Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(4): e3002602, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38669296

RESUMO

Mitofusins are large GTPases that trigger fusion of mitochondrial outer membranes. Similarly to the human mitofusin Mfn2, which also tethers mitochondria to the endoplasmic reticulum (ER), the yeast mitofusin Fzo1 stimulates contacts between Peroxisomes and Mitochondria when overexpressed. Yet, the physiological significance and function of these "PerMit" contacts remain unknown. Here, we demonstrate that Fzo1 naturally localizes to peroxisomes and promotes PerMit contacts in physiological conditions. These contacts are regulated through co-modulation of Fzo1 levels by the ubiquitin-proteasome system (UPS) and by the desaturation status of fatty acids (FAs). Contacts decrease under low FA desaturation but reach a maximum during high FA desaturation. High-throughput genetic screening combined with high-resolution cellular imaging reveal that Fzo1-mediated PerMit contacts favor the transit of peroxisomal citrate into mitochondria. In turn, citrate enters the TCA cycle to stimulate the mitochondrial membrane potential and maintain efficient mitochondrial fusion upon high FA desaturation. These findings thus unravel a mechanism by which inter-organelle contacts safeguard mitochondrial fusion.


Assuntos
Mitocôndrias , Dinâmica Mitocondrial , Peroxissomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Peroxissomos/metabolismo , Dinâmica Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ácidos Graxos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ciclo do Ácido Cítrico , Potencial da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo , Humanos
2.
PLoS Genet ; 15(3): e1008047, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30875368

RESUMO

Large GTPases of the Dynamin Related Proteins (DRP) family shape lipid bilayers through membrane fission or fusion processes. Despite the highly organized photosynthetic membranes of thylakoids, a single DRP is known to be targeted inside the chloroplast. Fzl from the land plant Arabidopsis thaliana is inserted in the inner envelope and thylakoid membranes to regulate their morphology. Fzl may promote the fusion of thylakoids but this remains to be proven. Moreover, the physiological requirement for fusing thylakoids is currently unknown. Here, we find that the unicellular microalga Chlamydomonas reinhardtii encodes an Fzl ortholog (CrFzl) that is localized in the chloroplast where it is soluble. To explore its function, the CRISPR/Cas9 technology was employed to generate multiple CrFzl knock out strains. Phenotypic analyzes revealed a specific requirement of CrFzl for survival upon light stress. Consistent with this, strong irradiance lead to increased photoinhibition of photosynthesis in mutant cells. Fluorescence and electron microscopy analysis demonstrated that upon exposure to high light, CrFzl mutants show defects in chloroplast morphology but also large cytosolic vacuoles in close contact with the plastid. We further observe that strong irradiance induces an increased recruitment of the DRP to thylakoid membranes. Most importantly, we show that CrFzl is required for the fusion of thylakoids during mating. Together, our results suggest that thylakoids fusion may be necessary for resistance to light stress.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Tilacoides/metabolismo , Proteínas de Algas/genética , Sistemas CRISPR-Cas , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efeitos da radiação , Cloroplastos/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/genética , Técnicas de Inativação de Genes , Luz , Fusão de Membrana , Microscopia Eletrônica de Transmissão , Mutação , Processos Fototróficos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estresse Fisiológico , Tilacoides/efeitos da radiação , Tilacoides/ultraestrutura
4.
J Membr Biol ; 252(4-5): 293-306, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31485701

RESUMO

Mitochondria are dynamic organelles characterized by an ultrastructural organization which is essential in maintaining their quality control and ensuring functional efficiency. The complex mitochondrial network is the result of the two ongoing forces of fusion and fission of inner and outer membranes. Understanding the functional details of mitochondrial dynamics is physiologically relevant as perturbations of this delicate equilibrium have critical consequences and involved in several neurological disorders. Molecular actors involved in this process are large GTPases from the dynamin-related protein family. They catalyze nucleotide-dependent membrane remodeling and are widely conserved from bacteria to higher eukaryotes. Although structural characterization of different family members has contributed in understanding molecular mechanisms of mitochondrial dynamics in more detail, the complete structure of some members as well as the precise assembly of functional oligomers remains largely unknown. As increasing structural data become available, the domain modularity across the dynamin superfamily emerged as a foundation for transfering the knowledge towards less characterized members. In this review, we will first provide an overview of the main actors involved in mitochondrial dynamics. We then discuss recent example of computational methodologies for the study of mitofusin oligomers, and present how the usage of integrative modeling in conjunction with biochemical data can be an asset in progressing the still challenging field of membrane dynamics.


Assuntos
Fusão de Membrana , Mitocôndrias , Dinâmica Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial , Membranas Mitocondriais , Animais , Humanos , Mitocôndrias/química , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo
5.
Brain ; 138(Pt 2): 284-92, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25527826

RESUMO

Inherited white matter diseases are rare and heterogeneous disorders usually encountered in infancy. Adult-onset forms are increasingly recognized. Our objectives were to determine relative frequencies of genetic leukoencephalopathies in a cohort of adult-onset patients and to evaluate the effectiveness of a systematic diagnostic approach. Inclusion criteria of this retrospective study were: (i) symmetrical involvement of white matter on the first available brain MRI; (ii) age of onset above 16 years. Patients with acquired diseases were excluded. Magnetic resonance imaging analysis identified three groups (vascular, cavitary and non-vascular/non-cavitary) in which distinct genetic and/or biochemical testing were realized. One hundred and fifty-four patients (male/female = 60/94) with adult-onset leukoencephalopathies were identified. Mean age of onset was 38.6 years. In the vascular group, 41/55 patients (75%) finally had a diagnosis [including CADASIL (cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy, n = 32) and COL4A1 mutation, n = 7]. In the cavitary group, 13/17 (76%) patients had a diagnosis of EIF2B-related disorder. In the third group (n = 82), a systematic biological screening allowed a diagnosis in 23 patients (28%) and oriented direct genetic screening identified 21 additional diseases (25.6%). Adult-onset genetic leukoencephalopathies are a rare but probably underestimated entity. Our study confirms the use of a magnetic resonance imaging-based classification with a final diagnosis rate of 64% (98/154) cases.


Assuntos
Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Adolescente , Adulto , Idade de Início , Idoso , Transtornos Cerebrovasculares/genética , Transtornos Cerebrovasculares/patologia , Feminino , França , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Substância Branca/patologia , Adulto Jovem
6.
J Cell Sci ; 124(Pt 9): 1403-10, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21502136

RESUMO

The ability of cells to respire requires that mitochondria undergo fusion and fission of their outer and inner membranes. The means by which levels of fusion 'machinery' components are regulated and the molecular details of how fusion occurs are largely unknown. In Saccharomyces cerevisiae, a central component of the mitochondrial outer membrane (MOM) fusion machinery is the mitofusin Fzo1, a dynamin-like GTPase. We demonstrate that an early step in fusion, mitochondrial tethering, is dependent on the Fzo1 GTPase domain. Furthermore, the ubiquitin ligase SCF(Mdm30) (a SKP1-cullin-1-F-box complex that contains Mdm30 as the F-box protein), which targets Fzo1 for ubiquitylation and proteasomal degradation, is recruited to Fzo1 as a consequence of a GTPase-domain-dependent alteration in the mitofusin. Moreover, evidence is provided that neither Mdm30 nor proteasome activity are necessary for tethering of mitochondria. However, both Mdm30 and proteasomes are critical for MOM fusion. To better understand the requirement for the ubiquitin-proteasome system in mitochondrial fusion, we used the N-end rule system of degrons and determined that ongoing degradation of Fzo1 is important for mitochondrial morphology and respiration. These findings suggest a sequence of events in early mitochondrial fusion where Fzo1 GTPase-domain-dependent tethering leads to recruitment of SCF(Mdm30) and ubiquitin-mediated degradation of Fzo1, which facilitates mitochondrial fusion.


Assuntos
Proteínas F-Box/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Fusão de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas F-Box/química , Proteínas F-Box/genética , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Immunoblotting , Imunoprecipitação , Fusão de Membrana/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Ligação Proteica , Proteínas Ligases SKP Culina F-Box/química , Proteínas Ligases SKP Culina F-Box/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
Biomolecules ; 13(9)2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37759741

RESUMO

Mitochondria are highly dynamic organelles that constantly undergo fusion and fission events to maintain their shape, distribution and cellular function. Mitofusin 1 and 2 proteins are two dynamin-like GTPases involved in the fusion of outer mitochondrial membranes (OMM). Mitofusins are anchored to the OMM through their transmembrane domain and possess two heptad repeat domains (HR1 and HR2) in addition to their N-terminal GTPase domain. The HR1 domain was found to induce fusion via its amphipathic helix, which interacts with the lipid bilayer structure. The lipid composition of mitochondrial membranes can also impact fusion. However, the precise mode of action of lipids in mitochondrial fusion is not fully understood. In this study, we examined the role of the mitochondrial lipids phosphatidylethanolamine (PE), cardiolipin (CL) and phosphatidic acid (PA) in membrane fusion induced by the HR1 domain, both in the presence and absence of divalent cations (Ca2+ or Mg2+). Our results showed that PE, as well as PA in the presence of Ca2+, effectively stimulated HR1-mediated fusion, while CL had a slight inhibitory effect. By considering the biophysical properties of these lipids in the absence or presence of divalent cations, we inferred that the interplay between divalent cations and specific cone-shaped lipids creates regions with packing defects in the membrane, which provides a favorable environment for the amphipathic helix of HR1 to bind to the membrane and initiate fusion.


Assuntos
Fusão de Membrana , Mitocôndrias , Cátions Bivalentes , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Lipídeos
8.
Methods Mol Biol ; 2602: 191-204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36446976

RESUMO

The ATG8 family of proteins regulates the autophagy process from the autophagosome maturation and cargo recruitment up to degradation. Autophagy dysfunction is involved in the development of multiple diseases. The LC3 interacting region (LIR)-based molecular traps have been designed to isolate endogenous ATG8 proteins and their interactors in order to facilitate the study of selective autophagy events. Here, we summarize protocols describing LC3 traps and sample preparation as well as adaptations for the analysis of ATG8 proteins in different biological models. This protocol was optimized to prepare affinity columns, reduce background, and improve the protein recovery to be analyzed by immunodetection with antibodies recognizing proteins of interest.


Assuntos
Aclimatação , Macroautofagia , Família da Proteína 8 Relacionada à Autofagia/genética , Anticorpos , Autofagia
9.
EMBO Rep ; 11(7): 548-54, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20508643

RESUMO

Ubiquitin-dependent processes can be antagonized by substrate-specific deubiquitination enzymes involved in many cellular functions. In this study, we show that the yeast Ubp3-Bre5 deubiquitination complex interacts with both the chaperone-like Cdc48, a major actor of the ubiquitin and proteasome system, and Ufd3, a ubiquitin-binding cofactor of Cdc48. We observed that these partners are required for the Ubp3-Bre5-dependent and starvation-induced selective degradation of yeast mature ribosomes, also called ribophagy. By contrast, proteasome-dependent degradation does not participate in this process. Our data favour the idea that these factors cooperate to recognize and deubiquitinate specific substrates of ribophagy before their vacuolar degradation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Endopeptidases/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Endopeptidases/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Proteína com Valosina
10.
Biochim Biophys Acta Bioenerg ; 1863(8): 148913, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36057374

RESUMO

Mitochondria assemble in a highly dynamic network where interconnected tubules evolve in length and size through regulated cycles of fission and fusion of mitochondrial membranes thereby adapting to cellular needs. Mitochondrial fusion and fission processes are mediated by specific sets of mechano-chemical large GTPases that belong to the Dynamin-Related Proteins (DRPs) super family. DRPs bind to cognate membranes and auto-oligomerize to drive lipid bilayers remodeling in a nucleotide dependent manner. Although structural characterization and mechanisms of DRPs that mediate membrane fission are well established, the capacity of DRPs to mediate membrane fusion is only emerging. In this review, we discuss the distinct structures and mechanisms of DRPs that trigger the anchoring and fusion of biological membranes with a specific focus on mitofusins that are dedicated to the fusion of mitochondrial outer membranes. In particular, we will highlight oligomeric assemblies of distinct DRPs and confront their mode of action against existing models of mitofusins assemblies with emphasis on recent biochemical, structural and computational reports. As we will see, the literature brings valuable insights into the presumed macro-assemblies mitofusins may form during anchoring and fusion of mitochondrial outer membranes.


Assuntos
Bicamadas Lipídicas , Fusão de Membrana , Dinaminas/química , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Nucleotídeos
11.
Sci Rep ; 12(1): 7652, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538106

RESUMO

Autophagy is an essential cellular pathway that ensures degradation of a wide range of substrates including damaged organelles or large protein aggregates. Understanding how this proteolytic pathway is regulated would increase our comprehension on its role in cellular physiology and contribute to identify biomarkers or potential drug targets to develop more specific treatments for disease in which autophagy is dysregulated. Here, we report the development of molecular traps based in the tandem disposition of LC3-interacting regions (LIR). The estimated affinity of LC3-traps for distinct recombinant LC3/GABARAP proteins is in the low nanomolar range and allows the capture of these proteins from distinct mammalian cell lines, S. cerevisiae and C. elegans. LC3-traps show preferences for GABARAP/LGG1 or LC3/LGG2 and pull-down substrates targeted to proteaphagy and mitophagy. Therefore, LC3-traps are versatile tools that can be adapted to multiple applications to monitor selective autophagy events in distinct physiologic and pathologic circumstances.


Assuntos
Caenorhabditis elegans , Macroautofagia , Animais , Autofagia , Caenorhabditis elegans/metabolismo , Mamíferos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Ligação Proteica , Saccharomyces cerevisiae/metabolismo
12.
Nat Cell Biol ; 5(7): 661-7, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12778054

RESUMO

Ubiquitination is important for a broad array of cellular functions. Although reversal of this process, de-ubiquitination, most probably represents an important regulatory step contributing to cellular homeostasis, the specificity and properties of de-ubiquitination enzymes remain poorly understood. Here, we show that the Saccharomyces cerevisiae ubiquitin protease Ubp3 requires an additional protein, Bre5, to form an active de-ubiquitination complex that cleaves ubiquitin from specific substrates. In particular, this complex rescues Sec23p, a COPII subunit essential for the transport between the endoplasmic reticulum and the Golgi apparatus, from degradation by the proteasome. This probably contributes to maintaining and adapting a Sec23 expression level that is compatible with an efficient secretion pathway, and consequently with cell growth and viability.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Caenorhabditis elegans , Endopeptidases/deficiência , Galactosiltransferases/deficiência , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/ultraestrutura , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/ultraestrutura , Endopeptidases/genética , Endopeptidases/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Proteínas Ativadoras de GTPase , Galactosiltransferases/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Microscopia Eletrônica , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/ultraestrutura , Complexo de Endopeptidases do Proteassoma , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina Tiolesterase
13.
Exp Cell Res ; 316(20): 3351-7, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20846524

RESUMO

Ubp3/Bre5 complex is a substrate-specific deubiquitylating enzyme which mediates deubiquitylation of Sec23, a component of the COPII complex involved in the transport between endoplasmic reticulum and Golgi apparatus. Here we show that ubiquitylation of Sec23 is controlled by the Rsp5 ubiquitin ligase both in vivo and in vitro. We have recently identified Cdc48, a chaperone-like that plays a key role in the proteasomal escort pathway, as a partner of the Ubp3/Bre5 complex. We now found that cdc48 thermosensitive mutant cells not only accumulate ubiquitylated form of Sec23 but also display a stabilization of this protein at the restrictive temperature. This indicates that Cdc48 controls the proteasome-mediated degradation of Sec23. Our data favor the idea that Cdc48 plays a key role in deciphering fates of ubiquitylated Sec23 to degradation or deubiquitylation/stabilization via its cofactors.


Assuntos
Adenosina Trifosfatases/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina/metabolismo , Adenosina Trifosfatases/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Proteínas de Ciclo Celular/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Proteínas Ativadoras de GTPase/genética , Modelos Biológicos , Proteínas de Transporte Nucleocitoplasmático/genética , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitinação/fisiologia , Proteína com Valosina , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
14.
Biochim Biophys Acta Bioenerg ; 1861(12): 148302, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32861697

RESUMO

From mitochondrial quality control pathways to the regulation of specific functions, the Ubiquitin Proteasome System (UPS) could be compared to a Swiss knife without which mitochondria could not maintain its integrity in the cell. Here, we review the mechanisms that the UPS employs to regulate mitochondrial function and efficiency. For this purpose, we depict how Ubiquitin and the Proteasome participate in diverse quality control pathways that safeguard entry into the mitochondrial compartment. A focus is then achieved on the UPS-mediated control of the yeast mitofusin Fzo1 which provides insights into the complex regulation of this particular protein in mitochondrial fusion. We ultimately dissect the mechanisms by which the UPS controls the degradation of mitochondria by autophagy in both mammalian and yeast systems. This organization should offer a useful overview of this abundant but fascinating literature on the crosstalks between mitochondria and the UPS.


Assuntos
Homeostase , Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Mitofagia , Ubiquitinação
15.
Neurology ; 94(15): e1645-e1656, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32170036

RESUMO

OBJECTIVE: To compare the efficacy and the risk of severe infectious events of immunosuppressive agents used early as first-line therapy in patients with neuromyelitis optica spectrum disorder (NMOSD). METHODS: We retrospectively included patients with NMOSD and a seropositive status for aquaporin 4 or myelin oligodendrocyte glycoprotein antibodies beginning first-line immunosuppressants within 3 years after the disease onset. The main outcome was occurrence of relapse after the initiation of immunosuppressants; the secondary outcome was the annual relapse rate (AAR). RESULTS: A total of 136 patients were included: 62 (45.6%) were treated with rituximab (RTX), 42 (30.9%) with mycophenolate mofetil (MMF), and 23 (16.9%) with azathioprine (AZA). Compared with RTX-treated patients, the risk of relapse was higher among MMF-treated patients (hazard ratio [HR], 2.74 [1.17-6.40]; p = 0.020) after adjusting for age at disease onset, sex, antibody status, disease duration, ARR before treatment, corticosteroid intake, and relapse location. We did not observe any difference between RTX-treated and AZA-treated patients (HR, 2.13 [0.72-6.28]; p = 0.17). No interaction was found between the antibody status and immunosuppressive treatments. ARR was lower with RTX than with MMF (p = 0.039), but no difference was observed with AZA. We observed 9 serious infectious events with MMF, 6 with RTX, and none with AZA. CONCLUSIONS: The use of first-line RTX in NMOSD appears more effective than MMF in suppressing clinical activity, independent of the antibody status. CLASSIFICATION OF EVIDENCE: That study provides Class III evidence that for patients with NMOSD, first-line RTX is superior to MMF to reduce the risk of relapse.


Assuntos
Azatioprina/uso terapêutico , Imunossupressores/uso terapêutico , Ácido Micofenólico/uso terapêutico , Neuromielite Óptica/tratamento farmacológico , Adulto , Anticorpos/uso terapêutico , Aquaporina 4/efeitos dos fármacos , Aquaporina 4/imunologia , Azatioprina/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ácido Micofenólico/administração & dosagem , Neuromielite Óptica/imunologia , Recidiva , Rituximab/uso terapêutico
16.
Mitochondrion ; 49: 234-244, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31306768

RESUMO

Tethering and homotypic fusion of mitochondrial outer membranes is mediated by large GTPases of the dynamin-related proteins family called the mitofusins. The yeast mitofusin Fzo1 forms high molecular weight complexes and its assembly during membrane fusion likely involves the formation of high order complexes. Consistent with this possibility, mitofusins form oligomers in both cis (on the same lipid bilayer) and trans to mediate membrane attachment and fusion. Here, we utilize our recent Fzo1 model to investigate and discuss the formation of cis and trans mitofusin oligomers. We have built three distinct cis-assembly Fzo1 models that gave rise to three distinct trans-oligomeric models of mitofusin constructs. Each model involves two main components of mitofusin oligomerization: the GTPase and the trunk domains. The oligomeric models proposed in this study were further assessed for stability and dynamics in a membrane environment using a coarse-grained molecular dynamics (MD) simulation approach. A narrow opening 'head-to-head' cis-oligomerization (via the GTPase domain) followed by the antiparallel 'back-to-back' trans-associations (via the trunk domain) appears to be in agreement with all of the available experimental data. More broadly, this study opens new possibilities to start exploring cis and trans conformations for Fzo1 and mitofusins in general.


Assuntos
GTP Fosfo-Hidrolases/química , Proteínas de Membrana/química , Membranas Mitocondriais/química , Proteínas Mitocondriais/química , Simulação de Acoplamento Molecular , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Domínios Proteicos , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Data Brief ; 26: 104460, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31667232

RESUMO

In this work we present a novel set of possible auto-oligomerisation states of yeast protein Fzo1 in the context of membrane docking. The dataset reports atomistic models and trajectories derived from a molecular dynamics study of the yeast mitofusin Fzo1, residues 101-855. The initial modelling was followed by coarse-grained molecular dynamics simulation to evaluate the stability and the dynamics of each structural model in a solvated membrane environment. Simulations were run for 1 µs and collected with GROMACS v5.0.4 using the martini v2.1 force field. For each structural model, the dataset comprises the production phase under semi-isotropic condition at 1 bar, 310 K and 150 mn NaCl. The integration step is 20 fs and coordinates have been saved every 1 ns. Each trajectory is associated with a ready-available visualization state for the VMD software. These structural detailed informations are a ready-available platform to plan integrative studies on the mitofusin Fzo1 and will aid the community to further elucidate the mitochondrial tethering process during membrane fusion. This dataset is based on the publication "Physics-based oligomeric models of the yeast mitofusin Fzo1 at the molecular scale in the context of membrane docking." (Brandner and De Vecchis et al., 2019)".

18.
F1000Res ; 72018.
Artigo em Inglês | MEDLINE | ID: mdl-30647902

RESUMO

Mitochondria undergo frequent fusion and fission events to adapt their morphology to cellular needs. Homotypic docking and fusion of outer mitochondrial membranes are controlled by Mitofusins, a set of large membrane-anchored GTPase proteins belonging to the dynamin superfamily. Mitofusins include, in addition to their GTPase and transmembrane domains, two heptad repeat domains, HR1 and HR2. All four regions are crucial for Mitofusin function, but their precise contribution to mitochondrial docking and fusion events has remained elusive until very recently. In this commentary, we first give an overview of the established strategies employed by various protein machineries distinct from Mitofusins to mediate membrane fusion. We then present recent structure-function data on Mitofusins that provide important novel insights into their mode of action in mitochondrial fusion.


Assuntos
GTP Fosfo-Hidrolases , Dinâmica Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial , Animais , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/fisiologia , Humanos , Fusão de Membrana , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo
19.
Nat Commun ; 9(1): 1761, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720625

RESUMO

The understanding that organelles are not floating in the cytosol, but rather held in an organized yet dynamic interplay through membrane contact sites, is altering the way we grasp cell biological phenomena. However, we still have not identified the entire repertoire of contact sites, their tethering molecules and functions. To systematically characterize contact sites and their tethering molecules here we employ a proximity detection method based on split fluorophores and discover four potential new yeast contact sites. We then focus on a little-studied yet highly disease-relevant contact, the Peroxisome-Mitochondria (PerMit) proximity, and uncover and characterize two tether proteins: Fzo1 and Pex34. We genetically expand the PerMit contact site and demonstrate a physiological function in ß-oxidation of fatty acids. Our work showcases how systematic analysis of contact site machinery and functions can deepen our understanding of these structures in health and disease.


Assuntos
Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Citoplasma/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Peroxinas/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Autophagy ; 13(1): 114-132, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27846375

RESUMO

Mitochondria are dynamic organelles that undergo permanent fission and fusion events. These processes play an essential role in maintaining normal cellular function. In the yeast Saccharomyces cerevisiae, the endoplasmic reticulum-mitochondrial encounter structure (ERMES) is a marker of sites of mitochondrial division, but it is also involved in a plethora of other mitochondrial functions. However, it remains unclear how these different functions are regulated. We show here that Mdm34 and Mdm12, 2 components of ERMES, are ubiquitinated by the E3 ligase Rsp5. This ubiquitination is not involved in mitochondrial dynamics or in the distribution and turnover of ERMES. Nevertheless, the ubiquitination of Mdm34 and Mdm12 was required for efficient mitophagy. We thus report here the first identification of ubiquitinated substrates participating in yeast mitophagy.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Membrana/química , Proteínas Mitocondriais/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Motivos de Aminoácidos , Autofagia , Retículo Endoplasmático/metabolismo , Concentração de Íons de Hidrogênio , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Mitofagia , Plasmídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA