Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 223(7): 1284-1294, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32809013

RESUMO

BACKGROUND: Varicella zoster virus (VZV) vasculopathy is characterized by persistent arterial inflammation leading to stroke. Studies show that VZV induces amyloid formation that may aggravate vasculitis. Thus, we determined if VZV central nervous system infection produces amyloid. METHODS: Aß peptides, amylin, and amyloid were measured in cerebrospinal fluid (CSF) from 16 VZV vasculopathy subjects and 36 stroke controls. To determine if infection induced amyloid deposition, mock- and VZV-infected quiescent primary human perineurial cells (qHPNCs), present in vasculature, were analyzed for intracellular amyloidogenic transcripts/proteins and amyloid. Supernatants were assayed for amyloidogenic peptides and ability to induce amyloid formation. To determine amylin's function during infection, amylin was knocked down with small interfering RNA and viral complementary DNA (cDNA) was quantitated. RESULTS: Compared to controls, VZV vasculopathy CSF had increased amyloid that positively correlated with amylin and anti-VZV antibody levels; Aß40 was reduced and Aß42 unchanged. Intracellular amylin, Aß42, and amyloid were seen only in VZV-infected qHPNCs. VZV-infected supernatant formed amyloid fibrils following addition of amyloidogenic peptides. Amylin knockdown decreased viral cDNA. CONCLUSIONS: VZV infection increased levels of amyloidogenic peptides and amyloid in CSF and qHPNCs, indicating that VZV-induced amyloid deposition may contribute to persistent arterial inflammation in VZV vasculopathy. In addition, we identified a novel proviral function of amylin.


Assuntos
Peptídeos beta-Amiloides , Amiloide , Arterite , Herpes Zoster , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Fragmentos de Peptídeos , Amiloide/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Arterite/líquido cefalorraquidiano , Arterite/diagnóstico , Arterite/virologia , DNA Complementar , DNA Viral , Herpes Zoster/líquido cefalorraquidiano , Herpes Zoster/diagnóstico , Herpesvirus Humano 3 , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Acidente Vascular Cerebral
2.
J Infect Dis ; 221(7): 1088-1097, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31665341

RESUMO

BACKGROUND: Herpes zoster is linked to amyloid-associated diseases, including dementia, macular degeneration, and diabetes mellitus, in epidemiological studies. Thus, we examined whether varicella-zoster virus (VZV)-infected cells produce amyloid. METHODS: Production of intracellular amyloidogenic proteins (amylin, amyloid precursor protein [APP], and amyloid-ß [Aß]) and amyloid, as well as extracellular amylin, Aß, and amyloid, was compared between mock- and VZV-infected quiescent primary human spinal astrocytes (qHA-sps). The ability of supernatant from infected cells to induce amylin or Aß42 aggregation was quantitated. Finally, the amyloidogenic activity of viral peptides was examined. RESULTS: VZV-infected qHA-sps, but not mock-infected qHA-sps, contained intracellular amylin, APP, and/or Aß, and amyloid. No differences in extracellular amylin, Aß40, or Aß42 were detected, yet only supernatant from VZV-infected cells induced amylin aggregation and, to a lesser extent, Aß42 aggregation into amyloid fibrils. VZV glycoprotein B (gB) peptides assembled into fibrils and catalyzed amylin and Aß42 aggregation. CONCLUSIONS: VZV-infected qHA-sps produced intracellular amyloid and their extracellular environment promoted aggregation of cellular peptides into amyloid fibrils that may be due, in part, to VZV gB peptides. These findings suggest that together with host and other environmental factors, VZV infection may increase the toxic amyloid burden and contribute to amyloid-associated disease progression.


Assuntos
Peptídeos beta-Amiloides , Astrócitos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Infecção pelo Vírus da Varicela-Zoster/metabolismo , Aciclovir/farmacologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Antivirais/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/virologia , Células Cultivadas , Espaço Extracelular/metabolismo , Humanos , Espaço Intracelular/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
3.
J Neurovirol ; 26(2): 297-309, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31502208

RESUMO

Meeting Report on the 9th Annual Symposium of the Colorado Alphaherpesvirus Latency Society (CALS) held on May 8-11, 2019, in Vail, CO.


Assuntos
Alphaherpesvirinae/fisiologia , Infecções por Herpesviridae/virologia , Latência Viral , Colorado , Humanos , Sociedades Médicas
4.
J Neurovirol ; 26(3): 422-428, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32385803

RESUMO

Herpes zoster is associated with an increased dementia and neovascular macular degeneration risk and a decline in glycemic control in diabetes mellitus. Because amyloid is present and pathogenic in these diseases, we quantified amyloid, Aß40, Aß42, and amylin in 14 zoster and 10 control plasmas. Compared with controls, zoster plasma had significantly elevated amyloid that correlated with Aß42 and amylin levels and increased amyloid aggregation with addition of exogenous Aß42 or amylin. These results suggest that zoster plasma contains factor(s) that promotes aggregation of amyloidogenic peptides, potentially contributing to the toxic amyloid burden and explaining accelerated disease progression following zoster.


Assuntos
Peptídeos beta-Amiloides/genética , Herpes Zoster/sangue , Herpesvirus Humano 3/patogenicidade , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Fragmentos de Peptídeos/genética , Agregação Patológica de Proteínas/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/sangue , Estudos de Casos e Controles , Feminino , Expressão Gênica , Herpes Zoster/genética , Herpes Zoster/patologia , Herpesvirus Humano 3/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno/genética , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/sangue , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/sangue , Agregados Proteicos , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia
6.
J Infect Dis ; 218(8): 1324-1335, 2018 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-29788447

RESUMO

Background: Varicella zoster virus (VZV) can present as a myelopathy with spinal astrocyte infection. Recent studies support a role for the neurokinin-1 receptor (NK-1R) in virus infections, as well as for cytoskeletal alterations that may promote viral spread. Thus, we examined the role of NK-1R in VZV-infected primary human spinal astrocytes (HA-sps) to shed light on the pathogenesis of VZV myelopathy. Methods: Mock- and VZV-infected HA-sps were examined for substance P (subP) production, NK-1R localization, morphological changes, and viral spread in the presence or absence of the NK-1R antagonists aprepitant and rolapitant. Results: VZV infection of HA-sps induced nuclear localization of full-length and truncated NK-1R in the absence of the endogenous ligand, subP, and was associated with extensive lamellipodia formation and viral spread that was inhibited by NK-1R antagonists. Conclusions: We have identified a novel, subP-independent, proviral function of nuclear NK-1R associated with lamellipodia formation and viral spread that is distinct from subP-induced NK-1R cell membrane/cytoplasmic localization without lamellipodia formation. These results suggest that binding of a putative viral ligand to NK-1R produces a dramatically different NK-1R downstream effect than binding of subP. Finally, the NK-1R antagonists aprepitant and rolapitant provide promising alternatives to nucleoside analogs in treating VZV infections, including myelopathy.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Astrócitos/fisiologia , Astrócitos/virologia , Herpesvirus Humano 3/fisiologia , Pseudópodes/fisiologia , Receptores da Neurocinina-1/metabolismo , Aprepitanto/farmacologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Isoformas de Proteínas , Compostos de Espiro/farmacologia , Substância P
7.
J Virol ; 91(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28747504

RESUMO

The neurotropic herpesvirus varicella-zoster virus (VZV) establishes a lifelong latent infection in humans following primary infection. The low abundance of VZV nucleic acids in human neurons has hindered an understanding of the mechanisms that regulate viral gene transcription during latency. To overcome this critical barrier, we optimized a targeted capture protocol to enrich VZV DNA and cDNA prior to whole-genome/transcriptome sequence analysis. Since the VZV genome is remarkably stable, it was surprising to detect that VZV32, a VZV laboratory strain with no discernible growth defect in tissue culture, contained a 2,158-bp deletion in open reading frame (ORF) 12. Consequently, ORF 12 and 13 protein expression was abolished and Akt phosphorylation was inhibited. The discovery of the ORF 12 deletion, revealed through targeted genome sequencing analysis, points to the need to authenticate the VZV genome when the virus is propagated in tissue culture.IMPORTANCE Viruses isolated from clinical samples often undergo genetic modifications when cultured in the laboratory. Historically, VZV is among the most genetically stable herpesviruses, a notion supported by more than 60 complete genome sequences from multiple isolates and following multiple in vitro passages. However, application of enrichment protocols to targeted genome sequencing revealed the unexpected deletion of a significant portion of VZV ORF 12 following propagation in cultured human fibroblast cells. While the enrichment protocol did not introduce bias in either the virus genome or transcriptome, the findings indicate the need for authentication of VZV by sequencing when the virus is propagated in tissue culture.


Assuntos
DNA Viral/isolamento & purificação , Genoma Viral , Herpesvirus Humano 3/genética , Fases de Leitura Aberta , Deleção de Sequência , Linhagem Celular , DNA Complementar , Herpesvirus Humano 3/crescimento & desenvolvimento , Humanos , Análise de Sequência de DNA/métodos , Transcriptoma , Proteínas Virais , Vírion , Latência Viral
8.
J Neurovirol ; 24(6): 797-812, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30414047

RESUMO

Meeting Report on the 8th Annual Symposium of the Colorado Alphaherpesvirus Latency Society (CALS), held on May 16-19, 2018, in Vail, Colorado.


Assuntos
Alphaherpesvirinae/fisiologia , Infecções por Herpesviridae/virologia , Latência Viral/fisiologia , Colorado , Humanos
9.
J Virol ; 90(3): 1231-43, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26559844

RESUMO

UNLABELLED: Regulation of gene transcription in varicella-zoster virus (VZV), a ubiquitous human neurotropic alphaherpesvirus, requires coordinated binding of multiple host and virus proteins onto specific regions of the virus genome. Chromatin immunoprecipitation (ChIP) is widely used to determine the location of specific proteins along a genomic region. Since the size range of sheared virus DNA fragments governs the limit of accurate protein localization, particularly for compact herpesvirus genomes, we used a quantitative PCR (qPCR)-based assay to determine the efficiency of VZV DNA shearing before ChIP, after which the assay was used to determine the relationship between transcript abundance and the occupancy of phosphorylated RNA polymerase II (RNAP) on the gene promoter, body, and terminus of VZV genes 9, 51, and 66. The abundance of VZV gene 9, 51, and 66 transcripts in VZV-infected human fetal lung fibroblasts was determined by reverse transcription-linked quantitative PCR. Our results showed that the C-terminal domain of RNAP is hyperphosphorylated at serine 5 (S5(P)) on VZV genes 9, 51, and 66 independently of transcript abundance and the location within the virus gene at both 1 and 3 days postinfection (dpi). In contrast, phosphorylated serine 2 (S2(P))-modified RNAP was not detected at any virus gene location at 3 dpi and was detected at levels only slightly above background levels at 1 dpi. IMPORTANCE: Regulation of herpesvirus gene transcription is an elaborate choreography between proteins and DNA that is revealed by chromatin immunoprecipitation (ChIP). We used a quantitative PCR-based assay to determine fragment size after DNA shearing, a critical parameter in ChIP assays, and exposed a basic difference in the mechanism of transcription between mammalian cells and VZV. We found that hyperphosphorylation at serine 5 of the C-terminal domain of RNAP along the lengths of VZV genes (the promoter, body, and transcription termination site) was independent of mRNA abundance. In contrast, little to no enrichment of serine 3 phosphorylation of RNAP was detected at these virus gene regions. This is distinct from the findings for RNAP at highly regulated host genes, where RNAP S5(P) occupancy decreased and S2(P) levels increased as the polymerase transited through the gene. Overall, these results suggest that RNAP associates with human and virus transcriptional units through different mechanisms.


Assuntos
DNA Viral/química , Herpesvirus Humano 3/fisiologia , RNA Polimerase II/análise , Transcrição Gênica , Células Cultivadas , Imunoprecipitação da Cromatina , Fibroblastos/virologia , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
J Neurovirol ; 23(5): 793, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28963639

RESUMO

On page 650, the institutional affiliation of Dr. Werner J.D. Ouwendijk was incorrectly listed as Freie Universitaet Berlin. It should instead be Erasmus MC, Rotterdam, The Netherlands.

11.
J Neurovirol ; 23(1): 152-157, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27683235

RESUMO

Varicella zoster virus (VZV), a human neurotropic alphaherpesvirus, becomes latent after primary infection and reactivates to produce zoster. To study VZV latency and reactivation, human trigeminal ganglia removed within 24 h after death were mechanically dissociated, randomly distributed into six-well tissue culture plates and incubated with reagents to inactivate nerve growth factor (NGF) or phosphoinositide 3-kinase (PI3-kinase) pathways. At 5 days, VZV DNA increased in control and PI3-kinase inhibitor-treated cultures to the same extent, but was significantly more abundant in anti-NGF-treated cultures (p = 0.001). Overall, VZV DNA replication is regulated in part by an NGF pathway that is PI3-kinase-independent.


Assuntos
Replicação do DNA , DNA Viral/genética , Herpesvirus Humano 3/genética , Fator de Crescimento Neural/genética , Fosfatidilinositol 3-Quinases/genética , Ativação Viral , Replicação Viral , Adulto , Idoso , Anticorpos Neutralizantes/farmacologia , Autopsia , DNA Viral/biossíntese , Regulação da Expressão Gênica , Herpes Zoster/genética , Herpes Zoster/metabolismo , Herpes Zoster/patologia , Herpes Zoster/virologia , Herpesvirus Humano 3/metabolismo , Herpesvirus Humano 3/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , Fator de Crescimento Neural/antagonistas & inibidores , Fator de Crescimento Neural/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Técnicas de Cultura de Tecidos , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/virologia , Latência Viral
12.
Clin Immunol ; 170: 9-19, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27394164

RESUMO

The presence of immunoglobulin oligoclonal bands in the cerebrospinal fluid of Multiple Sclerosis (MS) patients supports the hypothesis of an infectious etiology, although the antigenic targets remain elusive. Neurotropic mouse hepatitis virus (MHV) infection in mice provides a useful tool for studying mechanisms of demyelination in a virus-induced experimental model of MS. This study uses Affymetrix microarray analysis to compare differential spinal cord mRNA levels between mice infected with demyelinating and non-demyelinating strains of MHV to identify host immune genes expressed in this demyelinating disease model. The study reveals that during the acute stage of infection, both strains induce inflammatory innate immune response genes, whereas upregulation of several immunoglobulin genes during chronic stage infection is unique to infection with the demyelinating strain. Results suggest that the demyelinating strain induced an innate-immune response during acute infection that may promote switching of Ig isotype genes during chronic infection, potentially playing a role in antibody-mediated progressive demyelination even after viral clearance.


Assuntos
Imunidade Adaptativa/genética , Infecções por Coronavirus/genética , Doenças Desmielinizantes/genética , Regulação da Expressão Gênica/genética , Imunidade Inata/genética , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/virologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Vírus da Hepatite Murina/imunologia , Vírus da Hepatite Murina/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/imunologia , Medula Espinal/metabolismo , Medula Espinal/virologia
13.
J Virol ; 89(14): 7425-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25948748

RESUMO

Infection of human neurons in vitro with varicella-zoster virus (VZV) at a low multiplicity of infection does not result in a cytopathic effect (CPE) within 14 days postinfection (dpi), despite production of infectious virus. We showed that by 28 dpi a CPE ultimately developed in infected neurons and that interferon gamma inhibited not only the CPE but also VZV DNA accumulation, transcription, and virus production, thereby prolonging the life of VZV-infected neurons.


Assuntos
Herpesvirus Humano 3/imunologia , Herpesvirus Humano 3/fisiologia , Interferon gama/imunologia , Neurônios/fisiologia , Neurônios/virologia , Sobrevivência Celular , Efeito Citopatogênico Viral , Humanos , Replicação Viral/efeitos dos fármacos
14.
J Neurovirol ; 22(5): 688-694, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27173396

RESUMO

Analysis of the frequency and PCR-quantifiable abundance of herpes simplex virus type 1 (HSV-1) and varicella zoster virus (VZV) DNA in multiple biological replicates of cells from dissociated randomly distributed human trigeminal ganglia (TG) of four subjects revealed an increase in both parameters and in both viruses during 5 days of culture, with no further change by 10 days. Dissociated TG provides a platform to analyze initiation of latent virus DNA replication within 5 days of culture.


Assuntos
Replicação do DNA , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 3/fisiologia , Gânglio Trigeminal/virologia , Ativação Viral , Replicação Viral , Adolescente , Adulto , Autopsia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Técnicas de Cultura de Tecidos , Latência Viral
15.
J Neurovirol ; 22(5): 674-682, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27245593

RESUMO

Varicella zoster virus (VZV) is a ubiquitous alphaherpesvirus that establishes latency in ganglionic neurons throughout the neuraxis after primary infection. Here, we show that VZV infection induces a time-dependent significant change in mitochondrial morphology, an important indicator of cellular health, since mitochondria are involved in essential cellular functions. VZV immediate-early protein 63 (IE63) was detected in mitochondria-rich cellular fractions extracted from infected human fetal lung fibroblasts (HFL) by Western blotting. IE63 interacted with cytochrome c oxidase in bacterial 2-hybrid analyses. Confocal microscopy of VZV-infected HFL cells at multiple times after infection revealed the presence of IE63 in the nucleus, mitochondria, and cytoplasm. Our data provide the first evidence that VZV infection induces alterations in mitochondrial morphology, including fragmentation, which may be involved in cellular damage and/or death during virus infection.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Fibroblastos/virologia , Herpesvirus Humano 3/patogenicidade , Interações Hospedeiro-Patógeno , Proteínas Imediatamente Precoces/genética , Mitocôndrias/virologia , Proteínas do Envelope Viral/genética , Morte Celular/genética , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Citoplasma/virologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feto , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Herpesvirus Humano 3/crescimento & desenvolvimento , Humanos , Proteínas Imediatamente Precoces/metabolismo , Pulmão/citologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas do Envelope Viral/metabolismo
16.
Methods ; 90: 76-84, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25986169

RESUMO

Virus-host cell interactions are most commonly analyzed in cells maintained in vitro as two-dimensional tissue cultures. However, these in vitro conditions vary quite drastically from the tissues that are commonly infected in vivo. Over the years, a number of systems have been developed that allow the establishment of three-dimensional (3D) tissue structures that have properties similar to their in vivo 3D counterparts. These 3D systems have numerous applications including drug testing, maintenance of large tissue explants, monitoring migration of human lymphocytes in tissues, analysis of human organ tissue development and investigation of virus-host interactions including viral latency. Here, we describe the establishment of tissue-like assemblies for human lung and neuronal tissue that we infected with a variety of viruses including the respiratory pathogens human parainfluenza virus type 3 (PIV3), respiratory syncytial virus (RSV) and SARS corona virus (SARS-CoV) as well as the human neurotropic herpesvirus, varicella-zoster virus (VZV).


Assuntos
Técnicas de Cultura de Células , Interações Hospedeiro-Patógeno , Reatores Biológicos , Herpesviridae/fisiologia , Herpesvirus Humano 3/fisiologia , Humanos , Pulmão/virologia , Vírus da Parainfluenza 3 Humana/fisiologia , Vírus Sinciciais Respiratórios/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia
17.
J Gen Virol ; 96(Pt 7): 1581-602, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25794504

RESUMO

Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an 'end-less' state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing evidence that HSV-1 and VZV latency is epigenetically regulated. In vitro models that permit pathway analysis and identification of both epigenetic modulations and global transcriptional mechanisms of HSV-1 and VZV latency hold much promise for our future understanding in this complex area. This review summarizes the molecular biology of HSV-1 and VZV latency and reactivation, and also presents future directions for study.


Assuntos
Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 3/fisiologia , Ativação Viral , Latência Viral , Epigênese Genética , Gânglios/virologia , Regulação Viral da Expressão Gênica , Humanos , Neurônios/virologia , Transcrição Gênica
18.
J Virol ; 88(10): 5877-80, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24600007

RESUMO

Varicella-zoster virus (VZV) infection causes varicella, after which the virus becomes latent in ganglionic neurons. In tissue culture, VZV-infected human neurons remain viable at 2 weeks, whereas fibroblasts develop cytopathology. Next-generation RNA sequencing was used to compare VZV transcriptomes in neurons and fibroblasts and identified only 12 differentially transcribed genes of the 70 annotated VZV open reading frames (ORFs), suggesting that defective virus transcription does not account for the lack of cell death in VZV-infected neurons in vitro.


Assuntos
Sequência de Bases , Fibroblastos/virologia , Herpesvirus Humano 3/genética , Neurônios/virologia , Herpesvirus Humano 3/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Transcriptoma
19.
PLoS Pathog ; 9(8): e1003512, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935496

RESUMO

Varicella-zoster virus (VZV) is a neurotropic human alphaherpesvirus that causes varicella upon primary infection, establishes latency in multiple ganglionic neurons, and can reactivate to cause zoster. Live attenuated VZV vaccines are available; however, they can also establish latent infections and reactivate. Studies of VZV latency have been limited to the analyses of human ganglia removed at autopsy, as the virus is strictly a human pathogen. Recently, terminally differentiated human neurons have received much attention as a means to study the interaction between VZV and human neurons; however, the short life-span of these cells in culture has limited their application. Herein, we describe the construction of a model of normal human neural progenitor cells (NHNP) in tissue-like assemblies (TLAs), which can be successfully maintained for at least 180 days in three-dimensional (3D) culture, and exhibit an expression profile similar to that of human trigeminal ganglia. Infection of NHNP TLAs with cell-free VZV resulted in a persistent infection that was maintained for three months, during which the virus genome remained stable. Immediate-early, early and late VZV genes were transcribed, and low-levels of infectious VZV were recurrently detected in the culture supernatant. Our data suggest that NHNP TLAs are an effective system to investigate long-term interactions of VZV with complex assemblies of human neuronal cells.


Assuntos
Varicela/metabolismo , Herpesvirus Humano 3/fisiologia , Modelos Biológicos , Células-Tronco Neurais/virologia , Latência Viral/fisiologia , Linhagem Celular Tumoral , Varicela/patologia , Feminino , Genes Precoces/fisiologia , Humanos , Masculino , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , Fatores de Tempo , Transcrição Gênica/fisiologia
20.
J Virol ; 87(21): 11936-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23966396

RESUMO

Based on a DNA sequence and relative genomic position similar to those other herpesviruses, varicella-zoster virus (VZV) open reading frame 48 (ORF48) is predicted to encode an alkaline nuclease. Here we report the cloning, expression, purification, and characterization of recombinant VZV ORF48 protein and a VZV ORF48 point mutation (T172P). Protein encoded by wild-type ORF48, but not mutant protein, displayed both endo- and exonuclease activity, identifying ORF48 as a potential therapeutic target in VZV disease since efficient viral replication requires viral nuclease activity.


Assuntos
Herpesvirus Humano 3/enzimologia , Herpesvirus Humano 3/genética , Ribonucleases/genética , Ribonucleases/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Expressão Gênica , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ribonucleases/isolamento & purificação , Alinhamento de Sequência , Proteínas não Estruturais Virais/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA