriers of these variants was also assessed using a history weighting algorithm and was not consistent with pathogenic controls (carriers of known pathogenic variants in BRCA2). Due to the conflicting evidence, our laboratory classifies these BRCA2 variants as variants of uncertain significance. This highlights the importance of evaluating new and existing evidence to ensure accurate variant classification and appropriate patient care.


Assuntos
Proteína BRCA2 , Neoplasias da Mama , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Feminino , Genes BRCA2 , Humanos , Mutação , Sítios de Splice de RNA/genética , Splicing de RNA/genética , RNA Mensageiro/genética
12.
Hum Mol Genet ; 18(9): 1624-32, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19224951

RESUMO

Duarte galactosemia is a mild to asymptomatic condition that results from partial impairment of galactose-1-phosphate uridylyltransferase (GALT). Patients with Duarte galactosemia demonstrate reduced GALT activity and carry one profoundly impaired GALT allele (G) along with a second, partially impaired GALT allele (Duarte-2, D2). Molecular studies reveal at least five sequence changes on D2 alleles: a p.N314D missense substitution, three intronic base changes and a 4 bp deletion in the 5' proximal sequence. The four non-coding sequence changes are unique to D2. The p.N314D substitution, however, is not; it is found together with a silent polymorphism, p.L218(TTA), on functionally normal Duarte-1 alleles (D1, also called Los Angeles or LA alleles). The HapMap database reveals that p.N314D is a common human variant, and cross-species comparisons implicate D314 as the ancestral allele. The p.N314D substitution is also functionally neutral in mammalian cell and yeast expression studies. In contrast, the 4 bp 5' deletion characteristic of D2 alleles appears to be functionally impaired in reporter gene transfection studies. Here we present allele-specific qRT-PCR evidence that D2 alleles express less mRNA in vivo than their wild-type counterparts; the difference is small but statistically significant. Furthermore, we characterize the prevalence of the 4 bp deletion in GG, NN and DG populations; the deletion appears exclusive to D2 alleles. Combined, these data strongly implicate the 4 bp 5' deletion as a causal mutation in Duarte galactosemia and suggest that direct tests for this deletion, as proposed here, could enhance or supplant current tests, which define D2 alleles on the basis of the presence and absence of linked coding sequence polymorphisms.


Assuntos
Galactosemias/enzimologia , Expressão Gênica , Deleção de Sequência , UTP-Hexose-1-Fosfato Uridililtransferase/genética , Alelos , Estudos de Coortes , Galactosemias/genética , Humanos , Polimorfismo Genético , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo
13.
Ophthalmology ; 118(3): 558-63, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21036400

RESUMO

PURPOSE: Autosomal-dominant optic atrophy (DOA) is one of the most common inherited optic neuropathies, and it is genetically heterogeneous, with mutations in both OPA1 and OPA3 known to cause disease. Approximately 60% of cases harbor OPA1 mutations, whereas OPA3 mutations have been reported in only 2 pedigrees with DOA and premature cataracts. The aim of this study was to determine the yield of OPA1 and OPA3 screening in a cohort of presumed DOA cases referred to a tertiary diagnostic laboratory. DESIGN: Retrospective case series. PARTICIPANTS: One hundred eighty-eight probands with bilateral optic atrophy referred for molecular genetic investigations at a tertiary diagnostic facility: 38 patients with an autosomal-dominant pattern of inheritance and 150 sporadic cases. METHODS: OPA1 and OPA3 genetic testing was initially performed using polymerase chain reaction-based sequencing methods. The presence of large-scale OPA1 and OPA3 genomic rearrangements was assessed further with a targeted comparative genomic hybridization microarray platform. The 3 primary Leber hereditary optic neuropathy (LHON) mutations, m.3460G→>A, m.11778G→A, and m.14484T→C, also were screened in all patients. MAIN OUTCOME MEASURES: The proportion of patients with OPA1 and OPA3 pathogenic mutations. The clinical profile observed in molecularly confirmed DOA cases. RESULTS: Twenty-one different OPA1 mutations were found in 27 (14.4%) of the 188 probands screened. The mutations included 6 novel pathogenic variants and the first reported OPA1 initiation codon mutation at c.1A→T. An OPA1 missense mutation, c.239A→G (p.Y80C), was identified in an 11-year-old black girl with optic atrophy and peripheral sensorimotor neuropathy in her lower limbs. The OPA1 detection rate was significantly higher among individuals with a positive family history of visual failure (50.0%) compared with sporadic cases (5.3%). The primary LHON screen was negative in the patient cohort, and additional molecular investigations did not reveal any large-scale OPA1 rearrangements or OPA3 genetic defects. The mean baseline visual acuity for the OPA1-positive group was 0.48 logarithm of the minimum angle of resolution (units mean Snellen equivalent, 20/61; range, 20/20-20/400; 95% confidence interval, 20/52-20/71), and visual deterioration occurred in 54.2% of patients during follow-up. CONCLUSIONS: OPA1 mutations are the most common genetic defects identified in patients with suspected DOA, whereas OPA3 mutations are very rare in isolated optic atrophy cases.


Assuntos
GTP Fosfo-Hidrolases/genética , Mutação , Atrofia Óptica Autossômica Dominante/genética , Proteínas/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Análise Mutacional de DNA , DNA Mitocondrial/genética , Feminino , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Hibridização de Ácido Nucleico , Atrofia Óptica/genética , Reação em Cadeia da Polimerase , Estudos Retrospectivos , Acuidade Visual , Adulto Jovem
14.
Am J Med Genet A ; 152A(10): 2512-20, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20799337

RESUMO

Fragile X syndrome (FXS), the most common inherited form of developmental delay, is typically caused by CGG-repeat expansion in FMR1. However, little attention has been paid to sequence variants in FMR1. Through the use of pooled-template massively parallel sequencing, we identified 130 novel FMR1 sequence variants in a population of 963 developmentally delayed males without CGG-repeat expansion mutations. Among these, we identified a novel missense change, p.R138Q, which alters a conserved residue in the nuclear localization signal of FMRP. We have also identified three promoter mutations in this population, all of which significantly reduce in vitro levels of FMR1 transcription. Additionally, we identified 10 noncoding variants of possible functional significance in the introns and 3'-untranslated region of FMR1, including two predicted splice site mutations. These findings greatly expand the catalog of known FMR1 sequence variants and suggest that FMR1 sequence variants may represent an important cause of developmental delay.


Assuntos
Deficiências do Desenvolvimento/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Adolescente , Criança , Sequência Conservada , DNA/genética , DNA/isolamento & purificação , Primers do DNA , Variação Genética , Genótipo , Humanos , Íntrons , Luciferases/genética , Masculino , Mutação de Sentido Incorreto , Fenótipo , Plasmídeos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Valores de Referência , Transcrição Gênica , Expansão das Repetições de Trinucleotídeos/genética
16.
Genet Med ; 11(4): 232-40, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19282776

RESUMO

PURPOSE: To develop a high resolution microarray based method to detect single- and multiexons gene deletions and duplications. METHODS: We have developed a high-resolution comparative genomic hybridization array to detect single- and multiexon deletions and duplications in a large set of genes on a single microarray, using the NimbleGen 385K array with an exon-centric design. RESULTS: We have successfully developed, validated, and implemented a targeted gene comparative genomic hybridization arrays for detecting single- and multiexon deletions and duplication in autosomal and X-linked disease-associated genes. CONCLUSION: The comparative genomic hybridization arrays can be adopted readily by clinical molecular diagnostic laboratories as a rapid, cost-effective, highly sensitive, and accurate approach for the detection of single- and multiexon deletions or duplications, particularly in cases where direct sequencing fails to identify a mutation.


Assuntos
Hibridização Genômica Comparativa/métodos , Análise Mutacional de DNA/métodos , Deleção de Genes , Duplicação Gênica , Sequência de Bases , Predisposição Genética para Doença/genética , Humanos , Mutação , Reprodutibilidade dos Testes
17.
Cancer Genet ; 235-236: 31-38, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31056428

RESUMO

Next-generation sequencing (NGS) hereditary pan-cancer panel testing can identify somatic variants, which exhibit lower allele frequencies than do germline variants and may confound hereditary cancer predisposition testing. This analysis examined the prevalence and characteristics of likely-somatic variants among 348,543 individuals tested using a clinical NGS hereditary pan-cancer panel. Variants showing allele frequencies between 10% and 30% were interpreted as likely somatic and identified in 753 (0.22%) individuals. They were most frequent in TP53, CHEK2 and ATM, commonly as C-to-T transitions. Among individuals who carried a likely-somatic variant and reported no personal cancer history, 54.2% (78/144) carried a variant in TP53, CHEK2 or ATM. With a reported cancer history, this percentage increased to 81.1% (494/609), predominantly in CHEK2 and TP53. Their presence was associated with age (OR=3.1, 95% CI 2.5, 3.7; p<0.001) and personal history of cancer (OR=3.3, 95% CI 2.7, 4.0; p<0.001), particularly ovarian cancer. Germline ATM pathogenic variant carriers showed significant enrichment of likely-somatic variants (OR=2.8, 95% CI 1.6, 4.9; p = 0.005), regardless of cancer status. The appearance of likely-somatic variants is consistent with clonal hematopoiesis, possibly influenced by cancer treatment. These findings highlight the precision required of diagnostic laboratories to deliver accurate germline testing results.


Assuntos
Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa/genética , Síndromes Neoplásicas Hereditárias/genética , Adulto , Idoso , Proteínas Mutadas de Ataxia Telangiectasia/genética , Sequência de Bases , Quinase do Ponto de Checagem 2/genética , Frequência do Gene/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Programas de Rastreamento , Pessoa de Meia-Idade , Proteína Supressora de Tumor p53/genética
18.
Am J Med Genet A ; 146A(10): 1358-67, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18412117

RESUMO

The most common cause of fragile X syndrome is expansion of a CGG trinucleotide repeat in the 5'UTR of FMR1. This expansion leads to transcriptional silencing of the gene. However, other mutational mechanisms, such as deletions of FMR1, also cause fragile X syndrome. The result is the same for both the expansion mediated silencing and deletion, absence of the gene product, FMRP. We report here on an 11-year-old boy with a cognitive and behavioral profile with features compatible with, but not specific to, fragile X syndrome. A mosaic deletion of 1,013,395 bp was found using high-density X chromosome microarray analysis followed by sequencing of the deletion breakpoints. We review the literature of FMR1 deletions and present this case in the context of other FMR1 deletions having mental retardation that may or may not have the classic fragile X phenotype.


Assuntos
Erros de Diagnóstico , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/diagnóstico , Transtornos Mentais/diagnóstico , Mosaicismo , Deleção de Sequência , Sintomas Comportamentais/diagnóstico , Sintomas Comportamentais/genética , Criança , Cromossomos Humanos X/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Humanos , Masculino , Transtornos Mentais/genética , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos
19.
Cancer Genet ; 211: 5-8, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28279308

RESUMO

Next Generation Sequencing (NGS) multigene panels, which are routinely used to assess hereditary cancer risk, can detect both inherited germline variants and somatic variants in cancer-risk genes. We evaluated the frequency and distribution of likely somatic Pathogenic and Likely Pathogenic variants (PVs) detected in >220,000 individuals who underwent clinical testing with a 25-gene panel between September 2013 and March 2016. Likely somatic PVs are defined as variants with NGS read frequencies from 10% to 30%. Overall, 137 (0.06%) individuals were identified as carrying likely somatic PVs, most commonly in TP53 (73), CHEK2 (27), and ATM (20). Among this group, a second PV with a NGS read frequency consistent with a germline variant within the same gene or a different gene on the panel was detected in 21 individuals (15.3%), which is similar to the detection rate in our general testing population. Likely somatic PVs accounted for 38.8% of all PVs in TP53. In comparison, likely somatic PVs accounted for <1% of PVs in most other genes. Likely somatic PVs were more frequently identified in older individuals (p < 0.001). Additional studies are ongoing to further investigate the incidence and clinical implications of somatic variants, enabling the appropriate medical management for these patients.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Linfócitos/fisiologia , Neoplasias/sangue , Neoplasias/genética , Predisposição Genética para Doença , Humanos , Linfócitos/química , Linfócitos/metabolismo
20.
Cancer Genet ; 216-217: 159-169, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29025590

RESUMO

Cancer risks have been previously reported for some retrotransposon element (RE) insertions; however, detection of these insertions is technically challenging and very few oncogenic RE insertions have been reported. Here we evaluate RE insertions identified during hereditary cancer genetic testing using a comprehensive testing strategy. Individuals who had single-syndrome or pan-cancer hereditary cancer genetic testing from February 2004 to March 2017 were included. RE insertions were identified using Sanger sequencing, Next Generation Sequencing, or multiplex quantitative PCR, and further characterized using targeted PCR and sequencing analysis. Personal cancer history, ancestry, and haplotype were evaluated. A total of 37 unique RE insertions were identified in 10 genes, affecting 211 individuals. BRCA2 accounted for 45.9% (17/37) of all unique RE insertions. Several RE insertions were detected with high frequency in populations of conserved ancestry wherein up to 100% of carriers shared a high degree of haplotype conservation, suggesting founder effects. Our comprehensive testing strategy resulted in a substantial increase in the number of reported oncogenic RE insertions, several of which may have possible founder effects. Collectively, these data show that the detection of RE insertions is an important component of hereditary cancer genetic testing and may be more prevalent than previously reported.


Assuntos
Genes Neoplásicos , Predisposição Genética para Doença , Mutagênese Insercional/genética , Neoplasias/genética , Retroelementos/genética , Elementos Alu/genética , Sequência de Bases , Efeito Fundador , Haplótipos/genética , Humanos , Mutação/genética , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA